teradataml 20.0.0.4__py3-none-any.whl → 20.0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (107) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +86 -13
  3. teradataml/__init__.py +2 -1
  4. teradataml/_version.py +2 -2
  5. teradataml/analytics/analytic_function_executor.py +7 -12
  6. teradataml/analytics/json_parser/analytic_functions_argument.py +4 -0
  7. teradataml/analytics/sqle/__init__.py +16 -1
  8. teradataml/analytics/utils.py +15 -1
  9. teradataml/automl/__init__.py +290 -106
  10. teradataml/automl/autodataprep/__init__.py +471 -0
  11. teradataml/automl/data_preparation.py +29 -10
  12. teradataml/automl/data_transformation.py +11 -0
  13. teradataml/automl/feature_engineering.py +64 -4
  14. teradataml/automl/feature_exploration.py +639 -25
  15. teradataml/automl/model_training.py +1 -1
  16. teradataml/clients/auth_client.py +2 -2
  17. teradataml/common/constants.py +61 -26
  18. teradataml/common/messagecodes.py +2 -1
  19. teradataml/common/messages.py +5 -4
  20. teradataml/common/utils.py +255 -37
  21. teradataml/context/context.py +225 -87
  22. teradataml/data/apriori_example.json +22 -0
  23. teradataml/data/docs/sqle/docs_17_20/Apriori.py +138 -0
  24. teradataml/data/docs/sqle/docs_17_20/NERExtractor.py +121 -0
  25. teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py +3 -3
  26. teradataml/data/docs/sqle/docs_17_20/SMOTE.py +212 -0
  27. teradataml/data/docs/sqle/docs_17_20/TextMorph.py +119 -0
  28. teradataml/data/docs/sqle/docs_17_20/TextParser.py +54 -3
  29. teradataml/data/docs/uaf/docs_17_20/ACF.py +1 -1
  30. teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py +2 -2
  31. teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py +2 -2
  32. teradataml/data/docs/uaf/docs_17_20/DFFT.py +1 -1
  33. teradataml/data/docs/uaf/docs_17_20/DFFT2.py +1 -1
  34. teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py +1 -1
  35. teradataml/data/docs/uaf/docs_17_20/DFFTConv.py +1 -1
  36. teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py +4 -4
  37. teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py +2 -2
  38. teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py +2 -2
  39. teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py +6 -6
  40. teradataml/data/docs/uaf/docs_17_20/LineSpec.py +1 -1
  41. teradataml/data/docs/uaf/docs_17_20/LinearRegr.py +1 -1
  42. teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py +4 -4
  43. teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py +1 -1
  44. teradataml/data/docs/uaf/docs_17_20/PACF.py +1 -1
  45. teradataml/data/docs/uaf/docs_17_20/PowerSpec.py +2 -2
  46. teradataml/data/docs/uaf/docs_17_20/PowerTransform.py +3 -3
  47. teradataml/data/docs/uaf/docs_17_20/Resample.py +5 -5
  48. teradataml/data/docs/uaf/docs_17_20/SAX.py +3 -3
  49. teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py +1 -1
  50. teradataml/data/docs/uaf/docs_17_20/SimpleExp.py +1 -1
  51. teradataml/data/docs/uaf/docs_17_20/Smoothma.py +3 -3
  52. teradataml/data/docs/uaf/docs_17_20/UNDIFF.py +1 -1
  53. teradataml/data/jsons/sqle/17.20/NGramSplitter.json +6 -6
  54. teradataml/data/jsons/sqle/17.20/TD_Apriori.json +181 -0
  55. teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json +145 -0
  56. teradataml/data/jsons/sqle/17.20/TD_SMOTE.json +267 -0
  57. teradataml/data/jsons/sqle/17.20/TD_TextMorph.json +134 -0
  58. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +114 -9
  59. teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json +328 -0
  60. teradataml/data/jsons/sqle/20.00/AI_AskLLM.json +420 -0
  61. teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json +343 -0
  62. teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json +328 -0
  63. teradataml/data/jsons/sqle/20.00/AI_MaskPII.json +328 -0
  64. teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json +328 -0
  65. teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json +328 -0
  66. teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json +359 -0
  67. teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json +360 -0
  68. teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json +343 -0
  69. teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json +343 -0
  70. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +2 -2
  71. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +1 -1
  72. teradataml/data/ner_dict.csv +8 -0
  73. teradataml/data/ner_input_eng.csv +7 -0
  74. teradataml/data/ner_rule.csv +5 -0
  75. teradataml/data/pos_input.csv +40 -0
  76. teradataml/data/tdnerextractor_example.json +14 -0
  77. teradataml/data/teradataml_example.json +13 -0
  78. teradataml/data/textmorph_example.json +5 -0
  79. teradataml/data/to_num_data.csv +4 -0
  80. teradataml/data/tochar_data.csv +5 -0
  81. teradataml/data/trans_dense.csv +16 -0
  82. teradataml/data/trans_sparse.csv +55 -0
  83. teradataml/dataframe/copy_to.py +37 -26
  84. teradataml/dataframe/data_transfer.py +61 -45
  85. teradataml/dataframe/dataframe.py +130 -50
  86. teradataml/dataframe/dataframe_utils.py +15 -2
  87. teradataml/dataframe/functions.py +109 -9
  88. teradataml/dataframe/sql.py +328 -76
  89. teradataml/dbutils/dbutils.py +33 -13
  90. teradataml/dbutils/filemgr.py +14 -10
  91. teradataml/lib/aed_0_1.dll +0 -0
  92. teradataml/opensource/_base.py +6 -157
  93. teradataml/options/configure.py +4 -5
  94. teradataml/scriptmgmt/UserEnv.py +305 -38
  95. teradataml/scriptmgmt/lls_utils.py +376 -130
  96. teradataml/store/__init__.py +1 -1
  97. teradataml/table_operators/Apply.py +16 -1
  98. teradataml/table_operators/Script.py +20 -1
  99. teradataml/table_operators/table_operator_util.py +58 -9
  100. teradataml/utils/dtypes.py +2 -1
  101. teradataml/utils/internal_buffer.py +22 -2
  102. teradataml/utils/validators.py +313 -57
  103. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.5.dist-info}/METADATA +89 -14
  104. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.5.dist-info}/RECORD +107 -77
  105. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.5.dist-info}/WHEEL +0 -0
  106. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.5.dist-info}/top_level.txt +0 -0
  107. {teradataml-20.0.0.4.dist-info → teradataml-20.0.0.5.dist-info}/zip-safe +0 -0
@@ -1,59 +1,60 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=S_ZbiH6gd6WFIbgTWQ0WnHeune5sXf5P4Bc7VE_eZkA,317583
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=C1_zJNnaiJX5OLwr6krXAY78ngnu3BKneKUPX2R3jb8,350063
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=Z1sTfwWvTyNzshSXyyRT2BpPS2hxqWyMv76gGRRBlbE,131103
4
- teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
- teradataml/_version.py,sha256=mSa1EoEAUSwGrge8moM1l_yHxKsZemXWRSERGkmGQOg,364
3
+ teradataml/README.md,sha256=2nE42FIqPB2oi8Fsl3ia5M-xLQ3Yv0_UeMJuJQAtOjg,135875
4
+ teradataml/__init__.py,sha256=OcxcbsK1UzsJxA158gWT_Q3Wz-KUp601dBK3PnxH-rk,2749
5
+ teradataml/_version.py,sha256=v9T0lcYoiCTnwHEG7MI6ycLKgsnFEjCCtu_jRa0xF-I,364
6
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
7
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
8
- teradataml/analytics/analytic_function_executor.py,sha256=kDvLwsAFYeGMvMrwdNtCNgBE2U3M8FN5xAiBjmqE5m8,107400
8
+ teradataml/analytics/analytic_function_executor.py,sha256=2WR6skmGPDGMwWAUErxEs1JqlAfc024q1KjuBD1RD1I,106714
9
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
10
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
11
- teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
11
+ teradataml/analytics/utils.py,sha256=Mvp8a_30aHTFHvBhyai0DN8h7qV-tRwD5Sc_U2OfZzY,32215
12
12
  teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
13
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
14
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
15
15
  teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
16
16
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
17
- teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
17
+ teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=d3reu75UnirP6_wcJ47Ce04KvOrNyHKtIUePrEfNcxY,65915
18
18
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
19
19
  teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
20
20
  teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
21
21
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
22
22
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
23
- teradataml/analytics/sqle/__init__.py,sha256=iY_xPIp7rk9MWseGQzDuLEXffPFBlPRVuqiztI4rqg0,4290
23
+ teradataml/analytics/sqle/__init__.py,sha256=R9WhUuskRqV5Ff9CVw0TQ0xEARpbIVntKC6122l4zvI,4832
24
24
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
25
25
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
26
26
  teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
27
27
  teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
28
- teradataml/automl/__init__.py,sha256=KFRMfRklWAuZp68VL4XqHbTgJI3tnaA-_rA1-hjukIk,136703
28
+ teradataml/automl/__init__.py,sha256=A7s7XKdgfc4g7yKsdeWKYguC0qx5kR1Cd09oRpyc84c,143313
29
29
  teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
30
- teradataml/automl/data_preparation.py,sha256=tDx5uFPfti-UVuCrkdtcYD1FQEKujklB065hAd7B254,43252
31
- teradataml/automl/data_transformation.py,sha256=j7sHFoF-J9rDunJ-NrFOoozS_oeeeB6fqrW-_pnQqTo,44569
32
- teradataml/automl/feature_engineering.py,sha256=jd7u7QNgitPhdsSP00a5wkCk7tk5lXaPNbXREJ44FQw,95327
33
- teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
30
+ teradataml/automl/data_preparation.py,sha256=qbKgvIgrV7oLm669dIe7KPvPyuLncM6j-wrydu8Veg0,44697
31
+ teradataml/automl/data_transformation.py,sha256=Nz3mQOWLKrGJTSKENhIc2mpgJcsrZ6NrdymRUm7llOs,45174
32
+ teradataml/automl/feature_engineering.py,sha256=Z-RGh2UbMliL8QbiEZqHjTVCX9Wf26Wa4Vh2ToroEqA,99088
33
+ teradataml/automl/feature_exploration.py,sha256=m003nP6AACu9zxXTR3W78yO5F7CxpAT3zBdbu8Q0SQg,45543
34
34
  teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
35
- teradataml/automl/model_training.py,sha256=yZAgH2Z1aslLmgrZS8KsagEmc2o7hqqXizWVQkDWPx4,42722
35
+ teradataml/automl/model_training.py,sha256=yDIbXbeJNUGAW9j4g-5bzn4TGm0lEA5kOwC1DG6qflE,42716
36
+ teradataml/automl/autodataprep/__init__.py,sha256=YPWAMg3YzrTR9Ij6xT6XKEWHdPDwNDclppo6RBRa9oo,18101
36
37
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
37
38
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
38
39
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
39
40
  teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9OhduX1RXsLqsmSPsI,20624
40
41
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
42
+ teradataml/clients/auth_client.py,sha256=e91cY9Bv9h7L_eZrxS-sDRGwsk6v3H6dTdAiLpib6HI,4033
42
43
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
43
44
  teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
44
45
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
45
46
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
46
- teradataml/common/constants.py,sha256=KAzJrpEweV4nNXd9xivtyVoRp1aQobWE2pQPh3lCFQQ,62464
47
+ teradataml/common/constants.py,sha256=qTetg2qSyaP4Olls2xegePWB8JInhXsJHy4JA0eTZIk,63408
47
48
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
48
49
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
49
50
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
50
51
  teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
51
- teradataml/common/messagecodes.py,sha256=xqMg0lOD4qNugdgopZ80w7MganDtb6LXpi5AdJnBD-s,29729
52
- teradataml/common/messages.py,sha256=1ztNM9kQHnn3Fa9YfC300mTtIW4YcLn-2ZyzlOu-eFU,18172
52
+ teradataml/common/messagecodes.py,sha256=8fc1Xkn3AS5AGuFDGoKj5w6pyUxZAD8nT5eSUOSGbsA,29838
53
+ teradataml/common/messages.py,sha256=7QhGEvEhjweMmLjU7dEKp2vvNIsSJwZcwYuSSi8PSPk,18270
53
54
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
54
55
  teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
55
56
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
56
- teradataml/common/utils.py,sha256=BT84Xu8leBoQR9i9l1R7DtMm-nw4cbvfEBcyhoWU6Jg,98953
57
+ teradataml/common/utils.py,sha256=CT_ES84pz03upvoufQm6fe1CVcgXtOpUMd2u3GPG5dI,109777
57
58
  teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
58
59
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
59
60
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -64,7 +65,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
64
65
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
65
66
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
67
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
67
- teradataml/context/context.py,sha256=uj3JOmNs6B25Z0HtiKsGWlPvGjWDjs0DvEC1pRfxr0c,51804
68
+ teradataml/context/context.py,sha256=jqL9jMXEzMJO22IkFqF0fZU8kDXInJkm69laG6jJRus,59400
68
69
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
69
70
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
70
71
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -100,6 +101,7 @@ teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UI
100
101
  teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
101
102
  teradataml/data/applicant_external.csv,sha256=jaVV1nwxzQjoVZHzdMuaqivRp9erlQFRF8y9CxNSpik,453
102
103
  teradataml/data/applicant_reference.csv,sha256=u5oawSEvTCPsxnZNRCSZo-KiVHhehmVORB3Nudm91Yw,604
104
+ teradataml/data/apriori_example.json,sha256=WC8CuZCWlOFs8JTqB7iUfpfpLPT6v3f5ErqRqZZHc5w,528
103
105
  teradataml/data/arima_example.json,sha256=NQuqX9F1wzHNZTwE9s4UNBXaEDlHLR_zWzvRBYzlux8,226
104
106
  teradataml/data/assortedtext_input.csv,sha256=iWaIWvSB3JBTLDfkBa--uJV7TDFeB_V3fM9Oqvtxskw,947
105
107
  teradataml/data/attribution_example.json,sha256=7cfF6OikimBid3vENprLwEwMezF211iC_-my6dpcR7M,923
@@ -328,7 +330,10 @@ teradataml/data/namedentityfindertrainer_example.json,sha256=k8V-bdBlV0SpAmz3bf4
328
330
  teradataml/data/nb_iris_input_test.csv,sha256=Pa7US_YC42gUIsurIJvekgwiaLBv1B_EWpa5ZRlQX6o,1002
329
331
  teradataml/data/nb_iris_input_train.csv,sha256=HU8MSrt9H9b-sF4XFkoQ_AXC0YvgcTrVV42zkuPXKSw,3746
330
332
  teradataml/data/nbp_iris_model.csv,sha256=PIhJGQx842zibQVeQWL2kHcHJDnODDjtcE0xa3NZspM,759
333
+ teradataml/data/ner_dict.csv,sha256=E_TqAEwQRhJvwOtNb0IKObdpCzXA4ey-rCQzU8x5amA,168
331
334
  teradataml/data/ner_extractor_text.csv,sha256=2jAgKS5rHifnrlVRuEuBCvXmpppHRvNYrGR-4tCskZ8,168
335
+ teradataml/data/ner_input_eng.csv,sha256=aoJyOwrYu2Uq-VbGQ6CpCA8IVBR5i5VgbfVWLgo6kds,842
336
+ teradataml/data/ner_rule.csv,sha256=DzoIcqG_ThhXqLRDoeq4ZG41StKZOuKW_1Yj35mOdG8,159
332
337
  teradataml/data/ner_sports_test2.csv,sha256=WrjjEq11SBVu6SoRgfs8e2IddMBzQk4atjLo7l8Fyig,2452
333
338
  teradataml/data/ner_sports_train.csv,sha256=uQFnG_Vk7o0c1RH0wMz1L5I15qReEAMKfRDPPFsEeuE,35416
334
339
  teradataml/data/nerevaluator_example.json,sha256=OvjhjbtA9atK8K6thtV2Jwt_q7WT91T_QfQZtYxpezA,117
@@ -366,6 +371,7 @@ teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,1
366
371
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
367
372
  teradataml/data/pivot_input.csv,sha256=1VUxgb3CUuSDzy1aTXgsLurRIZa13Rdoxh_UGqovhnE,763
368
373
  teradataml/data/playerRating.csv,sha256=m9YmSbd4WYiEPxBFqRqnEbCpLcfnYc1yaWCj12IMZcw,504
374
+ teradataml/data/pos_input.csv,sha256=MWA_BaFaX6IEuCJgpsOICQwub89f_jWa51jM-SsmmWc,661
369
375
  teradataml/data/postagger_example.json,sha256=n3WsdqH_oU9lhLHnJqs1plrrwZ_oHRRL2ZRTRA4TiFs,126
370
376
  teradataml/data/posttagger_output.csv,sha256=PESlDu3rVt-_0Yl7fwjEgj-1VnYNhR16LL4XPsd3P_c,945
371
377
  teradataml/data/production_data.csv,sha256=U35ycGMK--e0E7E6eUq6xvzrLoqcvBnfpohaadjPx8o,821
@@ -449,9 +455,10 @@ teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRz
449
455
  teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
450
456
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
451
457
  teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
458
+ teradataml/data/tdnerextractor_example.json,sha256=yjRT9NSUb0d4Oi5yqF40sfnEwN-FgIbsjJG7G8aIVwg,275
452
459
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
453
460
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
454
- teradataml/data/teradataml_example.json,sha256=kr0fl1j09pNSCKKvbHv-gqP9etjcf7h9zb0Ce6r0Lww,41894
461
+ teradataml/data/teradataml_example.json,sha256=WNfsndXCnq9Ot-4PDvMdCP3AMnHxwD9ARSh6uzaythw,42212
455
462
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
456
463
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
457
464
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -463,7 +470,7 @@ teradataml/data/textchunker_example.json,sha256=gbivWisZUlfIM0HtNxT7rPaQUKMicwzL
463
470
  teradataml/data/textclassifier_example.json,sha256=e6BeVdgRMqNQEvWEXHEOde9Yf8YcdEpPuiwX2LgeoEQ,125
464
471
  teradataml/data/textclassifier_input.csv,sha256=AzinMnRrexjkM1vLojt7ODyS1TNrssm9DzDlE2YIQR8,1144
465
472
  teradataml/data/textclassifiertrainer_example.json,sha256=3WWCFqxDuSWexNDm3d3PL6J5AQHetNe12PEFp7WT1XA,122
466
- teradataml/data/textmorph_example.json,sha256=s0Vm5QBCj87iSC3fHTIW-iCgPHef_W7cBXmqb6YE7ic,78
473
+ teradataml/data/textmorph_example.json,sha256=zrFQcSQ_HB9iHiRcBh0ojwbpBwOtbK2k8nL3mGhfd94,184
467
474
  teradataml/data/textparser_example.json,sha256=VVe_-lV623BqJI91v2nh60YgjjrHvVidqKtAjHNKrSc,294
468
475
  teradataml/data/texttagger_example.json,sha256=Cdie6HATy7RMAU3QdrR3fHfC45lsSN-xDA7uZr2xpo0,236
469
476
  teradataml/data/texttokenizer_example.json,sha256=15AIwWNtVtA7yqdpqQREKC1stnWiHjTZqhZ3tIFGJGw,120
@@ -479,11 +486,15 @@ teradataml/data/timeseriesdatasetsd4.csv,sha256=bCoFR0ohIN7eVk18FhA1GShiQ9ARVPK6
479
486
  teradataml/data/timestamp_data.csv,sha256=KcV3J8qNfj2-EwQlNaG9uGkCTNjBKE21nSfIAj3Dgd4,281
480
487
  teradataml/data/titanic.csv,sha256=IZvCBiupJPNBQBats7EL8iiZCSBPkpCfCSUQ_BrnHeQ,61192
481
488
  teradataml/data/titanic_dataset_unpivoted.csv,sha256=NsU8OJIn6bmCCgmOx4lTy7-pxTqbncADzXpWgrqEhI8,350
489
+ teradataml/data/to_num_data.csv,sha256=m7IErUPD_LRT31quAvY0k45EMy4P9Gi-ESoK_Z1h9LM,67
490
+ teradataml/data/tochar_data.csv,sha256=4N0OsOCW8bYsrE447DJ4nebTkYRnQTokSONEzzddJtA,247
482
491
  teradataml/data/token_table.csv,sha256=mZTppDLBmQC4j3jqZ9T5czAPUl2xO1sxHqM-DIR-DKs,14812
483
492
  teradataml/data/train_multiclass.csv,sha256=VLz6t2cuAqsOCmD6MZwoy4iWkrcuc4w4mvG7NuR5CD4,9435
484
493
  teradataml/data/train_regression.csv,sha256=uLtcSqAws8rdcXKyyKBNXvmm-4OBosQUqzyAUT6niLk,9662
485
494
  teradataml/data/train_regression_multiple_labels.csv,sha256=ReJ4gRwrn9CQ3w0mH1zgEZMGZIkG5SZ30PffOJgoii0,10044
486
495
  teradataml/data/train_tracking.csv,sha256=IobrRHY9augTggczpN-zLOlIsQS38lY3n3c_qkodvhI,3317
496
+ teradataml/data/trans_dense.csv,sha256=Kfy-SvfKS3fb6GqRnJkCgQrDqW3sFoCVhVf1I_Wbj4w,1178
497
+ teradataml/data/trans_sparse.csv,sha256=iwCBg0SiEaONTJqCG0u1-XEwGlV4kAm4QvV0-fJadvU,3221
487
498
  teradataml/data/transformation_table.csv,sha256=UsqIzYYEw1y-GUY5z6oztSqC0NJAsMOjSIx0k9e8fa4,173
488
499
  teradataml/data/transformation_table_new.csv,sha256=DDCJ5_o_tHndTiAbQT92QmYKWEaKLTR1XJjLuiberBQ,76
489
500
  teradataml/data/tv_spots.csv,sha256=rIJK9AjKGBFiK9qYTGLdgF0whw7Y6nUJAcin00txutE,321
@@ -579,6 +590,7 @@ teradataml/data/docs/sqle/docs_17_10/ZTest.py,sha256=rWwAe8bEWYiPySlCJkzmMkCSce6
579
590
  teradataml/data/docs/sqle/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
580
591
  teradataml/data/docs/sqle/docs_17_20/ANOVA.py,sha256=l96tqbGqoaCfLkjiK1vy6zIOagOpuWWiqnrUQdmIgU0,8035
581
592
  teradataml/data/docs/sqle/docs_17_20/Antiselect.py,sha256=ACzwv_Hm17d5UCbQWPJOGZeWMiRnOPw07_ZUPpd7GJ8,3502
593
+ teradataml/data/docs/sqle/docs_17_20/Apriori.py,sha256=7AjhKhAEJKcLJIWujbzU_tDWN3S6q7uyu4KGSq0TavU,5987
582
594
  teradataml/data/docs/sqle/docs_17_20/Attribution.py,sha256=CWh4QdRfrphC6nZkxdqVVZjW7JMzcyRFy7WqSJRYNIU,9131
583
595
  teradataml/data/docs/sqle/docs_17_20/BincodeFit.py,sha256=NDLIl3SfNIHDpTK9cQgrGsjcyyMokDJLItzUby4ZepE,7381
584
596
  teradataml/data/docs/sqle/docs_17_20/BincodeTransform.py,sha256=6cbjBT0J9yMhQGoZw6eOnCw7pLnOna7UguJAnZx6aFs,6552
@@ -607,7 +619,8 @@ teradataml/data/docs/sqle/docs_17_20/KMeans.py,sha256=EDv-GI6i1V58ScOvU8PWAQS1hp
607
619
  teradataml/data/docs/sqle/docs_17_20/KMeansPredict.py,sha256=tgVCNf8iqFZ86URQ7zCulwJhMqaT1qHvjQc73fcdfuo,6115
608
620
  teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMdDQZmJlb4ujzapk,9540
609
621
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
610
- teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
622
+ teradataml/data/docs/sqle/docs_17_20/NERExtractor.py,sha256=2JnXUaPpmNGQ0uf8-Q0CuOMr7JI_e_tg-v8afHafSmU,5372
623
+ teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=PEZ0pkJdmTcgKmSjvHKi2nquy30qXUErW1ogYuIMqys,9430
611
624
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
612
625
  teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
613
626
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
@@ -637,6 +650,7 @@ teradataml/data/docs/sqle/docs_17_20/RegressionEvaluator.py,sha256=HuQHFN3qGalcE
637
650
  teradataml/data/docs/sqle/docs_17_20/RoundColumns.py,sha256=57NVyAecTwnbY9pZnCQfjvaOklrH4g2Q_8OKyzDNC4o,4956
638
651
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeFit.py,sha256=wdbFuCdeJslfSq-fD3OU20JHEjdOC2WXF0ljukymuNU,5348
639
652
  teradataml/data/docs/sqle/docs_17_20/RowNormalizeTransform.py,sha256=9Ja5ev4neABpv_jJagr34AAXyXve0b1gI-r8VyNOBw8,4994
653
+ teradataml/data/docs/sqle/docs_17_20/SMOTE.py,sha256=VvsdLtNJwFiR0aG_0j1JaZhXtroPluJrLi805engYE4,9184
640
654
  teradataml/data/docs/sqle/docs_17_20/SVM.py,sha256=txuwmP54us3xk5UzTYKrPj40bZYMGWzNhE3glmvo6_U,18482
641
655
  teradataml/data/docs/sqle/docs_17_20/SVMPredict.py,sha256=XR9sK9CxSNdK62c4TqFa9Jq15aAfonZ2S2tRUe4orYY,9245
642
656
  teradataml/data/docs/sqle/docs_17_20/SVMSparsePredict.py,sha256=aKczZjm_QTN1jVFv3Ty1eMYzG6lrx8Nz1BinyItNhjQ,7102
@@ -656,7 +670,8 @@ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=E68CcMdaXarPS
656
670
  teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
657
671
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
658
672
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
659
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=I419XK5ZhiXQD8vd1GL4v0PJCoKwxABIQALPFQO9VvE,7562
673
+ teradataml/data/docs/sqle/docs_17_20/TextMorph.py,sha256=y6jIiTv9473TLqm-v6ZYBw3HM8spRprkWDkqcqH1ij0,5148
674
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=HWizryh0QtY2-q8-uN_v9tCLKzPt4P-Tymj7on0dIoE,9673
660
675
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
661
676
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
662
677
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
@@ -684,11 +699,11 @@ teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VL
684
699
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
685
700
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
686
701
  teradataml/data/docs/uaf/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
687
- teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=-s0sm_E-IS9PC3igu9jGIl_ns5lC_kOk4iNWQ9IrbhE,7691
688
- teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=88KujTMVra_Bb9SSyWmecF2QA3xzqUwwYNdFVvhrwFE,16782
702
+ teradataml/data/docs/uaf/docs_17_20/ACF.py,sha256=vlZfKrkQFZqJx1jrSy2u1WJiJpPP9SfA1mKo5jKAya0,7698
703
+ teradataml/data/docs/uaf/docs_17_20/ArimaEstimate.py,sha256=B00e9j1nlFe_3l91UpVxgSVco8D_YXuwVXf774nN8YQ,16818
689
704
  teradataml/data/docs/uaf/docs_17_20/ArimaForecast.py,sha256=KPRkOCAeQysFQO6HEjhJpiB2PlfCBf8tqkw3hM4S4Gs,7612
690
705
  teradataml/data/docs/uaf/docs_17_20/ArimaValidate.py,sha256=xwnoDwKQ1oWJ7OSiJmMLO-qLA-ppgl5zSsPJ2_ptvi4,6974
691
- teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=WsGyT_F4USv6ya0ROTl-YN0rq4oGo3XEpIQn-WSRTUY,12426
706
+ teradataml/data/docs/uaf/docs_17_20/ArimaXEstimate.py,sha256=-k3efDfeVfXlqRCcBW487z04RMcKjakR6Yxg0tW9iKc,12462
692
707
  teradataml/data/docs/uaf/docs_17_20/AutoArima.py,sha256=Jo8DtwfR5XPcKnshD94NRUMA_7z8feGpnk791zLAh4s,13683
693
708
  teradataml/data/docs/uaf/docs_17_20/BinaryMatrixOp.py,sha256=E5tUEdZsYCRl_NbkzNu8nqaG5mr-Ej68evf68IX4GMM,12061
694
709
  teradataml/data/docs/uaf/docs_17_20/BinarySeriesOp.py,sha256=3eVNlmV4lnUpmy3BxMfCuPR25bhls1X3GWl0Vr-IPBA,12111
@@ -698,10 +713,10 @@ teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0
698
713
  teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
699
714
  teradataml/data/docs/uaf/docs_17_20/CopyArt.py,sha256=5gbep83z82bJusgpLwIrgax6PqEpCVBsys7IV9uchMI,5728
700
715
  teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
701
- teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
702
- teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
703
- teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=AyinWi8Lehd7BgmeEpKKw7QDnXDJMVwQhWlAJDE0aqo,9452
704
- teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19EhiCuZALITmd9ZyvFmNg,8182
716
+ teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=zczbwjMdiF76m4cKXScKQ1Ql-Swgej4ckYLB0wA7amQ,9033
717
+ teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=qnHfK9M8PZZJLm1pSj5QK3be-wBWjae_y83u4u77HV4,9669
718
+ teradataml/data/docs/uaf/docs_17_20/DFFT2Conv.py,sha256=S02XTvsuwOrxh-Rd751B5bCjK9Dvu9IUjD_UDmgj9kI,9459
719
+ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=kv6QhvZnF7jvkDxmioiVAyImohxHUMYjBFe3CkHi_dU,8189
705
720
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
706
721
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
707
722
  teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
@@ -709,40 +724,40 @@ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=cNqKwpMlFahz-S1EpdceP_hxqGgx
709
724
  teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
710
725
  teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
711
726
  teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
712
- teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
727
+ teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=CA9euo9yygMTe4ZOGd_nWZ5wDNQQYW11dHczJVexSlA,6901
713
728
  teradataml/data/docs/uaf/docs_17_20/FitMetrics.py,sha256=sL5VaeCBQFsLdauFjR3fl00duraZ-MhEaAzAkGZeo6I,7292
714
729
  teradataml/data/docs/uaf/docs_17_20/GenseriesFormula.py,sha256=vRV44UIDIosCoTrzeuO4TAX7Te_mBQ7SeHD-3VrujRE,9340
715
- teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=yqDiMlYPAeKgQ6aflD-nEuQLwPddqCjzC6VN7t2Ll_8,6036
716
- teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=ANe0_6uaiuLsRgGt2-FRwofirq8nxK2OnNdtJ0NuTCc,8923
717
- teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=7VDJCyPvL4jXaaWeO9iBk_rMCPYoFPLU8zb1m-kcFZ8,11096
730
+ teradataml/data/docs/uaf/docs_17_20/GenseriesSinusoids.py,sha256=RM7pCdOkSPgRkokzkG7ket_qskCxCIw6e9adxjqU4nI,6066
731
+ teradataml/data/docs/uaf/docs_17_20/GoldfeldQuandt.py,sha256=Fmbo1ggffXZZKhSmtnpjfATBF7Saa4xGFCqRF6LzVC8,8937
732
+ teradataml/data/docs/uaf/docs_17_20/HoltWintersForecaster.py,sha256=voc6zz0wsHhaTUC4sGJksyi5Ihrtb059Avok-MnCSHc,11150
718
733
  teradataml/data/docs/uaf/docs_17_20/IDFFT.py,sha256=CFhVY_6NdGF7kzk_RFZqGkaF_-lLC9XK3AyapHLfDoM,7226
719
734
  teradataml/data/docs/uaf/docs_17_20/IDFFT2.py,sha256=d-Syxypd40wtLppuvq6QEW29LOo8nqqcjXMDjWy-sB8,8437
720
735
  teradataml/data/docs/uaf/docs_17_20/IDWT.py,sha256=tQpomLX8hPO0-moPKOZfHYYh6Z0fGu7U5OESnkMvq2s,9846
721
736
  teradataml/data/docs/uaf/docs_17_20/IDWT2D.py,sha256=X1HKTz0B5QTUr7LKC_F_Ai8a2WSEhlImKX-HegW-lI0,9506
722
737
  teradataml/data/docs/uaf/docs_17_20/IQR.py,sha256=TUhYaVU8BTbUQLrUil_cKWsafkNWZgIhm4Fdudd-L5M,5271
723
738
  teradataml/data/docs/uaf/docs_17_20/InputValidator.py,sha256=E0U4H7t9QFicekEBopjnlPva64uJ5wYkiGHe2sqXlf4,5068
724
- teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=54El1YgvQK79jDiNYtl5k1SMiIP5QrsT-8ZpYQfS5dE,6353
725
- teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=Y9w5SeANPADamCE85lbTy2sU_rXxLzZozZ3rFBqCm3M,9444
739
+ teradataml/data/docs/uaf/docs_17_20/LineSpec.py,sha256=2KN-2eUNWHjV2boEF3XpPUWcEzzX6o8KX-M3YJue7jo,6360
740
+ teradataml/data/docs/uaf/docs_17_20/LinearRegr.py,sha256=cm2uVZLkFWpSdfn8i2ePUlnSMYcnykrvZ3DyiKJhI9A,9451
726
741
  teradataml/data/docs/uaf/docs_17_20/MAMean.py,sha256=Kfb11dv1YhAVXBwQ4FwQrIF7QuTBMKKxm5SAMUZXYhk,7123
727
742
  teradataml/data/docs/uaf/docs_17_20/MInfo.py,sha256=5vbnWEp5nHZxBBwBfBhVRlsKEHz6G5F5cuNyiqsYWQQ,5528
728
- teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=6C9efeXQIRjcrnAD3stwvXTsAXQppxroZxctqLFbzsM,12242
743
+ teradataml/data/docs/uaf/docs_17_20/Matrix2Image.py,sha256=U23HykDU2wtMPZ7czMOM6SM97Yb_p444Ar-KossXp8o,12314
729
744
  teradataml/data/docs/uaf/docs_17_20/MatrixMultiply.py,sha256=-A5so6qYHsesJkRmcElL-fTgu7FAFJOkASLE0KCVET4,6161
730
- teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=kmW4TdDf4HLIn9RzMk4F0pcHWUKQ7BxHrnoZZkRKsu8,8344
731
- teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=2ShZR_0uqtTeoR0_fP-eQamuw2fINeXJA0gYUfDTIhw,6626
745
+ teradataml/data/docs/uaf/docs_17_20/MultivarRegr.py,sha256=HtBn-XRd7m1QeG-ILAXE8Ej7ZiwT2e5n-o5ga1kaYLM,8351
746
+ teradataml/data/docs/uaf/docs_17_20/PACF.py,sha256=MyLFOTVrLAwswWs5uvVLsQWLlfIMRrFansbzznbN0A8,6633
732
747
  teradataml/data/docs/uaf/docs_17_20/Portman.py,sha256=LT7FiEIFgF59lBgb6cAwh292b0cX2LzM_TXTPHj85zI,9926
733
- teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=JfZXJqumaS4FiJLuWuxX2hW-0RL1RLLZkPEpwZQ0mSA,8585
734
- teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=6y_6xud9cZXwa_443orsftN4VRf7b8vNqHBNN1rsvR0,6451
735
- teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=OJ8V2lo9G99VwLZ_SVd8FHv8JzDooSR-E0VinDw5Ddc,9416
736
- teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=VbxA0cJLpaayJxFAsifEjQgkNwukTia2vbixOEdRg14,9794
748
+ teradataml/data/docs/uaf/docs_17_20/PowerSpec.py,sha256=IlSXb27I41ukmCsuoifOBSJiYjoFUckAOkCCNtjnkNI,8599
749
+ teradataml/data/docs/uaf/docs_17_20/PowerTransform.py,sha256=nBQBNBk8_crsAjGx4AOpdrM7h8_oIEYmTrr2kH7osno,6472
750
+ teradataml/data/docs/uaf/docs_17_20/Resample.py,sha256=2G-edIrTEZyvSFb4SZYKPRqRWmF5WYBLUlwl8cnfsDw,9451
751
+ teradataml/data/docs/uaf/docs_17_20/SAX.py,sha256=Ocm6VyKbuPAhYR8pytULf6ro2yPiO2GK7zuXUq2FdtY,9848
737
752
  teradataml/data/docs/uaf/docs_17_20/SInfo.py,sha256=eeG3Mm7xLTurI-NSvnj2y44thZx5hliacqZEGQPQiu0,4928
738
753
  teradataml/data/docs/uaf/docs_17_20/SeasonalNormalize.py,sha256=Nx-DmS3U46MFu0Twr_WJimaSa8fXM0yaaJWsSz0WPbo,7275
739
754
  teradataml/data/docs/uaf/docs_17_20/SelectionCriteria.py,sha256=Q6NqVl-QfiSRXp3Z-3r-1TUsi7ZUkThGIFJu07E4k-M,7583
740
- teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=NgGEJvjIIctWh_pm7acr00WjD-c9FpfxFi0arY3epJE,7485
755
+ teradataml/data/docs/uaf/docs_17_20/SignifPeriodicities.py,sha256=C_kVZ_jcm_rWEdKdO3FCxWiN7oIedajb0RrDvYC6I2k,7501
741
756
  teradataml/data/docs/uaf/docs_17_20/SignifResidmean.py,sha256=-_QvdNnKdmIfzc23FQRQkRGNz9uwWjuXrbbam1_KKmE,7475
742
- teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=sKzOAq5ZPq3XvNUFFmKEThT-3MyjAVu9pquz7L6kiqI,7370
743
- teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=qG_D4FTESO0YOWIk1hmwAihCakoxIrT9UG-xF2cBtXE,8920
757
+ teradataml/data/docs/uaf/docs_17_20/SimpleExp.py,sha256=EwIdrQrrJ_6SE42hEoLaBluDTYg__F7enp2thROiIEc,7377
758
+ teradataml/data/docs/uaf/docs_17_20/Smoothma.py,sha256=TD0sSm6y_n043zfX6cPT1BG__g6ZmA5bLM50uin3He8,8939
744
759
  teradataml/data/docs/uaf/docs_17_20/TrackingOp.py,sha256=pmNKBRmxvNK_K2novZbRYpupqGlNTzVRHNEBTnphmI8,6518
745
- teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=KF8WvCzSXavCzvapJS7JdA0Z2gRXiYA6-7jy5OakOus,7114
760
+ teradataml/data/docs/uaf/docs_17_20/UNDIFF.py,sha256=fvxmNcgsTLggzGz-mOOpcmO2-5Nswng9pjyvyS39TAk,7132
746
761
  teradataml/data/docs/uaf/docs_17_20/Unnormalize.py,sha256=dbkm81T_CaQZdQyuVW6PPYSmW_bs2zfROKEOTB3B9e4,8632
747
762
  teradataml/data/docs/uaf/docs_17_20/WhitesGeneral.py,sha256=wR4WdoR4zNfza1w4BNeeK7Qdmz_KvgnEYJ_2rfULpm4,7544
748
763
  teradataml/data/docs/uaf/docs_17_20/WindowDFFT.py,sha256=Qcuc2OHmBHXoEHqLByZizE3j2CEd3SsQuCp31Y9QQ6A,15374
@@ -854,7 +869,7 @@ teradataml/data/jsons/sqle/17.20/DecisionForestPredict.json,sha256=-DFxNNjkWPZCt
854
869
  teradataml/data/jsons/sqle/17.20/DecisionTreePredict.json,sha256=2Ou6QmEwhptX9jdhl8xPnydiXqVZDTb8pVkgVJx1tzs,5774
855
870
  teradataml/data/jsons/sqle/17.20/GLMPredict.json,sha256=pgagDfqyWiEnFV-fzof1zz5StSoeZODbyn9AGmMq5Z0,5376
856
871
  teradataml/data/jsons/sqle/17.20/MovingAverage.json,sha256=q8OpbyhlJeeQPOZNwlBF2SBGpe7k_NNyqXWpPdAghuc,12652
857
- teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=O5paj2xoNL38YQK6j9bQIxgsEZV1XNgyyRLSIDoj09g,11756
872
+ teradataml/data/jsons/sqle/17.20/NGramSplitter.json,sha256=EVW5Np5ObnL48IW1FIkX-_Hqfzs_-igCPhCUrhLZtIM,11895
858
873
  teradataml/data/jsons/sqle/17.20/NaiveBayesPredict.json,sha256=lsB-AmLdZ2rztT54Hj8KCbitTvwkCuJYE9dFHMuZXIQ,5044
859
874
  teradataml/data/jsons/sqle/17.20/NaiveBayesTextClassifierPredict.json,sha256=Uwl8lHLVFZeqpH848jl-2QqfRKiMecvyu876_Axf5W0,9553
860
875
  teradataml/data/jsons/sqle/17.20/Pack.json,sha256=rGLF10fH5fpsiK9DfNu9YxMuyC9K5zWKcPtcvCNbd3g,5335
@@ -862,6 +877,7 @@ teradataml/data/jsons/sqle/17.20/SVMSparsePredict.json,sha256=sMUK3DVXTHI_bIxlHx
862
877
  teradataml/data/jsons/sqle/17.20/Sessionize.json,sha256=IIA23vN016aUNl5IFeRQj3hxtmqNvjnwL96fjPLUXlo,4469
863
878
  teradataml/data/jsons/sqle/17.20/StringSimilarity.json,sha256=P486-VfDkV06SPPKHR62Q2PpOEyJGbAuR9sGD_aU168,7142
864
879
  teradataml/data/jsons/sqle/17.20/TD_ANOVA.json,sha256=_tONpTLLmul5MP5t5PhLvebgtjoN5mLX61BMZPJD7rY,5268
880
+ teradataml/data/jsons/sqle/17.20/TD_Apriori.json,sha256=7oay9Azl2BuG6eI4yeJn3wr7KFZa3WxMReT92i3u7L0,6280
865
881
  teradataml/data/jsons/sqle/17.20/TD_BinCodeFit.json,sha256=SXC2_jSQABC53QGQ3S9gox8j4DTq65WpNBkHwP6F7SE,9292
866
882
  teradataml/data/jsons/sqle/17.20/TD_BinCodeTransform.json,sha256=SG1Dz-m9B37B5nK-aubz52QulWgzZq_O_nUllVWUaqo,2468
867
883
  teradataml/data/jsons/sqle/17.20/TD_CFilter.json,sha256=GmljbjUsiPrinKRjgU29BFvndoo060T_tA8KSSHI2S0,4200
@@ -888,6 +904,7 @@ teradataml/data/jsons/sqle/17.20/TD_Histogram.json,sha256=maRiTySFqhKcfzcH0VWigc
888
904
  teradataml/data/jsons/sqle/17.20/TD_KMeans.json,sha256=1l_vfCZtGRgzlKMuNDIy-H9gjC0sZNC5thzwEIIc930,8297
889
905
  teradataml/data/jsons/sqle/17.20/TD_KMeansPredict.json,sha256=qvKPOK-wOMyd05JWA7RmvkogjObHqiVZr4b5M3XkcBI,2976
890
906
  teradataml/data/jsons/sqle/17.20/TD_KNN.json,sha256=0pF8hgOXtR4i16dkHoK5DxDarkp_OT0vi62sv3VA27k,10439
907
+ teradataml/data/jsons/sqle/17.20/TD_NERExtractor.json,sha256=80UIWn_VsBAWAOU8ZauqNkq-NqN2kv5WCgYRURahHBM,5126
891
908
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayes.json,sha256=aKa9bh7TVCavRYfE-uA4j3ckLkoNvNolE3q68ajcU30,6391
892
909
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesPredict.json,sha256=rG9eLlNyWNpIZSWNhj-9e5eltM7JH-sbabwXi564IP8,6938
893
910
  teradataml/data/jsons/sqle/17.20/TD_NaiveBayesTextClassifierTrainer.json,sha256=2Ri0K7ZpVsQIJCa1f8Rjpy97oKigxrN-v1AAYMb3ofQ,4385
@@ -914,6 +931,7 @@ teradataml/data/jsons/sqle/17.20/TD_RegressionEvaluator.json,sha256=EppbRKRD9hzL
914
931
  teradataml/data/jsons/sqle/17.20/TD_RoundColumns.json,sha256=AgbGYCGOvhl_iUSCjzi1KcNtTQ6hS5MfMnh3joZRJYQ,3546
915
932
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeFit.json,sha256=ghnwqbuiTPMsKyFivDswALVGLg18AFYYDHVDPv2aZ2s,4211
916
933
  teradataml/data/jsons/sqle/17.20/TD_RowNormalizeTransform.json,sha256=JZh2R6fYJcSqqV_QKXdBseajYxwgWt31joUfQpasGbU,2480
934
+ teradataml/data/jsons/sqle/17.20/TD_SMOTE.json,sha256=9V6rvcFYO9n-2o0c_nNkaTnCLto9l9R9HhowITfwaC8,9944
917
935
  teradataml/data/jsons/sqle/17.20/TD_SVM.json,sha256=Ao620whcupTfdOaATFSQRiJtvWLosVJW0yg-pRZTQpg,17763
918
936
  teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5h1ToDWvswdSBI_qW0ndQpo,5142
919
937
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
@@ -927,7 +945,8 @@ teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHe
927
945
  teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
928
946
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
929
947
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
930
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=SadLzx_KuhRFUSkZl3xuNLgbMFKz-MnTjc8OsVSoiVc,5926
948
+ teradataml/data/jsons/sqle/17.20/TD_TextMorph.json,sha256=eL9eVSBBS0_Pouhqqxm1ZUJQWI5W9yzxxKnd0SqBo7Y,4707
949
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=8Y3PSVX3Mag6boWiQFEVyZPpmmkYoLfHnjWqaASE1kU,9344
931
950
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
932
951
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
933
952
  teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
@@ -940,12 +959,23 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
940
959
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
941
960
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
942
961
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
962
+ teradataml/data/jsons/sqle/20.00/AI_AnalyzeSentiment.json,sha256=8yVLR2aIQNNVew_MExBE8H7tvEqSG7eTgEUPWRZYanM,11453
963
+ teradataml/data/jsons/sqle/20.00/AI_AskLLM.json,sha256=D84RdVhoWqEiZ52ZPisguBkIFbXKeqU8HOb1UlGRG7g,14542
964
+ teradataml/data/jsons/sqle/20.00/AI_DetectLanguage.json,sha256=KX-2B8c_HTN2PLI5nn7TJ41AfZDnBxU10c3cqaaA3BU,12048
965
+ teradataml/data/jsons/sqle/20.00/AI_ExtractKeyPhrases.json,sha256=5eE8_J1i784ScBQhxtrivOEYPodWlIwd7M2m8c_NqIU,11452
966
+ teradataml/data/jsons/sqle/20.00/AI_MaskPII.json,sha256=k9NNxnzHhAPId1AoxdaJ_dfVSnCghyODuCcYuUd7yFY,11744
967
+ teradataml/data/jsons/sqle/20.00/AI_RecognizeEntities.json,sha256=ib6UBvEmv-jTGu4j1L5Oi8jKJ7MS0sRGq1mJDcN2Vjo,11644
968
+ teradataml/data/jsons/sqle/20.00/AI_RecognizePIIEntities.json,sha256=oMsDxZo5qcnN12TkRPWplKv8i_5zj_cEFdOa7vsquII,11765
969
+ teradataml/data/jsons/sqle/20.00/AI_TextClassifier.json,sha256=7KQY14C_2TqZocRYVQy8srVO1Kz9XXbprtsvV1-QRgA,12475
970
+ teradataml/data/jsons/sqle/20.00/AI_TextEmbeddings.json,sha256=iQoImkHb3_P9RHpma3pF1G3fDSmUOLpRcg0n3xAoF7g,12341
971
+ teradataml/data/jsons/sqle/20.00/AI_TextSummarize.json,sha256=3u1K9VK9dKGKdnARjgXC5CPuIP0SRVqftFH3__sy15U,12126
972
+ teradataml/data/jsons/sqle/20.00/AI_TextTranslate.json,sha256=66wVJwkjnuNSyqP5Ac6UMbxPQuMnB0RGRg8Jmf3M42s,12110
943
973
  teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
944
974
  teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
945
975
  teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
946
976
  teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=ogqYrW0lAbq2mSa0HJURwYohYFd1XA0UDPqUA23oAfM,8882
947
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=RYIIzOT2W-CEJWahKnMXtSn9RQC93xb3KManph_QIpo,9927
948
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=V0PDu905-_CN7t8uY8Di85Vebxvz5PH4nfNckZkDOfI,9835
977
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=my0rqPxKP6YM4tT5YO2lReAWYr_SY5EPySeCqgXCVrc,9928
978
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=F_P5WO-vMnKFLRai5ubyKzk7NHBEifbz55zkBVCavAc,9836
949
979
  teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
950
980
  teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
951
981
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
@@ -1056,24 +1086,24 @@ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vw
1056
1086
  teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1057
1087
  teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1058
1088
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1059
- teradataml/dataframe/copy_to.py,sha256=-8LTxPc-3uRcrSAghp55B8GK6rUTXc_-l5UZw27wwGA,76785
1060
- teradataml/dataframe/data_transfer.py,sha256=dZW0NmzZJ5QDSGY3BcDoQtuTINwjFf1jK_ZMDowSh8Y,124413
1061
- teradataml/dataframe/dataframe.py,sha256=A7zQjszbHZmhGrWRAmPNjlK_Wp1tqhCnGCuZgRV89Xw,995741
1062
- teradataml/dataframe/dataframe_utils.py,sha256=-L7Hq35Fd1WHJTe1wvEIPhC0eu1v2ZiOwnlNqIr-yXo,94226
1089
+ teradataml/dataframe/copy_to.py,sha256=wLQB5EIIpQxqKrgrEEBtAvXKHIDQiSiORmPCujiNexI,77295
1090
+ teradataml/dataframe/data_transfer.py,sha256=AgSb7OMzVgBQQ8vvhs-joO0i62JAueLJ5IzwWHG3OHw,125128
1091
+ teradataml/dataframe/dataframe.py,sha256=BvqQh3AfxZF-3e3Wic0TaJTXVZ_io4xZ_V4rxCBx0gY,1000729
1092
+ teradataml/dataframe/dataframe_utils.py,sha256=1QeJQ9PYuVYeF05WshnuRg3yGocQ2LeW_O1HXzRB_8Q,95099
1063
1093
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1064
- teradataml/dataframe/functions.py,sha256=t-ua7_PNe_X2jNo2p2FGMvbp2DlC4CLuV_PQPq4N04Q,39954
1094
+ teradataml/dataframe/functions.py,sha256=JRfUH2yRbcSp9OejJGO6EZuRPM6m7fTlltdc85YbOZM,43600
1065
1095
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1066
1096
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1067
1097
  teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1068
- teradataml/dataframe/sql.py,sha256=1a6KNHJ8K8JSnWpN5Xb8VhOyGaj7ZDUF3aFYEDPUfYQ,645455
1098
+ teradataml/dataframe/sql.py,sha256=pELFHZ7npF1j4wcNkT6o7Fv-6f5Lqo_Q_yw3OukDnMY,669372
1069
1099
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1070
1100
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1071
1101
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1072
1102
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1073
1103
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1074
1104
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1075
- teradataml/dbutils/dbutils.py,sha256=yG1pdoKV33vklTBICElPuHmnwCxDqnnu4IVh-q8bgzQ,97027
1076
- teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1105
+ teradataml/dbutils/dbutils.py,sha256=kJJldHGiD-SnZz3KZcUHgFYKUsteOscEOvYrvCc9HFc,98471
1106
+ teradataml/dbutils/filemgr.py,sha256=oJmI99H_CEpX_-xwr-ZdtnL_ky-KDfZGSNfxJcxL9lE,14381
1077
1107
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1078
1108
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1079
1109
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
@@ -1084,18 +1114,18 @@ teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDi
1084
1114
  teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1085
1115
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1086
1116
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1087
- teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1117
+ teradataml/lib/aed_0_1.dll,sha256=cQqvUotPZhtAwruDaojavGSnhx6JAO4bHNJ9pXviQJQ,3735757
1088
1118
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1089
1119
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1090
1120
  teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1091
- teradataml/opensource/_base.py,sha256=G1HKMrqAl7hMRJFLm675nartG6g9V7u-zKtbYRx4yfE,71935
1121
+ teradataml/opensource/_base.py,sha256=cleN8Zpu2xWksJ0wKkvdZABW5hNC9eaLGySXhkb765A,64098
1092
1122
  teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
1093
1123
  teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
1094
1124
  teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
1095
1125
  teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
1096
1126
  teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
1097
1127
  teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
1098
- teradataml/options/configure.py,sha256=F-QeLJxeImUCZEkRw1WQN38S5Yh2a5aim4w7bx52ggE,25782
1128
+ teradataml/options/configure.py,sha256=kb_M2G1YHnWmvhv9PifnxQGTvpbmEO-Bo1Zqz0i7l4o,25794
1099
1129
  teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
1100
1130
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1101
1131
  teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
@@ -1104,25 +1134,25 @@ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,132
1104
1134
  teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1105
1135
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1106
1136
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1107
- teradataml/scriptmgmt/UserEnv.py,sha256=DqUI_YwjucCMV-OkzOkBJ85XpbvW5nBw29f0UFcnmGo,177051
1137
+ teradataml/scriptmgmt/UserEnv.py,sha256=3VC7kVriMwZU5q1lbbwigDjocMrUSg6DRdJrqpZ7vOE,191989
1108
1138
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1109
- teradataml/scriptmgmt/lls_utils.py,sha256=m5RMdUblfzLJK6wKNXCce0S-r2o8Lfzal8xlK37KKo4,79557
1139
+ teradataml/scriptmgmt/lls_utils.py,sha256=gyXcjFy3UdKm5mqoo6U7E6cQGbzYDXBLb8w8OEjaYeg,92806
1110
1140
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1111
1141
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1112
1142
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1113
- teradataml/store/__init__.py,sha256=S68oRuSjcJz9oWqd12UMGJ0BMd4XkIdHcWPRMWFVwdw,413
1143
+ teradataml/store/__init__.py,sha256=ZpAk6_ccnFm6VjBKooLZigHAKVjjNeccyMb52NbWZJA,396
1114
1144
  teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1115
1145
  teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1116
1146
  teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
1117
1147
  teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1118
- teradataml/table_operators/Apply.py,sha256=F_QxGwbU2flfc--UdjQVDeOHDUm0SCVh5p_XzhOMnrw,43520
1119
- teradataml/table_operators/Script.py,sha256=D74DFLq7wgQ-156oMMrO2oKS8N0tjzIMQQTCdk0MdsI,77374
1148
+ teradataml/table_operators/Apply.py,sha256=ABtXaR42SYymw6sHtAN9YvwxLpn5kudxIkAeNfH_piM,44487
1149
+ teradataml/table_operators/Script.py,sha256=Quh9_GngNHbNnIEd3xrw5R8hR1EBSWddbxZBU4FIhm0,78495
1120
1150
  teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
1121
1151
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1122
1152
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1123
1153
  teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1124
1154
  teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1125
- teradataml/table_operators/table_operator_util.py,sha256=9z6tEIsO_e8nnGS2bpmrlyZ04HmlkEIcpdnZ0EnfJ6M,31961
1155
+ teradataml/table_operators/table_operator_util.py,sha256=jR5fYekNG7Bjo-eLLMUaDIETolWYack0MqSKJ2l7lks,33870
1126
1156
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1127
1157
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1128
1158
  teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
@@ -1131,13 +1161,13 @@ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1
1131
1161
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1132
1162
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1133
1163
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1134
- teradataml/utils/dtypes.py,sha256=KMza-R4l-BO-kwGBkUmpr6mc3ndAYQyxDzFttq1c3mA,27928
1135
- teradataml/utils/internal_buffer.py,sha256=1_8PT_PDX2UHl_Sv1jKX9uPaAJG_qku65glPqjjhBWI,2490
1164
+ teradataml/utils/dtypes.py,sha256=7LFHyjpywxwgKMgMpy-4AmXDhr5IuDRsXij4gJ0Ymw4,27975
1165
+ teradataml/utils/internal_buffer.py,sha256=Amjji6Dmosc0zWjIHBMUxLVj3eO-UbknohYkIOreLPQ,3042
1136
1166
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1137
1167
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1138
- teradataml/utils/validators.py,sha256=f904i2BGSv28tBbM_npJGBGfkCUrcB9BhyjAmEwcXAU,95769
1139
- teradataml-20.0.0.4.dist-info/METADATA,sha256=eWOaQPAiVrnU0KoJGqPsVhbsIN7nT2JKesxCmM3kQCs,129861
1140
- teradataml-20.0.0.4.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1141
- teradataml-20.0.0.4.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1142
- teradataml-20.0.0.4.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1143
- teradataml-20.0.0.4.dist-info/RECORD,,
1168
+ teradataml/utils/validators.py,sha256=0PoqjhdLsd8C5E5rS8yMjkVfxGf6ZWjsmHGgatWG0ts,108816
1169
+ teradataml-20.0.0.5.dist-info/METADATA,sha256=eX-ojIs7NHCQ_cMJBGCrhpi0vAJYGNxem81hK3IdNv0,134630
1170
+ teradataml-20.0.0.5.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1171
+ teradataml-20.0.0.5.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1172
+ teradataml-20.0.0.5.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1173
+ teradataml-20.0.0.5.dist-info/RECORD,,