teradataml 20.0.0.3__py3-none-any.whl → 20.0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (84) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +119 -0
  3. teradataml/_version.py +1 -1
  4. teradataml/analytics/analytic_function_executor.py +18 -6
  5. teradataml/analytics/byom/__init__.py +1 -1
  6. teradataml/analytics/sqle/__init__.py +4 -1
  7. teradataml/analytics/valib.py +18 -4
  8. teradataml/automl/__init__.py +51 -6
  9. teradataml/automl/data_preparation.py +56 -33
  10. teradataml/automl/data_transformation.py +58 -33
  11. teradataml/automl/feature_engineering.py +12 -5
  12. teradataml/automl/model_training.py +34 -13
  13. teradataml/common/__init__.py +1 -2
  14. teradataml/common/constants.py +64 -40
  15. teradataml/common/messagecodes.py +13 -3
  16. teradataml/common/messages.py +4 -1
  17. teradataml/common/sqlbundle.py +40 -10
  18. teradataml/common/utils.py +113 -39
  19. teradataml/common/warnings.py +11 -0
  20. teradataml/context/context.py +141 -17
  21. teradataml/data/amazon_reviews_25.csv +26 -0
  22. teradataml/data/byom_example.json +11 -0
  23. teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
  24. teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
  25. teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
  26. teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
  27. teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
  28. teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
  29. teradataml/data/docs/sqle/docs_17_20/Shap.py +28 -6
  30. teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
  31. teradataml/data/hnsw_alter_data.csv +5 -0
  32. teradataml/data/hnsw_data.csv +10 -0
  33. teradataml/data/jsons/byom/h2opredict.json +1 -1
  34. teradataml/data/jsons/byom/onnxembeddings.json +266 -0
  35. teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
  36. teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
  37. teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
  38. teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
  39. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +2 -2
  40. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +1 -1
  41. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +5 -5
  42. teradataml/data/teradataml_example.json +8 -0
  43. teradataml/data/vectordistance_example.json +1 -1
  44. teradataml/dataframe/copy_to.py +8 -3
  45. teradataml/dataframe/data_transfer.py +11 -1
  46. teradataml/dataframe/dataframe.py +517 -121
  47. teradataml/dataframe/dataframe_utils.py +152 -20
  48. teradataml/dataframe/functions.py +26 -11
  49. teradataml/dataframe/setop.py +11 -6
  50. teradataml/dataframe/sql.py +2 -2
  51. teradataml/dbutils/dbutils.py +525 -129
  52. teradataml/hyperparameter_tuner/optimizer.py +12 -1
  53. teradataml/opensource/{sklearn/_sklearn_wrapper.py → _base.py} +317 -1011
  54. teradataml/opensource/_class.py +141 -17
  55. teradataml/opensource/{constants.py → _constants.py} +7 -3
  56. teradataml/opensource/_lightgbm.py +52 -53
  57. teradataml/opensource/_sklearn.py +1008 -0
  58. teradataml/opensource/_wrapper_utils.py +5 -5
  59. teradataml/options/__init__.py +47 -15
  60. teradataml/options/configure.py +103 -25
  61. teradataml/options/display.py +13 -2
  62. teradataml/plot/axis.py +47 -8
  63. teradataml/plot/figure.py +33 -0
  64. teradataml/plot/plot.py +63 -13
  65. teradataml/scriptmgmt/UserEnv.py +2 -2
  66. teradataml/scriptmgmt/lls_utils.py +63 -26
  67. teradataml/store/__init__.py +1 -2
  68. teradataml/store/feature_store/feature_store.py +102 -7
  69. teradataml/table_operators/Apply.py +32 -18
  70. teradataml/table_operators/Script.py +3 -1
  71. teradataml/table_operators/TableOperator.py +3 -1
  72. teradataml/utils/dtypes.py +47 -0
  73. teradataml/utils/internal_buffer.py +18 -0
  74. teradataml/utils/validators.py +68 -9
  75. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/METADATA +123 -2
  76. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/RECORD +79 -75
  77. teradataml/data/SQL_Fundamentals.pdf +0 -0
  78. teradataml/libaed_0_1.dylib +0 -0
  79. teradataml/libaed_0_1.so +0 -0
  80. teradataml/opensource/sklearn/__init__.py +0 -0
  81. teradataml/store/vector_store/__init__.py +0 -1586
  82. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/WHEEL +0 -0
  83. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/top_level.txt +0 -0
  84. {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/zip-safe +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: teradataml
3
- Version: 20.0.0.3
3
+ Version: 20.0.0.4
4
4
  Summary: Teradata Vantage Python package for Advanced Analytics
5
5
  Home-page: http://www.teradata.com/
6
6
  Author: Teradata Corporation
@@ -18,7 +18,7 @@ Classifier: License :: Other/Proprietary License
18
18
  Requires-Python: >=3.8
19
19
  Description-Content-Type: text/markdown
20
20
  Requires-Dist: teradatasql (>=20.0.0.19)
21
- Requires-Dist: teradatasqlalchemy (>=20.0.0.3)
21
+ Requires-Dist: teradatasqlalchemy (>=20.0.0.4)
22
22
  Requires-Dist: pandas (>=0.22)
23
23
  Requires-Dist: psutil
24
24
  Requires-Dist: requests (>=2.25.1)
@@ -29,6 +29,8 @@ Requires-Dist: pyjwt (>=2.8.0)
29
29
  Requires-Dist: cryptography (>=42.0.5)
30
30
  Requires-Dist: sqlalchemy (>=2.0)
31
31
  Requires-Dist: lightgbm (>=3.3.3)
32
+ Requires-Dist: python-dotenv
33
+ Requires-Dist: teradatamlwidgets (>=20.0.0.5)
32
34
 
33
35
  ## Teradata Python package for Advanced Analytics.
34
36
 
@@ -49,6 +51,125 @@ Copyright 2024, Teradata. All Rights Reserved.
49
51
 
50
52
  ## Release Notes:
51
53
 
54
+ #### teradataml 20.00.00.04
55
+ * ##### New Features/Functionality
56
+ * ###### teradataml OTF Support:
57
+ * This release has enabled the support for accessing OTF data from teradataml.
58
+ * User can now create a teradataml DataFrame on OTF table, allowing user to use teradataml functions.
59
+ * Example usage below:
60
+ * Creation of view on OTF/datalake table is not supported. Hence, user has to set `configure.temp_object_type` to `VT` using below-mentioned statement.
61
+ ```configure.temp_object_type = "VT"```
62
+ * User needs to provide additional information about datalake while creating the DataFrame. There are two approaches to provide datalake information
63
+ * Approach 1: Using `in_schema()`
64
+ ```
65
+ >>> from teradataml.dataframe.dataframe import in_schema
66
+ # Create an in_schema object to privide additional information about datalake.
67
+ >>> in_schema_tbl = in_schema(schema_name="datalake_db",
68
+ ... table_name="datalake_table_name",
69
+ ... datalake_name="datalake")
70
+ >>> otf_df = DataFrame(in_schema_tbl)
71
+ ```
72
+ * Approach 2: Using `DataFrame.from_table()`
73
+ ```
74
+ >>> otf_df = DataFrame.from_table(table_name = "datalake_table_name",
75
+ ... schema_name="datalake_db",
76
+ ... datalake_name="datalake")
77
+ ```
78
+ * Once this DataFrame is created, users can use any DataFrame method or analytics features/functionality from teradataml with it. Visit Limitations and considerations section in _Teradata Python Package User Guide_ to check the supportability.
79
+ * Note: All further operations create volatile tables in local database.
80
+ ```
81
+ >>> new_df = otf_df.assign(new_col=otf_df.existing_col*2)
82
+ ```
83
+ * ###### teradataml: DataFrame
84
+ * Introduced a new feature 'Exploratory Data Analysis UI' (EDA-UI), which enhances
85
+ the user experience of teradataml with Jupyter notebook. EDA-UI is displayed by default
86
+ when a teradataml DataFrame is printed in the Jupyter notebook.
87
+ * User can control the EDA-UI using a new configuration option `display.enable_ui`.
88
+ It can be disabled by setting `display.enable_ui` to False.
89
+ * New Function
90
+ * `get_output()` is added to get the result of Analytic function when executed from EDA UI.
91
+
92
+ * ###### OpensourceML
93
+ * `td_lightgbm` - A teradataml OpenSourceML module
94
+ * `deploy()` - User can now deploy the models created by lightgbm `Booster` and `sklearn` modules. Deploying the model stores the model in Vantage for future use with `td_lightgbm`.
95
+ * `td_lightgbm.deploy()` - Deploy the lightgbm `Booster` or any `scikit-learn` model trained outside Vantage.
96
+ * `td_lightgbm.train().deploy()` - Deploys the lightgbm `Booster` object trained within Vantage.
97
+ * `td_lightgbm.<sklearn_class>().deploy()` - Deploys lightgbm's sklearn class object created/trained within Vantage.
98
+ * `load()` - User can load the deployed models back in the current session. This allows user to use the lightgbm functions with the `td_lightgbm` module.
99
+ * `td_lightgbm.load()` - Load the deployed model in the current session.
100
+
101
+ * ###### FeatureStore
102
+ * New function `FeatureStore.delete()` is added to drop the Feature Store and corresponding repo from Vantage.
103
+
104
+ * ###### Database Utility
105
+ * `db_python_version_diff()` - Identifies the Python interpreter major version difference between the interpreter installed on Vantage vs interpreter on the local user environment.
106
+ * `db_python_package_version_diff()` - Identifies the Python package version difference between the packages installed on Vantage vs the local user environment.
107
+
108
+ * ###### BYOM Function
109
+ * `ONNXEmbeddings()` - Calculate embeddings values in Vantage using an embeddings model that has been created outside Vantage and stored in ONNX format.
110
+
111
+ * ###### teradataml Options
112
+ * Configuration Options
113
+ * `configure.temp_object_type` - Allows user to choose between creating volatile tables or views for teradataml internal use. By default, teradataml internally creates the views for some of the operations. Now, with new configuration option, user can opt to create Volatile tables instead of views. This provides greater flexibility for users who lack the necessary permissions to create view or need to create views on tables without WITH GRANT permissions.
114
+ * Display Options
115
+ * `display.enable_ui` - Specifies whether to display exploratory data analysis UI when DataFrame is printed. By default, this option is enabled (True), allowing exploratory data analysis UI to be displayed. When set to False, exploratory data analysis UI is hidden.
116
+
117
+ * ##### Updates
118
+ * ###### teradataml: DataFrame function
119
+ * `describe()`
120
+ * New argument added: `pivot`.
121
+ * When argument `pivot` is set to False, Non-numeric columns are no longer supported for generating statistics.
122
+ Use `CategoricalSummary` and `ColumnSummary`.
123
+ * `fillna()` - Accepts new argument `partition_column` to partition the data and impute null values accordingly.
124
+ * Optimised performance for `DataFrame.plot()`.
125
+ * `DataFrame.plot()` will not regenerate the image when run more than once with same arguments.
126
+ * `DataFrame.from_table()`: New argument `datalake_name` added to accept datalake name while creating DataFrame on datalake table.
127
+
128
+ * ###### teradataml: DataFrame Utilities
129
+ * `in_schema()`: New argument `datalake_name` added to accept datalake name.
130
+
131
+ * ###### Table Operator
132
+ * `Apply()` no longer looks at authentication token by default. Authentication token is now required only if user want to update backend Open Analytics Framework service.
133
+
134
+ * ###### Hyper Parameter Tuner
135
+ * `GridSearch()` and `RandomSearch()` now displays a message to refer to `get_error_log()` api when model training fails in HPT.
136
+
137
+ * ###### teradataml Options
138
+ * Configuration Options
139
+ * `configure.indb_install_location`
140
+ Determines the installation location of the In-DB Python package based on the installed RPM version.
141
+
142
+ * ###### teradataml Context Creation
143
+ * `create_context()` - Enables user to create connection using either parameters set in environment or config file, in addition to previous method. Newly added options help users to hide the sensitive data from the script.
144
+
145
+ * ###### Open Analytics Framework
146
+ * Enhanced the `create_env()` to display a message when an invalid base_env is passed, informing users that the default base_env is being used.
147
+
148
+ * ###### OpensourceML
149
+ * Raises a TeradataMlException, if the Python interpreter major version is different between the Vantage Python environment and the local user environment.
150
+ * Displays a warning, if specific Python package versions are different between the Vantage Python environment and the local user environment.
151
+
152
+ * ###### Database Utility
153
+ * `db_list_tables()`: New argument `datalake_name` added to accept datalake name to list tables from.
154
+ * `db_drop_table()`:
155
+ * New argument `datalake_name` added to accept datalake name to drop tables from.
156
+ * New argument `purge` added to specify whether to use `PURGE ALL` or `NO PURGE` clause while dropping table.
157
+
158
+ * ##### Bug Fixes
159
+ * `td_lightgbm` OpensourceML module: In multi model case, `td_lightgbm.Dataset().add_features_from()` function should add features of one partition in first Dataset to features of the same partition in second Dataset. This is not the case before and this function fails. Fixed this now.
160
+ * Fixed a minor bug in the `Shap()` and converted argument `training_method` to required argument.
161
+ * Fixed PCA-related warnings in `AutoML`.
162
+ * `AutoML` no longer fails when data with all categorical columns are provided.
163
+ * Fixed `AutoML` issue with upsampling method.
164
+ * Excluded the identifier column from outlier processing in `AutoML`.
165
+ * `DataFrame.set_index()` no longer modifies the original DataFrame's index when argument `append` is used.
166
+ * `concat()` function now supports the DataFrame with column name starts with digit or contains special characters or contains reserved keywords.
167
+ * `create_env()` proceeds to install other files even if current file installation fails.
168
+ * Corrected the error message being raised in `create_env()` when authentication is not set.
169
+ * Added missing argument `charset` for Vantage Analytic Library functions.
170
+ * New argument `seed` is added to `AutoML`, `AutoRegressor` and `AutoClassifier` to ensure consistency on result.
171
+ * Analytic functions now work even if name of columns for underlying tables is non-ascii characters.
172
+
52
173
  #### teradataml 20.00.00.03
53
174
 
54
175
  * teradataml no longer supports setting the `auth_token` using `set_config_params()`. Users should use `set_auth_token()` to set the token.
@@ -1,20 +1,18 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=LMHCf0oAp5qfkJ2sLByXp_C7gO1ztBXXc0fLhFymAOE,319845
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=S_ZbiH6gd6WFIbgTWQ0WnHeune5sXf5P4Bc7VE_eZkA,317583
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=5n0NVRuMR7tyh85y8vr3zplZyjsNguPZf2U8SJu2nKw,122093
3
+ teradataml/README.md,sha256=Z1sTfwWvTyNzshSXyyRT2BpPS2hxqWyMv76gGRRBlbE,131103
4
4
  teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
- teradataml/_version.py,sha256=ud4XhZmc6XmseduxRAFPT0dYSNfbvg4ZW-1wB_TYR7k,364
6
- teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
- teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
5
+ teradataml/_version.py,sha256=mSa1EoEAUSwGrge8moM1l_yHxKsZemXWRSERGkmGQOg,364
8
6
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
7
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
10
- teradataml/analytics/analytic_function_executor.py,sha256=9n18PxyQocRyDeVLc0OYw_7ak07goue3nMDHX-Kncs4,106505
8
+ teradataml/analytics/analytic_function_executor.py,sha256=kDvLwsAFYeGMvMrwdNtCNgBE2U3M8FN5xAiBjmqE5m8,107400
11
9
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
12
10
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
13
11
  teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
14
- teradataml/analytics/valib.py,sha256=YR3Md9DYrPOMS7-GnOfcmdODuB3fTis-bGVbAfU4978,73587
12
+ teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
15
13
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
14
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
17
- teradataml/analytics/byom/__init__.py,sha256=qN-S7xa8T54xmDsNk4McCVJu3DePqAuR4y3B9x_i7M8,876
15
+ teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
18
16
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
17
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
18
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
@@ -22,19 +20,19 @@ teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97pu
22
20
  teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
23
21
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
24
22
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
- teradataml/analytics/sqle/__init__.py,sha256=xyuXkW1fc3N6yjxj5PMUBD-FsySdSpOIKY6A9IEyxLg,4194
23
+ teradataml/analytics/sqle/__init__.py,sha256=iY_xPIp7rk9MWseGQzDuLEXffPFBlPRVuqiztI4rqg0,4290
26
24
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
25
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
26
  teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
29
27
  teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
30
- teradataml/automl/__init__.py,sha256=juaGQuSeWZH0qJdXLMrZ4bx5btaGrMij2rSKu5Ev4MQ,134808
28
+ teradataml/automl/__init__.py,sha256=KFRMfRklWAuZp68VL4XqHbTgJI3tnaA-_rA1-hjukIk,136703
31
29
  teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
32
- teradataml/automl/data_preparation.py,sha256=N2BJ8cAYkQGFxZQ-D-fhsG6wx8saPWU3LCPwah-KXOg,41712
33
- teradataml/automl/data_transformation.py,sha256=jFanI9bKUcMWDvCTqfhJYaxbol6ipFDJD2KhP5HbJU8,42784
34
- teradataml/automl/feature_engineering.py,sha256=lATEWrbziHfg-n-NPkUt81Pw6QHlwNy4eZpA5WDFhL8,94803
30
+ teradataml/automl/data_preparation.py,sha256=tDx5uFPfti-UVuCrkdtcYD1FQEKujklB065hAd7B254,43252
31
+ teradataml/automl/data_transformation.py,sha256=j7sHFoF-J9rDunJ-NrFOoozS_oeeeB6fqrW-_pnQqTo,44569
32
+ teradataml/automl/feature_engineering.py,sha256=jd7u7QNgitPhdsSP00a5wkCk7tk5lXaPNbXREJ44FQw,95327
35
33
  teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
34
  teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
37
- teradataml/automl/model_training.py,sha256=oygbUYZjUr6fqbjDxJUR0qzgN_qeUhjop0hVunGnowc,42108
35
+ teradataml/automl/model_training.py,sha256=yZAgH2Z1aslLmgrZS8KsagEmc2o7hqqXizWVQkDWPx4,42722
38
36
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
37
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
40
38
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
@@ -42,21 +40,21 @@ teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9Oh
42
40
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
41
  teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
44
42
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
45
- teradataml/common/__init__.py,sha256=8x9tqa-EYdQtO9JHpAwrtSFApkJVjq29kvH6pRgJWoo,112
43
+ teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
46
44
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
45
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=qZGlF8C9KfjdeG6pvoY0YDXW6wbF8FX44zcBF7HhyQg,61463
46
+ teradataml/common/constants.py,sha256=KAzJrpEweV4nNXd9xivtyVoRp1aQobWE2pQPh3lCFQQ,62464
49
47
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
48
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
49
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
50
  teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
53
- teradataml/common/messagecodes.py,sha256=aWJ2Vgp485LobYvksJ8KcqMYIAtKxzHsRTX_eTlxA6s,28930
54
- teradataml/common/messages.py,sha256=kqXjvmfjENQtA3ncA_HtKbmCMn7vDElzQewTY51DbVE,17903
51
+ teradataml/common/messagecodes.py,sha256=xqMg0lOD4qNugdgopZ80w7MganDtb6LXpi5AdJnBD-s,29729
52
+ teradataml/common/messages.py,sha256=1ztNM9kQHnn3Fa9YfC300mTtIW4YcLn-2ZyzlOu-eFU,18172
55
53
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=wcA7Kwmv6Hy0tOko-k7zMgRm3qFar8J0EISGQhm6SsM,25217
54
+ teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
57
55
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=ZsdMOseH2Dzf8o-6U42mnib2vY0FVPUEs8Ae7VfkgJo,96439
59
- teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
56
+ teradataml/common/utils.py,sha256=BT84Xu8leBoQR9i9l1R7DtMm-nw4cbvfEBcyhoWU6Jg,98953
57
+ teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
60
58
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
59
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
62
60
  teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
@@ -66,7 +64,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
66
64
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
65
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
66
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
- teradataml/context/context.py,sha256=Nzc9viYF8v9tY-bcFbkofaobHfz0U8d-kKLvah2trTc,45759
67
+ teradataml/context/context.py,sha256=uj3JOmNs6B25Z0HtiKsGWlPvGjWDjs0DvEC1pRfxr0c,51804
70
68
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
69
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
70
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -82,7 +80,6 @@ teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEm
82
80
  teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
83
81
  teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
84
82
  teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
85
- teradataml/data/SQL_Fundamentals.pdf,sha256=N9dplUEwi-Eqd7LNXeC-j4T6CsOR6wxqzjSSOYUBmsA,980617
86
83
  teradataml/data/TestDFFT8.csv,sha256=pdob7s4-lD0WMsO9vk3UGyEpngufGRsqeN_wa5cMUVU,122
87
84
  teradataml/data/TestRiver.csv,sha256=Mv2Np9eAIRd_-ux5kKSprAa0tqFOQS6c3P7sIhDzl6I,1633
88
85
  teradataml/data/Traindata.csv,sha256=Hyv67nz4DvUK6JraIL_XFDl7XyHlOcIpZLdOtRwh79U,3329
@@ -97,6 +94,7 @@ teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct6
97
94
  teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
98
95
  teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
99
96
  teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
97
+ teradataml/data/amazon_reviews_25.csv,sha256=0KKnPkATIUylQocw6wpmvrrGkqv06hbihlRhdL6pa00,12824
100
98
  teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
101
99
  teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UIMgU29zM,1000
102
100
  teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
@@ -133,7 +131,7 @@ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-
133
131
  teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
134
132
  teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
135
133
  teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
136
- teradataml/data/byom_example.json,sha256=138RFM1GJZPgw_G3lM7aC3tcXJZQh-R2p4qSMeD5Kq8,394
134
+ teradataml/data/byom_example.json,sha256=wUUvHH0QhQJcoMCNLyyCSiQD9zZV7xKN9LoV1gxd8rg,726
137
135
  teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
138
136
  teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
139
137
  teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
@@ -241,6 +239,8 @@ teradataml/data/hmmdecoder_example.json,sha256=uDvpoFSbgmqelBlYDnrcj7N0lDaWCHCsQ
241
239
  teradataml/data/hmmevaluator_example.json,sha256=SwhSClm_D2vFD1RUqf9hB2Sm5Pdz0fRGF6xhKS1XAF4,569
242
240
  teradataml/data/hmmsupervised_example.json,sha256=ll5LLX65qnoeYrYLz44F7jBxFVeycgw8k_0E1SOdgk4,217
243
241
  teradataml/data/hmmunsupervised_example.json,sha256=wS8dJ-eMVwVDG1jdRQ_xEfV4_EIm8Jhb_8Vj8c30cLM,157
242
+ teradataml/data/hnsw_alter_data.csv,sha256=8XS9iEQY2rdJY-3EKI6IuxbRffxygJouhJHVOnLeyrs,52
243
+ teradataml/data/hnsw_data.csv,sha256=GJDHJSAm92sMkMww6rPLx0KpqKWUQZNpw2HH8pQ5ucE,113
244
244
  teradataml/data/house_values.csv,sha256=RuoWnMnhInKUNPOcAoRjaHl0nSVpxAHRFk4l7ScQ-OA,571
245
245
  teradataml/data/house_values2.csv,sha256=A0DUg1nfULxjJ042H1uCzGNBdaEo0cs5ooWF8zeMP6g,199
246
246
  teradataml/data/housing_cat.csv,sha256=zWcbUJRMt0Rrh5mXjD3LQV7Og3yCzZHonXuibRtrP-o,78
@@ -451,7 +451,7 @@ teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnl
451
451
  teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
452
452
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
453
453
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
454
- teradataml/data/teradataml_example.json,sha256=-yi0pDmv41RheeShirk0k1WC624ra4-2SMTzWyqEp4o,41742
454
+ teradataml/data/teradataml_example.json,sha256=kr0fl1j09pNSCKKvbHv-gqP9etjcf7h9zb0Ce6r0Lww,41894
455
455
  teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
456
456
  teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
457
457
  teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
@@ -498,7 +498,7 @@ teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLSt
498
498
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
499
499
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
500
500
  teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
501
- teradataml/data/vectordistance_example.json,sha256=1E5xNeC7lQWScf_HP6Nj_DMPH23U-aHHBzhQqhRnomc,665
501
+ teradataml/data/vectordistance_example.json,sha256=MCExWiHYITmVAACPdpRB2L_FGgAl4iQNBTIfH5p7Mm4,663
502
502
  teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
503
503
  teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
504
504
  teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
@@ -520,11 +520,12 @@ teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq
520
520
  teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
521
521
  teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
522
522
  teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
523
- teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=WtpNV7dOf0lJ0J28k88Qs_TmrIFtOiB3QMU-sHIeEL8,8921
524
- teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=prSgPBGIpz82qq1ycgHMAUlKvrpLmH2BAJZESq75pBs,8555
525
- teradataml/data/docs/byom/docs/H2OPredict.py,sha256=roe77-CBruRyjKKkvfhhG9lwIX0CDe1IdjY00h54xrs,16404
526
- teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=ueOOYIULYUw_Xob4kPnjeoBI0r7IC2uA6JLcz4LHx2A,14306
527
- teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=zS3igK0-tf7uPJqRdDqKbxk-m6Maz0uJgWHAHUfffrw,13117
523
+ teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=z7UUPJkqxNvng7VYKB3-8NqjvyojAy_0_T-9NIBQHRw,8969
524
+ teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=FVcY_XTK-n7j3IEa63_TA4ebIQR0sa5_SNJPJh-5W2E,10459
525
+ teradataml/data/docs/byom/docs/H2OPredict.py,sha256=cljoRRvWzm5ShXaipcPqDPwCFxNh_wixkl8KSi4uACI,16452
526
+ teradataml/data/docs/byom/docs/ONNXEmbeddings.py,sha256=lRAsNLdoANcu4KMd5FXKVZIFfvviEsAx70OdUirSjGE,11858
527
+ teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=qxNMVkw-Xz92yD7OHp0Kp_BOu0t-av8qzHnFN3wgzTA,14354
528
+ teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=lLh7VYxNLA4m8mtMffdkJAoKZM3AQ8IEtKJ1LlrnrYw,13165
528
529
  teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
529
530
  teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
530
531
  teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
@@ -643,7 +644,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
643
644
  teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
644
645
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
645
646
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
646
- teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=zUr0JXV1hMhHzm2o7ihHiK9g2qeHC3mI2pW7tMI7o9A,8902
647
+ teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=_h_Pgypu-mfxqyvbWXRKoDrqYV6HiVHBj4OR8SpXVSA,9992
647
648
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
648
649
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
649
650
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
@@ -704,7 +705,7 @@ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19Eh
704
705
  teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
705
706
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
706
707
  teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
707
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=UwjeV7wcudow6WnX8w3fuj1HPCwJAQjtvLyVZug60Pk,9248
708
+ teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=cNqKwpMlFahz-S1EpdceP_hxqGgxCxqan_I7D7jMFS4,9320
708
709
  teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
709
710
  teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
710
711
  teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
@@ -750,7 +751,8 @@ teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8
750
751
  teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
751
752
  teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
752
753
  teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
753
- teradataml/data/jsons/byom/h2opredict.json,sha256=wOxM25cnIF3I8gUgoZmxN4lItg7iZ-kW5tAIG7U3HGo,6131
754
+ teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
755
+ teradataml/data/jsons/byom/onnxembeddings.json,sha256=-_y50FRtV8KQNeHW29tlRss3MsnJs_FBZ1xrK60qfpI,8866
754
756
  teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
755
757
  teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
756
758
  teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
@@ -917,7 +919,7 @@ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5
917
919
  teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
918
920
  teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
919
921
  teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
920
- teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=lievgkOWQII4bdQirHXo_OGFuexhTAocmV-SKQj5Rqs,7928
922
+ teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=UdbHG9z-J-0oGRloIghUZpTfV-Qw_ahVeLvtdprrRI8,7895
921
923
  teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
922
924
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
923
925
  teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
@@ -938,9 +940,12 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
938
940
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
939
941
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
940
942
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
941
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=yknTTt9x6pYsXV_L9C5caqOcfxTCCch5cMqowbAI9hc,8886
942
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=mf3S5Q2ZlvE025yDdPkkWJ7zi94q4diIPs0lQwCWMao,9937
943
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=HBFTmnlbAATu5xUt9ztByZsB5ka6HP8Z1hQ1PUmlViE,9841
943
+ teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
944
+ teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
945
+ teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
946
+ teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=ogqYrW0lAbq2mSa0HJURwYohYFd1XA0UDPqUA23oAfM,8882
947
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=RYIIzOT2W-CEJWahKnMXtSn9RQC93xb3KManph_QIpo,9927
948
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=V0PDu905-_CN7t8uY8Di85Vebxvz5PH4nfNckZkDOfI,9835
944
949
  teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
945
950
  teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
946
951
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
@@ -1051,23 +1056,23 @@ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vw
1051
1056
  teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1052
1057
  teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1053
1058
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1054
- teradataml/dataframe/copy_to.py,sha256=VXbICedzrPsdPdWWCvmmoYzB-VXb4MC7kxbnxJkscsQ,76419
1055
- teradataml/dataframe/data_transfer.py,sha256=-7zk_4knyvLChQbb_Hmrj-eWxbg-REQZ_Bn-V4BqVhk,123719
1056
- teradataml/dataframe/dataframe.py,sha256=gImgGaF3pspGE0bJsVn8Cl_1IC_NrgN2ouXSoEU0hYw,977096
1057
- teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
1059
+ teradataml/dataframe/copy_to.py,sha256=-8LTxPc-3uRcrSAghp55B8GK6rUTXc_-l5UZw27wwGA,76785
1060
+ teradataml/dataframe/data_transfer.py,sha256=dZW0NmzZJ5QDSGY3BcDoQtuTINwjFf1jK_ZMDowSh8Y,124413
1061
+ teradataml/dataframe/dataframe.py,sha256=A7zQjszbHZmhGrWRAmPNjlK_Wp1tqhCnGCuZgRV89Xw,995741
1062
+ teradataml/dataframe/dataframe_utils.py,sha256=-L7Hq35Fd1WHJTe1wvEIPhC0eu1v2ZiOwnlNqIr-yXo,94226
1058
1063
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1059
- teradataml/dataframe/functions.py,sha256=PQjoHu56kZ9nWu3x-5pJiRdeV2NliGDdeJCWF5rMGjw,38745
1064
+ teradataml/dataframe/functions.py,sha256=t-ua7_PNe_X2jNo2p2FGMvbp2DlC4CLuV_PQPq4N04Q,39954
1060
1065
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1061
1066
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1062
- teradataml/dataframe/setop.py,sha256=EBJeUiOYtRMhrCbKUIBelQjtMe7pQ3aePuQSb0_VqPA,56931
1063
- teradataml/dataframe/sql.py,sha256=yvYpMp0axrp4dBz9pB_eK9RFmaM_etVAyMl63-qvQ4o,645455
1067
+ teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
1068
+ teradataml/dataframe/sql.py,sha256=1a6KNHJ8K8JSnWpN5Xb8VhOyGaj7ZDUF3aFYEDPUfYQ,645455
1064
1069
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1065
1070
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1066
1071
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1067
1072
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1068
1073
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1069
1074
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1070
- teradataml/dbutils/dbutils.py,sha256=cU5T7Zqf3nBRX_TS0egLD5Dq1goAwvKBW_YiCnx5L1U,79361
1075
+ teradataml/dbutils/dbutils.py,sha256=yG1pdoKV33vklTBICElPuHmnwCxDqnnu4IVh-q8bgzQ,97027
1071
1076
  teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1072
1077
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1073
1078
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
@@ -1076,44 +1081,43 @@ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9
1076
1081
  teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
1077
1082
  teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
1078
1083
  teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
1079
- teradataml/hyperparameter_tuner/optimizer.py,sha256=IvrbNGtS9B6cVu3xsx9hEmU2LiomLRh8nyQQegA9RlE,197968
1084
+ teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
1080
1085
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1081
1086
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1082
1087
  teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1083
1088
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1084
1089
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1085
1090
  teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1086
- teradataml/opensource/_class.py,sha256=UPf6-DXx_EvQXDFwe902Yw6JjL1-B8ElHAymOxin4R8,13100
1087
- teradataml/opensource/_lightgbm.py,sha256=Su9f4eD2zlFzcWf_1nA1sHPZZxm82LOPuxlm2IpdXz4,48976
1088
- teradataml/opensource/_wrapper_utils.py,sha256=CKlt5hpgJaf06rx8gvu8frgBWDcWAR_a7ViMQEV1C-Y,12122
1089
- teradataml/opensource/constants.py,sha256=10omodLZBTQ8pF70ckHVudJ8ZiaaI5lHsanvajTWbD8,2809
1090
- teradataml/opensource/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1091
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=y7v2tgwGlLnA67j1uMxLW3MRGvM0V55SasB9mmZX75U,106500
1092
- teradataml/options/__init__.py,sha256=mr8WGSfc0Hb67OLWKENPlPeHSRv1eqHJ4FPQ7bLwgas,5087
1093
- teradataml/options/configure.py,sha256=W3M1V_UlbY847xQ_D0RxUNohd8z2r6Cl49CgIYpRv1A,22015
1094
- teradataml/options/display.py,sha256=sprj5VEp6cBafnICFDdrsssstXNKl5oYvr5JwBPB_3c,7960
1091
+ teradataml/opensource/_base.py,sha256=G1HKMrqAl7hMRJFLm675nartG6g9V7u-zKtbYRx4yfE,71935
1092
+ teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
1093
+ teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
1094
+ teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
1095
+ teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
1096
+ teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
1097
+ teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
1098
+ teradataml/options/configure.py,sha256=F-QeLJxeImUCZEkRw1WQN38S5Yh2a5aim4w7bx52ggE,25782
1099
+ teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
1095
1100
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1096
- teradataml/plot/axis.py,sha256=_JjcP1p8-nL3oa5MDCfyqd0wlZuz18yNeqj7XirXXJo,54272
1101
+ teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
1097
1102
  teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
1098
- teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,12358
1099
- teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1103
+ teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,13223
1104
+ teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
1100
1105
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1101
1106
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1102
- teradataml/scriptmgmt/UserEnv.py,sha256=AdQLWjdux-jz_dNRJUQYLHOw6xOCoRtSUuG44n-rlHY,177029
1107
+ teradataml/scriptmgmt/UserEnv.py,sha256=DqUI_YwjucCMV-OkzOkBJ85XpbvW5nBw29f0UFcnmGo,177051
1103
1108
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1104
- teradataml/scriptmgmt/lls_utils.py,sha256=oUftiz6FdsMhmt1SSxijC42hAW29hmpAmo_4-taQV3I,77431
1109
+ teradataml/scriptmgmt/lls_utils.py,sha256=m5RMdUblfzLJK6wKNXCce0S-r2o8Lfzal8xlK37KKo4,79557
1105
1110
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1106
1111
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1107
1112
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1108
- teradataml/store/__init__.py,sha256=SkMK4KWtorw2N4egwUVmzg00alRxuX0ylfvM8ZliTpA,458
1113
+ teradataml/store/__init__.py,sha256=S68oRuSjcJz9oWqd12UMGJ0BMd4XkIdHcWPRMWFVwdw,413
1109
1114
  teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1110
1115
  teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1111
- teradataml/store/feature_store/feature_store.py,sha256=yQVqYfVqHI1wkDY2jgynDaiAeMkQ_rt_-F32ghHHQes,87548
1116
+ teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
1112
1117
  teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1113
- teradataml/store/vector_store/__init__.py,sha256=8-RR61XKhF1mjqMMDQjImxTDzFNqvsHpmb-q5pygMqo,67240
1114
- teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1115
- teradataml/table_operators/Script.py,sha256=QeAn5GZWj2uyNe8Y8fK8-X3kZKfJ3L06nFHzfZPqBAs,77179
1116
- teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
1118
+ teradataml/table_operators/Apply.py,sha256=F_QxGwbU2flfc--UdjQVDeOHDUm0SCVh5p_XzhOMnrw,43520
1119
+ teradataml/table_operators/Script.py,sha256=D74DFLq7wgQ-156oMMrO2oKS8N0tjzIMQQTCdk0MdsI,77374
1120
+ teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
1117
1121
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1118
1122
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1119
1123
  teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
@@ -1127,13 +1131,13 @@ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1
1127
1131
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1128
1132
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1129
1133
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1130
- teradataml/utils/dtypes.py,sha256=RZEXBHyR7fDlC0V2fXKqbc5Av7NeP_aWKhGRg8DlTr8,26454
1131
- teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1134
+ teradataml/utils/dtypes.py,sha256=KMza-R4l-BO-kwGBkUmpr6mc3ndAYQyxDzFttq1c3mA,27928
1135
+ teradataml/utils/internal_buffer.py,sha256=1_8PT_PDX2UHl_Sv1jKX9uPaAJG_qku65glPqjjhBWI,2490
1132
1136
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1133
1137
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1134
- teradataml/utils/validators.py,sha256=RFBrdWSbuuOX9cIMw327c-P8qPXp8qVNKCWXtFIx6PU,93462
1135
- teradataml-20.0.0.3.dist-info/METADATA,sha256=qfTI6EpLaovYWlpA66cAg7BOUELBe2L62wqS8UiwLJQ,120899
1136
- teradataml-20.0.0.3.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1137
- teradataml-20.0.0.3.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1138
- teradataml-20.0.0.3.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1139
- teradataml-20.0.0.3.dist-info/RECORD,,
1138
+ teradataml/utils/validators.py,sha256=f904i2BGSv28tBbM_npJGBGfkCUrcB9BhyjAmEwcXAU,95769
1139
+ teradataml-20.0.0.4.dist-info/METADATA,sha256=eWOaQPAiVrnU0KoJGqPsVhbsIN7nT2JKesxCmM3kQCs,129861
1140
+ teradataml-20.0.0.4.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1141
+ teradataml-20.0.0.4.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1142
+ teradataml-20.0.0.4.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1143
+ teradataml-20.0.0.4.dist-info/RECORD,,
Binary file
Binary file
teradataml/libaed_0_1.so DELETED
Binary file
File without changes