teradataml 20.0.0.3__py3-none-any.whl → 20.0.0.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of teradataml might be problematic. Click here for more details.
- teradataml/LICENSE-3RD-PARTY.pdf +0 -0
- teradataml/README.md +119 -0
- teradataml/_version.py +1 -1
- teradataml/analytics/analytic_function_executor.py +18 -6
- teradataml/analytics/byom/__init__.py +1 -1
- teradataml/analytics/sqle/__init__.py +4 -1
- teradataml/analytics/valib.py +18 -4
- teradataml/automl/__init__.py +51 -6
- teradataml/automl/data_preparation.py +56 -33
- teradataml/automl/data_transformation.py +58 -33
- teradataml/automl/feature_engineering.py +12 -5
- teradataml/automl/model_training.py +34 -13
- teradataml/common/__init__.py +1 -2
- teradataml/common/constants.py +64 -40
- teradataml/common/messagecodes.py +13 -3
- teradataml/common/messages.py +4 -1
- teradataml/common/sqlbundle.py +40 -10
- teradataml/common/utils.py +113 -39
- teradataml/common/warnings.py +11 -0
- teradataml/context/context.py +141 -17
- teradataml/data/amazon_reviews_25.csv +26 -0
- teradataml/data/byom_example.json +11 -0
- teradataml/data/docs/byom/docs/DataRobotPredict.py +2 -2
- teradataml/data/docs/byom/docs/DataikuPredict.py +40 -1
- teradataml/data/docs/byom/docs/H2OPredict.py +2 -2
- teradataml/data/docs/byom/docs/ONNXEmbeddings.py +242 -0
- teradataml/data/docs/byom/docs/ONNXPredict.py +2 -2
- teradataml/data/docs/byom/docs/PMMLPredict.py +2 -2
- teradataml/data/docs/sqle/docs_17_20/Shap.py +28 -6
- teradataml/data/docs/uaf/docs_17_20/DWT2D.py +4 -1
- teradataml/data/hnsw_alter_data.csv +5 -0
- teradataml/data/hnsw_data.csv +10 -0
- teradataml/data/jsons/byom/h2opredict.json +1 -1
- teradataml/data/jsons/byom/onnxembeddings.json +266 -0
- teradataml/data/jsons/sqle/17.20/TD_Shap.json +0 -1
- teradataml/data/jsons/sqle/20.00/TD_HNSW.json +296 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json +206 -0
- teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json +32 -0
- teradataml/data/jsons/sqle/20.00/TD_KMeans.json +2 -2
- teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +1 -1
- teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +5 -5
- teradataml/data/teradataml_example.json +8 -0
- teradataml/data/vectordistance_example.json +1 -1
- teradataml/dataframe/copy_to.py +8 -3
- teradataml/dataframe/data_transfer.py +11 -1
- teradataml/dataframe/dataframe.py +517 -121
- teradataml/dataframe/dataframe_utils.py +152 -20
- teradataml/dataframe/functions.py +26 -11
- teradataml/dataframe/setop.py +11 -6
- teradataml/dataframe/sql.py +2 -2
- teradataml/dbutils/dbutils.py +525 -129
- teradataml/hyperparameter_tuner/optimizer.py +12 -1
- teradataml/opensource/{sklearn/_sklearn_wrapper.py → _base.py} +317 -1011
- teradataml/opensource/_class.py +141 -17
- teradataml/opensource/{constants.py → _constants.py} +7 -3
- teradataml/opensource/_lightgbm.py +52 -53
- teradataml/opensource/_sklearn.py +1008 -0
- teradataml/opensource/_wrapper_utils.py +5 -5
- teradataml/options/__init__.py +47 -15
- teradataml/options/configure.py +103 -25
- teradataml/options/display.py +13 -2
- teradataml/plot/axis.py +47 -8
- teradataml/plot/figure.py +33 -0
- teradataml/plot/plot.py +63 -13
- teradataml/scriptmgmt/UserEnv.py +2 -2
- teradataml/scriptmgmt/lls_utils.py +63 -26
- teradataml/store/__init__.py +1 -2
- teradataml/store/feature_store/feature_store.py +102 -7
- teradataml/table_operators/Apply.py +32 -18
- teradataml/table_operators/Script.py +3 -1
- teradataml/table_operators/TableOperator.py +3 -1
- teradataml/utils/dtypes.py +47 -0
- teradataml/utils/internal_buffer.py +18 -0
- teradataml/utils/validators.py +68 -9
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/METADATA +123 -2
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/RECORD +79 -75
- teradataml/data/SQL_Fundamentals.pdf +0 -0
- teradataml/libaed_0_1.dylib +0 -0
- teradataml/libaed_0_1.so +0 -0
- teradataml/opensource/sklearn/__init__.py +0 -0
- teradataml/store/vector_store/__init__.py +0 -1586
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/WHEEL +0 -0
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/top_level.txt +0 -0
- {teradataml-20.0.0.3.dist-info → teradataml-20.0.0.4.dist-info}/zip-safe +0 -0
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: teradataml
|
|
3
|
-
Version: 20.0.0.
|
|
3
|
+
Version: 20.0.0.4
|
|
4
4
|
Summary: Teradata Vantage Python package for Advanced Analytics
|
|
5
5
|
Home-page: http://www.teradata.com/
|
|
6
6
|
Author: Teradata Corporation
|
|
@@ -18,7 +18,7 @@ Classifier: License :: Other/Proprietary License
|
|
|
18
18
|
Requires-Python: >=3.8
|
|
19
19
|
Description-Content-Type: text/markdown
|
|
20
20
|
Requires-Dist: teradatasql (>=20.0.0.19)
|
|
21
|
-
Requires-Dist: teradatasqlalchemy (>=20.0.0.
|
|
21
|
+
Requires-Dist: teradatasqlalchemy (>=20.0.0.4)
|
|
22
22
|
Requires-Dist: pandas (>=0.22)
|
|
23
23
|
Requires-Dist: psutil
|
|
24
24
|
Requires-Dist: requests (>=2.25.1)
|
|
@@ -29,6 +29,8 @@ Requires-Dist: pyjwt (>=2.8.0)
|
|
|
29
29
|
Requires-Dist: cryptography (>=42.0.5)
|
|
30
30
|
Requires-Dist: sqlalchemy (>=2.0)
|
|
31
31
|
Requires-Dist: lightgbm (>=3.3.3)
|
|
32
|
+
Requires-Dist: python-dotenv
|
|
33
|
+
Requires-Dist: teradatamlwidgets (>=20.0.0.5)
|
|
32
34
|
|
|
33
35
|
## Teradata Python package for Advanced Analytics.
|
|
34
36
|
|
|
@@ -49,6 +51,125 @@ Copyright 2024, Teradata. All Rights Reserved.
|
|
|
49
51
|
|
|
50
52
|
## Release Notes:
|
|
51
53
|
|
|
54
|
+
#### teradataml 20.00.00.04
|
|
55
|
+
* ##### New Features/Functionality
|
|
56
|
+
* ###### teradataml OTF Support:
|
|
57
|
+
* This release has enabled the support for accessing OTF data from teradataml.
|
|
58
|
+
* User can now create a teradataml DataFrame on OTF table, allowing user to use teradataml functions.
|
|
59
|
+
* Example usage below:
|
|
60
|
+
* Creation of view on OTF/datalake table is not supported. Hence, user has to set `configure.temp_object_type` to `VT` using below-mentioned statement.
|
|
61
|
+
```configure.temp_object_type = "VT"```
|
|
62
|
+
* User needs to provide additional information about datalake while creating the DataFrame. There are two approaches to provide datalake information
|
|
63
|
+
* Approach 1: Using `in_schema()`
|
|
64
|
+
```
|
|
65
|
+
>>> from teradataml.dataframe.dataframe import in_schema
|
|
66
|
+
# Create an in_schema object to privide additional information about datalake.
|
|
67
|
+
>>> in_schema_tbl = in_schema(schema_name="datalake_db",
|
|
68
|
+
... table_name="datalake_table_name",
|
|
69
|
+
... datalake_name="datalake")
|
|
70
|
+
>>> otf_df = DataFrame(in_schema_tbl)
|
|
71
|
+
```
|
|
72
|
+
* Approach 2: Using `DataFrame.from_table()`
|
|
73
|
+
```
|
|
74
|
+
>>> otf_df = DataFrame.from_table(table_name = "datalake_table_name",
|
|
75
|
+
... schema_name="datalake_db",
|
|
76
|
+
... datalake_name="datalake")
|
|
77
|
+
```
|
|
78
|
+
* Once this DataFrame is created, users can use any DataFrame method or analytics features/functionality from teradataml with it. Visit Limitations and considerations section in _Teradata Python Package User Guide_ to check the supportability.
|
|
79
|
+
* Note: All further operations create volatile tables in local database.
|
|
80
|
+
```
|
|
81
|
+
>>> new_df = otf_df.assign(new_col=otf_df.existing_col*2)
|
|
82
|
+
```
|
|
83
|
+
* ###### teradataml: DataFrame
|
|
84
|
+
* Introduced a new feature 'Exploratory Data Analysis UI' (EDA-UI), which enhances
|
|
85
|
+
the user experience of teradataml with Jupyter notebook. EDA-UI is displayed by default
|
|
86
|
+
when a teradataml DataFrame is printed in the Jupyter notebook.
|
|
87
|
+
* User can control the EDA-UI using a new configuration option `display.enable_ui`.
|
|
88
|
+
It can be disabled by setting `display.enable_ui` to False.
|
|
89
|
+
* New Function
|
|
90
|
+
* `get_output()` is added to get the result of Analytic function when executed from EDA UI.
|
|
91
|
+
|
|
92
|
+
* ###### OpensourceML
|
|
93
|
+
* `td_lightgbm` - A teradataml OpenSourceML module
|
|
94
|
+
* `deploy()` - User can now deploy the models created by lightgbm `Booster` and `sklearn` modules. Deploying the model stores the model in Vantage for future use with `td_lightgbm`.
|
|
95
|
+
* `td_lightgbm.deploy()` - Deploy the lightgbm `Booster` or any `scikit-learn` model trained outside Vantage.
|
|
96
|
+
* `td_lightgbm.train().deploy()` - Deploys the lightgbm `Booster` object trained within Vantage.
|
|
97
|
+
* `td_lightgbm.<sklearn_class>().deploy()` - Deploys lightgbm's sklearn class object created/trained within Vantage.
|
|
98
|
+
* `load()` - User can load the deployed models back in the current session. This allows user to use the lightgbm functions with the `td_lightgbm` module.
|
|
99
|
+
* `td_lightgbm.load()` - Load the deployed model in the current session.
|
|
100
|
+
|
|
101
|
+
* ###### FeatureStore
|
|
102
|
+
* New function `FeatureStore.delete()` is added to drop the Feature Store and corresponding repo from Vantage.
|
|
103
|
+
|
|
104
|
+
* ###### Database Utility
|
|
105
|
+
* `db_python_version_diff()` - Identifies the Python interpreter major version difference between the interpreter installed on Vantage vs interpreter on the local user environment.
|
|
106
|
+
* `db_python_package_version_diff()` - Identifies the Python package version difference between the packages installed on Vantage vs the local user environment.
|
|
107
|
+
|
|
108
|
+
* ###### BYOM Function
|
|
109
|
+
* `ONNXEmbeddings()` - Calculate embeddings values in Vantage using an embeddings model that has been created outside Vantage and stored in ONNX format.
|
|
110
|
+
|
|
111
|
+
* ###### teradataml Options
|
|
112
|
+
* Configuration Options
|
|
113
|
+
* `configure.temp_object_type` - Allows user to choose between creating volatile tables or views for teradataml internal use. By default, teradataml internally creates the views for some of the operations. Now, with new configuration option, user can opt to create Volatile tables instead of views. This provides greater flexibility for users who lack the necessary permissions to create view or need to create views on tables without WITH GRANT permissions.
|
|
114
|
+
* Display Options
|
|
115
|
+
* `display.enable_ui` - Specifies whether to display exploratory data analysis UI when DataFrame is printed. By default, this option is enabled (True), allowing exploratory data analysis UI to be displayed. When set to False, exploratory data analysis UI is hidden.
|
|
116
|
+
|
|
117
|
+
* ##### Updates
|
|
118
|
+
* ###### teradataml: DataFrame function
|
|
119
|
+
* `describe()`
|
|
120
|
+
* New argument added: `pivot`.
|
|
121
|
+
* When argument `pivot` is set to False, Non-numeric columns are no longer supported for generating statistics.
|
|
122
|
+
Use `CategoricalSummary` and `ColumnSummary`.
|
|
123
|
+
* `fillna()` - Accepts new argument `partition_column` to partition the data and impute null values accordingly.
|
|
124
|
+
* Optimised performance for `DataFrame.plot()`.
|
|
125
|
+
* `DataFrame.plot()` will not regenerate the image when run more than once with same arguments.
|
|
126
|
+
* `DataFrame.from_table()`: New argument `datalake_name` added to accept datalake name while creating DataFrame on datalake table.
|
|
127
|
+
|
|
128
|
+
* ###### teradataml: DataFrame Utilities
|
|
129
|
+
* `in_schema()`: New argument `datalake_name` added to accept datalake name.
|
|
130
|
+
|
|
131
|
+
* ###### Table Operator
|
|
132
|
+
* `Apply()` no longer looks at authentication token by default. Authentication token is now required only if user want to update backend Open Analytics Framework service.
|
|
133
|
+
|
|
134
|
+
* ###### Hyper Parameter Tuner
|
|
135
|
+
* `GridSearch()` and `RandomSearch()` now displays a message to refer to `get_error_log()` api when model training fails in HPT.
|
|
136
|
+
|
|
137
|
+
* ###### teradataml Options
|
|
138
|
+
* Configuration Options
|
|
139
|
+
* `configure.indb_install_location`
|
|
140
|
+
Determines the installation location of the In-DB Python package based on the installed RPM version.
|
|
141
|
+
|
|
142
|
+
* ###### teradataml Context Creation
|
|
143
|
+
* `create_context()` - Enables user to create connection using either parameters set in environment or config file, in addition to previous method. Newly added options help users to hide the sensitive data from the script.
|
|
144
|
+
|
|
145
|
+
* ###### Open Analytics Framework
|
|
146
|
+
* Enhanced the `create_env()` to display a message when an invalid base_env is passed, informing users that the default base_env is being used.
|
|
147
|
+
|
|
148
|
+
* ###### OpensourceML
|
|
149
|
+
* Raises a TeradataMlException, if the Python interpreter major version is different between the Vantage Python environment and the local user environment.
|
|
150
|
+
* Displays a warning, if specific Python package versions are different between the Vantage Python environment and the local user environment.
|
|
151
|
+
|
|
152
|
+
* ###### Database Utility
|
|
153
|
+
* `db_list_tables()`: New argument `datalake_name` added to accept datalake name to list tables from.
|
|
154
|
+
* `db_drop_table()`:
|
|
155
|
+
* New argument `datalake_name` added to accept datalake name to drop tables from.
|
|
156
|
+
* New argument `purge` added to specify whether to use `PURGE ALL` or `NO PURGE` clause while dropping table.
|
|
157
|
+
|
|
158
|
+
* ##### Bug Fixes
|
|
159
|
+
* `td_lightgbm` OpensourceML module: In multi model case, `td_lightgbm.Dataset().add_features_from()` function should add features of one partition in first Dataset to features of the same partition in second Dataset. This is not the case before and this function fails. Fixed this now.
|
|
160
|
+
* Fixed a minor bug in the `Shap()` and converted argument `training_method` to required argument.
|
|
161
|
+
* Fixed PCA-related warnings in `AutoML`.
|
|
162
|
+
* `AutoML` no longer fails when data with all categorical columns are provided.
|
|
163
|
+
* Fixed `AutoML` issue with upsampling method.
|
|
164
|
+
* Excluded the identifier column from outlier processing in `AutoML`.
|
|
165
|
+
* `DataFrame.set_index()` no longer modifies the original DataFrame's index when argument `append` is used.
|
|
166
|
+
* `concat()` function now supports the DataFrame with column name starts with digit or contains special characters or contains reserved keywords.
|
|
167
|
+
* `create_env()` proceeds to install other files even if current file installation fails.
|
|
168
|
+
* Corrected the error message being raised in `create_env()` when authentication is not set.
|
|
169
|
+
* Added missing argument `charset` for Vantage Analytic Library functions.
|
|
170
|
+
* New argument `seed` is added to `AutoML`, `AutoRegressor` and `AutoClassifier` to ensure consistency on result.
|
|
171
|
+
* Analytic functions now work even if name of columns for underlying tables is non-ascii characters.
|
|
172
|
+
|
|
52
173
|
#### teradataml 20.00.00.03
|
|
53
174
|
|
|
54
175
|
* teradataml no longer supports setting the `auth_token` using `set_config_params()`. Users should use `set_auth_token()` to set the token.
|
|
@@ -1,20 +1,18 @@
|
|
|
1
|
-
teradataml/LICENSE-3RD-PARTY.pdf,sha256=
|
|
1
|
+
teradataml/LICENSE-3RD-PARTY.pdf,sha256=S_ZbiH6gd6WFIbgTWQ0WnHeune5sXf5P4Bc7VE_eZkA,317583
|
|
2
2
|
teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
|
|
3
|
-
teradataml/README.md,sha256=
|
|
3
|
+
teradataml/README.md,sha256=Z1sTfwWvTyNzshSXyyRT2BpPS2hxqWyMv76gGRRBlbE,131103
|
|
4
4
|
teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
|
|
5
|
-
teradataml/_version.py,sha256=
|
|
6
|
-
teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
|
|
7
|
-
teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
|
|
5
|
+
teradataml/_version.py,sha256=mSa1EoEAUSwGrge8moM1l_yHxKsZemXWRSERGkmGQOg,364
|
|
8
6
|
teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
|
|
9
7
|
teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
|
|
10
|
-
teradataml/analytics/analytic_function_executor.py,sha256=
|
|
8
|
+
teradataml/analytics/analytic_function_executor.py,sha256=kDvLwsAFYeGMvMrwdNtCNgBE2U3M8FN5xAiBjmqE5m8,107400
|
|
11
9
|
teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
|
|
12
10
|
teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
|
|
13
11
|
teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
|
|
14
|
-
teradataml/analytics/valib.py,sha256=
|
|
12
|
+
teradataml/analytics/valib.py,sha256=4iwJj9usJDkmAGNDNdKqkV1kwtrbvOH4OAXg8hFwIMQ,74380
|
|
15
13
|
teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
|
|
16
14
|
teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
|
|
17
|
-
teradataml/analytics/byom/__init__.py,sha256=
|
|
15
|
+
teradataml/analytics/byom/__init__.py,sha256=3dNopwwaA_b_JUd5Qv2Pehgl_WCLrSaabR9N5oRirj8,894
|
|
18
16
|
teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
|
|
19
17
|
teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
|
|
20
18
|
teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
|
|
@@ -22,19 +20,19 @@ teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97pu
|
|
|
22
20
|
teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
|
|
23
21
|
teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
|
|
24
22
|
teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
|
|
25
|
-
teradataml/analytics/sqle/__init__.py,sha256=
|
|
23
|
+
teradataml/analytics/sqle/__init__.py,sha256=iY_xPIp7rk9MWseGQzDuLEXffPFBlPRVuqiztI4rqg0,4290
|
|
26
24
|
teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
|
|
27
25
|
teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
|
|
28
26
|
teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
|
|
29
27
|
teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
|
|
30
|
-
teradataml/automl/__init__.py,sha256=
|
|
28
|
+
teradataml/automl/__init__.py,sha256=KFRMfRklWAuZp68VL4XqHbTgJI3tnaA-_rA1-hjukIk,136703
|
|
31
29
|
teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
|
|
32
|
-
teradataml/automl/data_preparation.py,sha256=
|
|
33
|
-
teradataml/automl/data_transformation.py,sha256=
|
|
34
|
-
teradataml/automl/feature_engineering.py,sha256=
|
|
30
|
+
teradataml/automl/data_preparation.py,sha256=tDx5uFPfti-UVuCrkdtcYD1FQEKujklB065hAd7B254,43252
|
|
31
|
+
teradataml/automl/data_transformation.py,sha256=j7sHFoF-J9rDunJ-NrFOoozS_oeeeB6fqrW-_pnQqTo,44569
|
|
32
|
+
teradataml/automl/feature_engineering.py,sha256=jd7u7QNgitPhdsSP00a5wkCk7tk5lXaPNbXREJ44FQw,95327
|
|
35
33
|
teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
|
|
36
34
|
teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
|
|
37
|
-
teradataml/automl/model_training.py,sha256=
|
|
35
|
+
teradataml/automl/model_training.py,sha256=yZAgH2Z1aslLmgrZS8KsagEmc2o7hqqXizWVQkDWPx4,42722
|
|
38
36
|
teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
|
|
39
37
|
teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
|
|
40
38
|
teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
|
|
@@ -42,21 +40,21 @@ teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9Oh
|
|
|
42
40
|
teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
43
41
|
teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
|
|
44
42
|
teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
|
|
45
|
-
teradataml/common/__init__.py,sha256=
|
|
43
|
+
teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
|
|
46
44
|
teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
|
|
47
45
|
teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
|
|
48
|
-
teradataml/common/constants.py,sha256=
|
|
46
|
+
teradataml/common/constants.py,sha256=KAzJrpEweV4nNXd9xivtyVoRp1aQobWE2pQPh3lCFQQ,62464
|
|
49
47
|
teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
|
|
50
48
|
teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
|
|
51
49
|
teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
|
|
52
50
|
teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
|
|
53
|
-
teradataml/common/messagecodes.py,sha256=
|
|
54
|
-
teradataml/common/messages.py,sha256=
|
|
51
|
+
teradataml/common/messagecodes.py,sha256=xqMg0lOD4qNugdgopZ80w7MganDtb6LXpi5AdJnBD-s,29729
|
|
52
|
+
teradataml/common/messages.py,sha256=1ztNM9kQHnn3Fa9YfC300mTtIW4YcLn-2ZyzlOu-eFU,18172
|
|
55
53
|
teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
|
|
56
|
-
teradataml/common/sqlbundle.py,sha256=
|
|
54
|
+
teradataml/common/sqlbundle.py,sha256=ViH_-OwvTDUqXWGIvCSqDqP5020humJuGc5Dm3VxyKk,26498
|
|
57
55
|
teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
|
|
58
|
-
teradataml/common/utils.py,sha256=
|
|
59
|
-
teradataml/common/warnings.py,sha256=
|
|
56
|
+
teradataml/common/utils.py,sha256=BT84Xu8leBoQR9i9l1R7DtMm-nw4cbvfEBcyhoWU6Jg,98953
|
|
57
|
+
teradataml/common/warnings.py,sha256=PO6nQT9W3pIeT9TLYyLLbwe-f897Zk-j5E8RqyPFs48,1049
|
|
60
58
|
teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
|
|
61
59
|
teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
62
60
|
teradataml/config/dummy_file1.cfg,sha256=mvNQlfiTBP_2-e84fV1BsINKC0wcpeE_oYTuQe3RLaI,35
|
|
@@ -66,7 +64,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
|
|
|
66
64
|
teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
|
|
67
65
|
teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
68
66
|
teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
|
|
69
|
-
teradataml/context/context.py,sha256=
|
|
67
|
+
teradataml/context/context.py,sha256=uj3JOmNs6B25Z0HtiKsGWlPvGjWDjs0DvEC1pRfxr0c,51804
|
|
70
68
|
teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
|
|
71
69
|
teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
72
70
|
teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
|
|
@@ -82,7 +80,6 @@ teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEm
|
|
|
82
80
|
teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
|
|
83
81
|
teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
|
|
84
82
|
teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
|
|
85
|
-
teradataml/data/SQL_Fundamentals.pdf,sha256=N9dplUEwi-Eqd7LNXeC-j4T6CsOR6wxqzjSSOYUBmsA,980617
|
|
86
83
|
teradataml/data/TestDFFT8.csv,sha256=pdob7s4-lD0WMsO9vk3UGyEpngufGRsqeN_wa5cMUVU,122
|
|
87
84
|
teradataml/data/TestRiver.csv,sha256=Mv2Np9eAIRd_-ux5kKSprAa0tqFOQS6c3P7sIhDzl6I,1633
|
|
88
85
|
teradataml/data/Traindata.csv,sha256=Hyv67nz4DvUK6JraIL_XFDl7XyHlOcIpZLdOtRwh79U,3329
|
|
@@ -97,6 +94,7 @@ teradataml/data/admissions_train_nulls.csv,sha256=ATKujpSwylRzqwQhuYk5oJQZnocct6
|
|
|
97
94
|
teradataml/data/advertising.csv,sha256=E391Wtb9O8ZHEIX3YxovumwEy4rNcer1zJr2g51D_dU,4062
|
|
98
95
|
teradataml/data/ageandheight.csv,sha256=wZqCAsV7SApRpoa24-p8ws6v7DNsY2_CAIKwZapmLnY,244
|
|
99
96
|
teradataml/data/ageandpressure.csv,sha256=Ur91-8fz1VjPsFxfgvwWy9yNB3m2aV9qiPRCHkXHXgU,392
|
|
97
|
+
teradataml/data/amazon_reviews_25.csv,sha256=0KKnPkATIUylQocw6wpmvrrGkqv06hbihlRhdL6pa00,12824
|
|
100
98
|
teradataml/data/antiselect_example.json,sha256=w1V67r47thUYYgE8n0buuPcIQbFnDVPZzcIDGxm46U4,1280
|
|
101
99
|
teradataml/data/antiselect_input.csv,sha256=bgJVm4qOd2xIpMt2vcfw3Vp4EhFh31MeR0UIMgU29zM,1000
|
|
102
100
|
teradataml/data/antiselect_input_mixed_case.csv,sha256=6kBAJUTdD_m36JQ4XW_BdUZ_GYb6tVguMZ1Y-eYuZyM,1000
|
|
@@ -133,7 +131,7 @@ teradataml/data/breast_cancer.csv,sha256=YJjbRrFwf5PWU7Al4NB46Y2yXNyfJMrZ06YDMY-
|
|
|
133
131
|
teradataml/data/buoydata_mix.csv,sha256=FhIW7ZyLFFSt2Ju6cYfJJV5_bUWoGMU-fl4RqX85HiA,1630
|
|
134
132
|
teradataml/data/burst_data.csv,sha256=4ZEOicUtb4iejEC7Qh5VewTACJMG5qdpKEVq3RVO4yo,172
|
|
135
133
|
teradataml/data/burst_example.json,sha256=ijC2YaBUGL-ZKR2lM3CHgBTPHYXr4LpTrXzhHzXhcB4,434
|
|
136
|
-
teradataml/data/byom_example.json,sha256=
|
|
134
|
+
teradataml/data/byom_example.json,sha256=wUUvHH0QhQJcoMCNLyyCSiQD9zZV7xKN9LoV1gxd8rg,726
|
|
137
135
|
teradataml/data/bytes_table.csv,sha256=nztKCmykXMySGFj1PtbkzmUWA9BFD4zxku0VZduH2MU,109
|
|
138
136
|
teradataml/data/cal_housing_ex_raw.csv,sha256=W_r-AMQBLmTatsni_FXdhmmVHNMxQ1ndGdmhS-_2t0s,9459
|
|
139
137
|
teradataml/data/callers.csv,sha256=uarzTiXzCuveKX-HtULkFM7BWlAhpp-nI8kmcWT73iM,93
|
|
@@ -241,6 +239,8 @@ teradataml/data/hmmdecoder_example.json,sha256=uDvpoFSbgmqelBlYDnrcj7N0lDaWCHCsQ
|
|
|
241
239
|
teradataml/data/hmmevaluator_example.json,sha256=SwhSClm_D2vFD1RUqf9hB2Sm5Pdz0fRGF6xhKS1XAF4,569
|
|
242
240
|
teradataml/data/hmmsupervised_example.json,sha256=ll5LLX65qnoeYrYLz44F7jBxFVeycgw8k_0E1SOdgk4,217
|
|
243
241
|
teradataml/data/hmmunsupervised_example.json,sha256=wS8dJ-eMVwVDG1jdRQ_xEfV4_EIm8Jhb_8Vj8c30cLM,157
|
|
242
|
+
teradataml/data/hnsw_alter_data.csv,sha256=8XS9iEQY2rdJY-3EKI6IuxbRffxygJouhJHVOnLeyrs,52
|
|
243
|
+
teradataml/data/hnsw_data.csv,sha256=GJDHJSAm92sMkMww6rPLx0KpqKWUQZNpw2HH8pQ5ucE,113
|
|
244
244
|
teradataml/data/house_values.csv,sha256=RuoWnMnhInKUNPOcAoRjaHl0nSVpxAHRFk4l7ScQ-OA,571
|
|
245
245
|
teradataml/data/house_values2.csv,sha256=A0DUg1nfULxjJ042H1uCzGNBdaEo0cs5ooWF8zeMP6g,199
|
|
246
246
|
teradataml/data/housing_cat.csv,sha256=zWcbUJRMt0Rrh5mXjD3LQV7Og3yCzZHonXuibRtrP-o,78
|
|
@@ -451,7 +451,7 @@ teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnl
|
|
|
451
451
|
teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
|
|
452
452
|
teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
|
|
453
453
|
teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
|
|
454
|
-
teradataml/data/teradataml_example.json,sha256
|
|
454
|
+
teradataml/data/teradataml_example.json,sha256=kr0fl1j09pNSCKKvbHv-gqP9etjcf7h9zb0Ce6r0Lww,41894
|
|
455
455
|
teradataml/data/test_classification.csv,sha256=BDKuA82t60YWQu23BDxMn3j7X2Ws_HJXfUoFcwa76Og,9523
|
|
456
456
|
teradataml/data/test_loan_prediction.csv,sha256=RW7R4PPMRGdpHmHxvH-1TssLQFg5bVfd8tteuJ3Ukg0,863
|
|
457
457
|
teradataml/data/test_pacf_12.csv,sha256=ltIEUeJksRLCcvfXyrFhGcc7GkI89NXhRbQ5gOidvNM,1003
|
|
@@ -498,7 +498,7 @@ teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLSt
|
|
|
498
498
|
teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
|
|
499
499
|
teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
|
|
500
500
|
teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
|
|
501
|
-
teradataml/data/vectordistance_example.json,sha256=
|
|
501
|
+
teradataml/data/vectordistance_example.json,sha256=MCExWiHYITmVAACPdpRB2L_FGgAl4iQNBTIfH5p7Mm4,663
|
|
502
502
|
teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
|
|
503
503
|
teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
|
|
504
504
|
teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
|
|
@@ -520,11 +520,12 @@ teradataml/data/xgboostpredict_example.json,sha256=-XQ7o9eHQjBoAl3zobM6yvuKE6eMq
|
|
|
520
520
|
teradataml/data/ztest_example.json,sha256=HvBkbCcSKcSPV1RuEsxe8utaHT8xiXfrt90bgjMzexY,345
|
|
521
521
|
teradataml/data/docs/__init__.py,sha256=5XVCpXHM3si13drwS1VzLUi3Jq9aAgvCCn8O0qs61as,36
|
|
522
522
|
teradataml/data/docs/byom/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
523
|
-
teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=
|
|
524
|
-
teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=
|
|
525
|
-
teradataml/data/docs/byom/docs/H2OPredict.py,sha256=
|
|
526
|
-
teradataml/data/docs/byom/docs/
|
|
527
|
-
teradataml/data/docs/byom/docs/
|
|
523
|
+
teradataml/data/docs/byom/docs/DataRobotPredict.py,sha256=z7UUPJkqxNvng7VYKB3-8NqjvyojAy_0_T-9NIBQHRw,8969
|
|
524
|
+
teradataml/data/docs/byom/docs/DataikuPredict.py,sha256=FVcY_XTK-n7j3IEa63_TA4ebIQR0sa5_SNJPJh-5W2E,10459
|
|
525
|
+
teradataml/data/docs/byom/docs/H2OPredict.py,sha256=cljoRRvWzm5ShXaipcPqDPwCFxNh_wixkl8KSi4uACI,16452
|
|
526
|
+
teradataml/data/docs/byom/docs/ONNXEmbeddings.py,sha256=lRAsNLdoANcu4KMd5FXKVZIFfvviEsAx70OdUirSjGE,11858
|
|
527
|
+
teradataml/data/docs/byom/docs/ONNXPredict.py,sha256=qxNMVkw-Xz92yD7OHp0Kp_BOu0t-av8qzHnFN3wgzTA,14354
|
|
528
|
+
teradataml/data/docs/byom/docs/PMMLPredict.py,sha256=lLh7VYxNLA4m8mtMffdkJAoKZM3AQ8IEtKJ1LlrnrYw,13165
|
|
528
529
|
teradataml/data/docs/byom/docs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
529
530
|
teradataml/data/docs/sqle/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
530
531
|
teradataml/data/docs/sqle/docs_17_10/Antiselect.py,sha256=XqXfSUwAfQvMohTtJri1ZuXID6HcqGc8f6yJOlvGUqk,3495
|
|
@@ -643,7 +644,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
|
|
|
643
644
|
teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
|
|
644
645
|
teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
|
|
645
646
|
teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
|
|
646
|
-
teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=
|
|
647
|
+
teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=_h_Pgypu-mfxqyvbWXRKoDrqYV6HiVHBj4OR8SpXVSA,9992
|
|
647
648
|
teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
|
|
648
649
|
teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
|
|
649
650
|
teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
|
|
@@ -704,7 +705,7 @@ teradataml/data/docs/uaf/docs_17_20/DFFTConv.py,sha256=QaU8sNSNew04dVTq_HBHP19Eh
|
|
|
704
705
|
teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKOSK5sXwC82ykt88,7299
|
|
705
706
|
teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
|
|
706
707
|
teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
|
|
707
|
-
teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=
|
|
708
|
+
teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=cNqKwpMlFahz-S1EpdceP_hxqGgxCxqan_I7D7jMFS4,9320
|
|
708
709
|
teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
|
|
709
710
|
teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
|
|
710
711
|
teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
|
|
@@ -750,7 +751,8 @@ teradataml/data/jsons/anly_function_name.json,sha256=EHJ68E45KgNfECT6AK9-DMQ-yP8
|
|
|
750
751
|
teradataml/data/jsons/paired_functions.json,sha256=5EGDbgTwKrR-HcjwMa187tPyOm23aYcmgMrFDDXSXRo,9814
|
|
751
752
|
teradataml/data/jsons/byom/dataikupredict.json,sha256=szvH79NGcniprg7eborSyKb_1JL8-Zg8lC0KT8efM3c,4752
|
|
752
753
|
teradataml/data/jsons/byom/datarobotpredict.json,sha256=42VOrJFvlc87ZKgq6mu0FwcUkIFEaY41rzW2PTibVTM,4735
|
|
753
|
-
teradataml/data/jsons/byom/h2opredict.json,sha256
|
|
754
|
+
teradataml/data/jsons/byom/h2opredict.json,sha256=-neUkuTjHSVWAoK7uyIcAv9HfAa0IGiiWXuNES73fgc,6132
|
|
755
|
+
teradataml/data/jsons/byom/onnxembeddings.json,sha256=-_y50FRtV8KQNeHW29tlRss3MsnJs_FBZ1xrK60qfpI,8866
|
|
754
756
|
teradataml/data/jsons/byom/onnxpredict.json,sha256=pkzmSpmzpx0V7UVKGc2_FkTCISa3U1vkqV5gpae5aBg,6114
|
|
755
757
|
teradataml/data/jsons/byom/pmmlpredict.json,sha256=Rm2Dt1PXu4wG8xj3a7MaTGYPb9_2cXgeUYy4enevUzw,4686
|
|
756
758
|
teradataml/data/jsons/sqle/16.20/Antiselect.json,sha256=Zyw4BroIZwI7UeYjeHsWO51MukZmAH38UKS4-8nPuLg,1621
|
|
@@ -917,7 +919,7 @@ teradataml/data/jsons/sqle/17.20/TD_SVMPredict.json,sha256=aZlJBekP4uxc2XJUwIeV5
|
|
|
917
919
|
teradataml/data/jsons/sqle/17.20/TD_ScaleFit.json,sha256=V9N4WysObAauTR0X3wSBJDpRMvPRQxKr8m-ztGLcnXg,13586
|
|
918
920
|
teradataml/data/jsons/sqle/17.20/TD_ScaleTransform.json,sha256=aHX7ccFEfjJ9uP23qj9OiC3rREeuryP_T7kcWrpkbQg,3992
|
|
919
921
|
teradataml/data/jsons/sqle/17.20/TD_SentimentExtractor.json,sha256=LVPbPPGi_z6l3f-OjD7XrhjOR_dG3XuZdUgaafVeED4,7045
|
|
920
|
-
teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=
|
|
922
|
+
teradataml/data/jsons/sqle/17.20/TD_Shap.json,sha256=UdbHG9z-J-0oGRloIghUZpTfV-Qw_ahVeLvtdprrRI8,7895
|
|
921
923
|
teradataml/data/jsons/sqle/17.20/TD_Silhouette.json,sha256=Wt6QlckJUNUGrCWAY4tv2xvi2K6tw9cjpUUK7U0esU8,4840
|
|
922
924
|
teradataml/data/jsons/sqle/17.20/TD_SimpleImputeFit.json,sha256=zOhzZZDdlBnRv-vZQL3XCO5sHcBiz2e93dfqpkbuWF8,4995
|
|
923
925
|
teradataml/data/jsons/sqle/17.20/TD_SimpleImputeTransform.json,sha256=_6dzIMMYBWCgBEvNYbqFVfkdPt1lWCImayMVem9jAbk,1877
|
|
@@ -938,9 +940,12 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
|
|
|
938
940
|
teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
|
|
939
941
|
teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
|
|
940
942
|
teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
|
|
941
|
-
teradataml/data/jsons/sqle/20.00/
|
|
942
|
-
teradataml/data/jsons/sqle/20.00/
|
|
943
|
-
teradataml/data/jsons/sqle/20.00/
|
|
943
|
+
teradataml/data/jsons/sqle/20.00/TD_HNSW.json,sha256=yaIasMPo3m0fGkA1IJWWZKeQqMnknGf9i9neaRHrh7A,10031
|
|
944
|
+
teradataml/data/jsons/sqle/20.00/TD_HNSWPredict.json,sha256=m7_9216qzwrgnpubaD-0Jnx260KfxBb8Fz6faullUn4,7040
|
|
945
|
+
teradataml/data/jsons/sqle/20.00/TD_HNSWSummary.json,sha256=PPYYKEFZpYjNIBpBkA4kyeqVpdlGdl260Qm0lRB8ivw,1229
|
|
946
|
+
teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=ogqYrW0lAbq2mSa0HJURwYohYFd1XA0UDPqUA23oAfM,8882
|
|
947
|
+
teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=RYIIzOT2W-CEJWahKnMXtSn9RQC93xb3KManph_QIpo,9927
|
|
948
|
+
teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=V0PDu905-_CN7t8uY8Di85Vebxvz5PH4nfNckZkDOfI,9835
|
|
944
949
|
teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
|
|
945
950
|
teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
|
|
946
951
|
teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
|
|
@@ -1051,23 +1056,23 @@ teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vw
|
|
|
1051
1056
|
teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
|
|
1052
1057
|
teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
|
|
1053
1058
|
teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1054
|
-
teradataml/dataframe/copy_to.py,sha256
|
|
1055
|
-
teradataml/dataframe/data_transfer.py,sha256
|
|
1056
|
-
teradataml/dataframe/dataframe.py,sha256=
|
|
1057
|
-
teradataml/dataframe/dataframe_utils.py,sha256
|
|
1059
|
+
teradataml/dataframe/copy_to.py,sha256=-8LTxPc-3uRcrSAghp55B8GK6rUTXc_-l5UZw27wwGA,76785
|
|
1060
|
+
teradataml/dataframe/data_transfer.py,sha256=dZW0NmzZJ5QDSGY3BcDoQtuTINwjFf1jK_ZMDowSh8Y,124413
|
|
1061
|
+
teradataml/dataframe/dataframe.py,sha256=A7zQjszbHZmhGrWRAmPNjlK_Wp1tqhCnGCuZgRV89Xw,995741
|
|
1062
|
+
teradataml/dataframe/dataframe_utils.py,sha256=-L7Hq35Fd1WHJTe1wvEIPhC0eu1v2ZiOwnlNqIr-yXo,94226
|
|
1058
1063
|
teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
|
|
1059
|
-
teradataml/dataframe/functions.py,sha256=
|
|
1064
|
+
teradataml/dataframe/functions.py,sha256=t-ua7_PNe_X2jNo2p2FGMvbp2DlC4CLuV_PQPq4N04Q,39954
|
|
1060
1065
|
teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
|
|
1061
1066
|
teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
|
|
1062
|
-
teradataml/dataframe/setop.py,sha256=
|
|
1063
|
-
teradataml/dataframe/sql.py,sha256=
|
|
1067
|
+
teradataml/dataframe/setop.py,sha256=lgXCXZ8ACAAHIzf0YDws31Ydzdl9b9xcZYLeziSRPu0,57203
|
|
1068
|
+
teradataml/dataframe/sql.py,sha256=1a6KNHJ8K8JSnWpN5Xb8VhOyGaj7ZDUF3aFYEDPUfYQ,645455
|
|
1064
1069
|
teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
|
|
1065
1070
|
teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
|
|
1066
1071
|
teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
|
|
1067
1072
|
teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
|
|
1068
1073
|
teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
|
|
1069
1074
|
teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
|
|
1070
|
-
teradataml/dbutils/dbutils.py,sha256=
|
|
1075
|
+
teradataml/dbutils/dbutils.py,sha256=yG1pdoKV33vklTBICElPuHmnwCxDqnnu4IVh-q8bgzQ,97027
|
|
1071
1076
|
teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
|
|
1072
1077
|
teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
|
|
1073
1078
|
teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
|
|
@@ -1076,44 +1081,43 @@ teradataml/geospatial/geodataframe.py,sha256=0PKZeIr7LNA-zQffezYuqYpuxPf_caB3ue9
|
|
|
1076
1081
|
teradataml/geospatial/geodataframecolumn.py,sha256=znNHkjpbOoS3a8xrYS2Q0ou4-hhm0rZOjrBXRCU2-ng,16325
|
|
1077
1082
|
teradataml/geospatial/geometry_types.py,sha256=hUKAUluD8ufvXaLY1-cwnsB3RsFkHR8Wr7eVE4YCtoU,38518
|
|
1078
1083
|
teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDiGlepkgm5oyKqpY,80
|
|
1079
|
-
teradataml/hyperparameter_tuner/optimizer.py,sha256=
|
|
1084
|
+
teradataml/hyperparameter_tuner/optimizer.py,sha256=TOm7bTFuHoLz5yRDxFw5FJvuFpiCdrRxMmcTq-QBzks,198688
|
|
1080
1085
|
teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
|
|
1081
1086
|
teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1082
1087
|
teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
|
|
1083
1088
|
teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
|
|
1084
1089
|
teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
|
|
1085
1090
|
teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
|
|
1086
|
-
teradataml/opensource/
|
|
1087
|
-
teradataml/opensource/
|
|
1088
|
-
teradataml/opensource/
|
|
1089
|
-
teradataml/opensource/
|
|
1090
|
-
teradataml/opensource/
|
|
1091
|
-
teradataml/opensource/
|
|
1092
|
-
teradataml/options/__init__.py,sha256=
|
|
1093
|
-
teradataml/options/configure.py,sha256=
|
|
1094
|
-
teradataml/options/display.py,sha256=
|
|
1091
|
+
teradataml/opensource/_base.py,sha256=G1HKMrqAl7hMRJFLm675nartG6g9V7u-zKtbYRx4yfE,71935
|
|
1092
|
+
teradataml/opensource/_class.py,sha256=6Qo0pu2_Y0SK8RN9PistIFRCP1_q3fEsXRL0ZJSYo6I,18463
|
|
1093
|
+
teradataml/opensource/_constants.py,sha256=pAqYmkh6dQD9DXr4pdlZ5FOk78wXLUdyGaupL-oumCE,3083
|
|
1094
|
+
teradataml/opensource/_lightgbm.py,sha256=CkQqy3dkORIFPH_qKP3LiMBvJ9MvUIcDJP_ut-PhRSE,49321
|
|
1095
|
+
teradataml/opensource/_sklearn.py,sha256=UAV3A8xL8aDkiqPP6IMfRN0AmH3i6m1T3xxNShlpS_s,50537
|
|
1096
|
+
teradataml/opensource/_wrapper_utils.py,sha256=7xsCNjy7flVvxpyhp7vMzBUXJdkdPWj5TnpPjtkVXeY,12122
|
|
1097
|
+
teradataml/options/__init__.py,sha256=avSPE90damRcMHIRUxbarQ3CdFO8Vs8Jcon3EG8R32k,6587
|
|
1098
|
+
teradataml/options/configure.py,sha256=F-QeLJxeImUCZEkRw1WQN38S5Yh2a5aim4w7bx52ggE,25782
|
|
1099
|
+
teradataml/options/display.py,sha256=vLEHfN7ZvqqTUrGuRXnEjy6a7pgtSmU-dcnu5jXMCJc,8482
|
|
1095
1100
|
teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
|
|
1096
|
-
teradataml/plot/axis.py,sha256=
|
|
1101
|
+
teradataml/plot/axis.py,sha256=atxWOVq1ebSBTHz2QPwh5fqq9EFEJeMl2VR-rXSq_G4,55486
|
|
1097
1102
|
teradataml/plot/constants.py,sha256=9EJr_lUlTf77tq30tZSnwgAuk8elzjqAQLsgjXLiYdY,275
|
|
1098
|
-
teradataml/plot/figure.py,sha256=
|
|
1099
|
-
teradataml/plot/plot.py,sha256=
|
|
1103
|
+
teradataml/plot/figure.py,sha256=aWqABKdtdJ0awymC0i4fa310mrs6dnTG2ofKGLI-E8E,13223
|
|
1104
|
+
teradataml/plot/plot.py,sha256=3gnC6rtrLxhV9wY5Tfejqx-DvxDFzPW3m8_bYTmcFdg,32450
|
|
1100
1105
|
teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
|
|
1101
1106
|
teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
|
|
1102
|
-
teradataml/scriptmgmt/UserEnv.py,sha256=
|
|
1107
|
+
teradataml/scriptmgmt/UserEnv.py,sha256=DqUI_YwjucCMV-OkzOkBJ85XpbvW5nBw29f0UFcnmGo,177051
|
|
1103
1108
|
teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
|
|
1104
|
-
teradataml/scriptmgmt/lls_utils.py,sha256=
|
|
1109
|
+
teradataml/scriptmgmt/lls_utils.py,sha256=m5RMdUblfzLJK6wKNXCce0S-r2o8Lfzal8xlK37KKo4,79557
|
|
1105
1110
|
teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1106
1111
|
teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
|
|
1107
1112
|
teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
|
|
1108
|
-
teradataml/store/__init__.py,sha256=
|
|
1113
|
+
teradataml/store/__init__.py,sha256=S68oRuSjcJz9oWqd12UMGJ0BMd4XkIdHcWPRMWFVwdw,413
|
|
1109
1114
|
teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1110
1115
|
teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
|
|
1111
|
-
teradataml/store/feature_store/feature_store.py,sha256=
|
|
1116
|
+
teradataml/store/feature_store/feature_store.py,sha256=XD4kJoVkYTNgk46-jzA344rRJjhdJcMIV182MQC00JQ,91058
|
|
1112
1117
|
teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
|
|
1113
|
-
teradataml/
|
|
1114
|
-
teradataml/table_operators/
|
|
1115
|
-
teradataml/table_operators/
|
|
1116
|
-
teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
|
|
1118
|
+
teradataml/table_operators/Apply.py,sha256=F_QxGwbU2flfc--UdjQVDeOHDUm0SCVh5p_XzhOMnrw,43520
|
|
1119
|
+
teradataml/table_operators/Script.py,sha256=D74DFLq7wgQ-156oMMrO2oKS8N0tjzIMQQTCdk0MdsI,77374
|
|
1120
|
+
teradataml/table_operators/TableOperator.py,sha256=yKn0XLtQwhjs1cdDG0IM4ZLEZBO9sRn_vBE_RTIIoKg,77099
|
|
1117
1121
|
teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
|
|
1118
1122
|
teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
|
|
1119
1123
|
teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
|
|
@@ -1127,13 +1131,13 @@ teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1
|
|
|
1127
1131
|
teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1128
1132
|
teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
|
|
1129
1133
|
teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
1130
|
-
teradataml/utils/dtypes.py,sha256=
|
|
1131
|
-
teradataml/utils/internal_buffer.py,sha256=
|
|
1134
|
+
teradataml/utils/dtypes.py,sha256=KMza-R4l-BO-kwGBkUmpr6mc3ndAYQyxDzFttq1c3mA,27928
|
|
1135
|
+
teradataml/utils/internal_buffer.py,sha256=1_8PT_PDX2UHl_Sv1jKX9uPaAJG_qku65glPqjjhBWI,2490
|
|
1132
1136
|
teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
|
|
1133
1137
|
teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
|
|
1134
|
-
teradataml/utils/validators.py,sha256=
|
|
1135
|
-
teradataml-20.0.0.
|
|
1136
|
-
teradataml-20.0.0.
|
|
1137
|
-
teradataml-20.0.0.
|
|
1138
|
-
teradataml-20.0.0.
|
|
1139
|
-
teradataml-20.0.0.
|
|
1138
|
+
teradataml/utils/validators.py,sha256=f904i2BGSv28tBbM_npJGBGfkCUrcB9BhyjAmEwcXAU,95769
|
|
1139
|
+
teradataml-20.0.0.4.dist-info/METADATA,sha256=eWOaQPAiVrnU0KoJGqPsVhbsIN7nT2JKesxCmM3kQCs,129861
|
|
1140
|
+
teradataml-20.0.0.4.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
|
|
1141
|
+
teradataml-20.0.0.4.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
|
|
1142
|
+
teradataml-20.0.0.4.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
|
|
1143
|
+
teradataml-20.0.0.4.dist-info/RECORD,,
|
|
Binary file
|
teradataml/libaed_0_1.dylib
DELETED
|
Binary file
|
teradataml/libaed_0_1.so
DELETED
|
Binary file
|
|
File without changes
|