teradataml 20.0.0.2__py3-none-any.whl → 20.0.0.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of teradataml might be problematic. Click here for more details.

Files changed (88) hide show
  1. teradataml/LICENSE-3RD-PARTY.pdf +0 -0
  2. teradataml/README.md +196 -2
  3. teradataml/__init__.py +4 -0
  4. teradataml/_version.py +1 -1
  5. teradataml/analytics/analytic_function_executor.py +79 -4
  6. teradataml/analytics/json_parser/metadata.py +12 -3
  7. teradataml/analytics/json_parser/utils.py +7 -2
  8. teradataml/analytics/sqle/__init__.py +1 -0
  9. teradataml/analytics/table_operator/__init__.py +1 -1
  10. teradataml/analytics/uaf/__init__.py +1 -1
  11. teradataml/analytics/utils.py +4 -0
  12. teradataml/automl/data_preparation.py +3 -2
  13. teradataml/automl/feature_engineering.py +15 -7
  14. teradataml/automl/model_training.py +39 -33
  15. teradataml/common/__init__.py +2 -1
  16. teradataml/common/constants.py +35 -0
  17. teradataml/common/garbagecollector.py +2 -1
  18. teradataml/common/messagecodes.py +8 -2
  19. teradataml/common/messages.py +3 -1
  20. teradataml/common/sqlbundle.py +25 -3
  21. teradataml/common/utils.py +134 -9
  22. teradataml/context/context.py +20 -10
  23. teradataml/data/SQL_Fundamentals.pdf +0 -0
  24. teradataml/data/dataframe_example.json +18 -2
  25. teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py +1 -1
  26. teradataml/data/docs/sqle/docs_17_20/Shap.py +7 -1
  27. teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py +4 -4
  28. teradataml/data/docs/sqle/docs_17_20/TextParser.py +3 -3
  29. teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py +118 -0
  30. teradataml/data/docs/uaf/docs_17_20/CopyArt.py +145 -0
  31. teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py +18 -21
  32. teradataml/data/jsons/sqle/17.20/TD_TextParser.json +1 -1
  33. teradataml/data/jsons/sqle/20.00/TD_KMeans.json +250 -0
  34. teradataml/data/jsons/sqle/20.00/TD_SMOTE.json +266 -0
  35. teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json +278 -0
  36. teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json +71 -0
  37. teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json +53 -0
  38. teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json +10 -19
  39. teradataml/data/jsons/uaf/17.20/TD_SAX.json +3 -1
  40. teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json +15 -5
  41. teradataml/data/medical_readings.csv +101 -0
  42. teradataml/data/patient_profile.csv +101 -0
  43. teradataml/data/scripts/lightgbm/dataset.template +157 -0
  44. teradataml/data/scripts/lightgbm/lightgbm_class_functions.template +247 -0
  45. teradataml/data/scripts/lightgbm/lightgbm_function.template +216 -0
  46. teradataml/data/scripts/lightgbm/lightgbm_sklearn.template +159 -0
  47. teradataml/data/scripts/sklearn/sklearn_fit.py +194 -167
  48. teradataml/data/scripts/sklearn/sklearn_fit_predict.py +136 -115
  49. teradataml/data/scripts/sklearn/sklearn_function.template +14 -19
  50. teradataml/data/scripts/sklearn/sklearn_model_selection_split.py +155 -137
  51. teradataml/data/scripts/sklearn/sklearn_transform.py +129 -42
  52. teradataml/data/target_udt_data.csv +8 -0
  53. teradataml/data/templates/open_source_ml.json +3 -2
  54. teradataml/data/vectordistance_example.json +4 -0
  55. teradataml/dataframe/dataframe.py +543 -175
  56. teradataml/dataframe/functions.py +553 -25
  57. teradataml/dataframe/sql.py +184 -15
  58. teradataml/dbutils/dbutils.py +556 -18
  59. teradataml/dbutils/filemgr.py +48 -1
  60. teradataml/lib/aed_0_1.dll +0 -0
  61. teradataml/opensource/__init__.py +1 -1
  62. teradataml/opensource/{sklearn/_class.py → _class.py} +102 -17
  63. teradataml/opensource/_lightgbm.py +950 -0
  64. teradataml/opensource/{sklearn/_wrapper_utils.py → _wrapper_utils.py} +1 -2
  65. teradataml/opensource/{sklearn/constants.py → constants.py} +13 -10
  66. teradataml/opensource/sklearn/__init__.py +0 -1
  67. teradataml/opensource/sklearn/_sklearn_wrapper.py +798 -438
  68. teradataml/options/__init__.py +7 -23
  69. teradataml/options/configure.py +29 -3
  70. teradataml/scriptmgmt/UserEnv.py +3 -3
  71. teradataml/scriptmgmt/lls_utils.py +74 -21
  72. teradataml/store/__init__.py +13 -0
  73. teradataml/store/feature_store/__init__.py +0 -0
  74. teradataml/store/feature_store/constants.py +291 -0
  75. teradataml/store/feature_store/feature_store.py +2223 -0
  76. teradataml/store/feature_store/models.py +1505 -0
  77. teradataml/store/vector_store/__init__.py +1586 -0
  78. teradataml/table_operators/query_generator.py +3 -0
  79. teradataml/table_operators/table_operator_query_generator.py +3 -1
  80. teradataml/table_operators/table_operator_util.py +37 -38
  81. teradataml/table_operators/templates/dataframe_register.template +69 -0
  82. teradataml/utils/dtypes.py +4 -2
  83. teradataml/utils/validators.py +33 -1
  84. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.3.dist-info}/METADATA +200 -5
  85. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.3.dist-info}/RECORD +88 -65
  86. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.3.dist-info}/WHEEL +0 -0
  87. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.3.dist-info}/top_level.txt +0 -0
  88. {teradataml-20.0.0.2.dist-info → teradataml-20.0.0.3.dist-info}/zip-safe +0 -0
@@ -1,16 +1,16 @@
1
- teradataml/LICENSE-3RD-PARTY.pdf,sha256=ZrYd86rv7qc83E7xa9HC7VegF6OXJVwi6MBTEiB32kk,310854
1
+ teradataml/LICENSE-3RD-PARTY.pdf,sha256=LMHCf0oAp5qfkJ2sLByXp_C7gO1ztBXXc0fLhFymAOE,319845
2
2
  teradataml/LICENSE.pdf,sha256=h9PSzKiUlTczm4oaa7dy83SO95nZRL11fAR4N1zsOzo,184254
3
- teradataml/README.md,sha256=1NuzbWZ9MHJ1_DyMH9_BIxMX5oW0eZ00wRa91ZTPNN4,112181
4
- teradataml/__init__.py,sha256=HsXN5xaEH4P--Crk_dgtwo55qYY5EXoySjCbLSEiwPc,2632
5
- teradataml/_version.py,sha256=ZFq5pHkj5kWUor01Hz7Xd_FEpIzt9XX1NetOr7Idj2M,364
3
+ teradataml/README.md,sha256=5n0NVRuMR7tyh85y8vr3zplZyjsNguPZf2U8SJu2nKw,122093
4
+ teradataml/__init__.py,sha256=Kf9kqZkiq48LNHkFk9xcY3ixXc6-Ll4leJFGmR6xbZg,2707
5
+ teradataml/_version.py,sha256=ud4XhZmc6XmseduxRAFPT0dYSNfbvg4ZW-1wB_TYR7k,364
6
6
  teradataml/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
7
7
  teradataml/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
8
8
  teradataml/analytics/Transformations.py,sha256=5Ts7lqCSiO3LCi4xc3bA3D3FksODPJXAhxoyryf66js,149487
9
9
  teradataml/analytics/__init__.py,sha256=DnTOi9QlFJ-P20n2LbL2waKp76uL9KWE6w__6KG8m1I,3046
10
- teradataml/analytics/analytic_function_executor.py,sha256=rIlvKzI2eFlWLqnv-_-DAyOzrvwRyQ0UNbjRenNgsVA,102419
10
+ teradataml/analytics/analytic_function_executor.py,sha256=9n18PxyQocRyDeVLc0OYw_7ak07goue3nMDHX-Kncs4,106505
11
11
  teradataml/analytics/analytic_query_generator.py,sha256=Si1lhWEhfa7Q4j3TZaD904lM3MumIsX3F3N9oysCkY0,45915
12
12
  teradataml/analytics/meta_class.py,sha256=YRsFEvwv8S73boaG8W85altpJTOoRz9Wk7YTplm6z9M,8427
13
- teradataml/analytics/utils.py,sha256=yjfWYtj08kJ99bAL1WNsU5J7riioZrwH6YaNiSfywXU,30731
13
+ teradataml/analytics/utils.py,sha256=aDcopiSu0kvwAVzPspFvtSVg6RT8dxJ-qcuFxgxQAsc,31046
14
14
  teradataml/analytics/valib.py,sha256=YR3Md9DYrPOMS7-GnOfcmdODuB3fTis-bGVbAfU4978,73587
15
15
  teradataml/analytics/byom/H2OPredict.py,sha256=S69BUkxG8Dr2pgzDAqYVIl2Wupf0eXdmW46i3hHNJp4,25128
16
16
  teradataml/analytics/byom/PMMLPredict.py,sha256=TCxQinbQ50ZHrL-8teN-gRpXf93JnQSekHi33Y618Eo,20269
@@ -18,23 +18,23 @@ teradataml/analytics/byom/__init__.py,sha256=qN-S7xa8T54xmDsNk4McCVJu3DePqAuR4y3
18
18
  teradataml/analytics/json_parser/__init__.py,sha256=0He6U5ogdUfyOb21DjOosv6QRBc9tu6P-5LJFN1pz5A,4392
19
19
  teradataml/analytics/json_parser/analytic_functions_argument.py,sha256=vpvUB_Vh5lSohIMTFf8TiQFIEq7YTgJTQbpk-L8tLvw,65703
20
20
  teradataml/analytics/json_parser/json_store.py,sha256=snwrJzvXzYBw3Xot6IRMsC7RtxBgxTq4eeXBeD9-Pps,7175
21
- teradataml/analytics/json_parser/metadata.py,sha256=LsbmSkOo6ubKVs60B9cwrZHouOkvejTWd3dbDgHWOXA,74371
22
- teradataml/analytics/json_parser/utils.py,sha256=3Uy5LccVzWdlGkTKuSmvfh6aB0Mm-DX6xAMEUYwwtiI,33450
21
+ teradataml/analytics/json_parser/metadata.py,sha256=09D3SdeYZh8VdJi17Ri_cYmq97puXdq8ACVMYWUUatk,74938
22
+ teradataml/analytics/json_parser/utils.py,sha256=EdhCRUdWW6_mvLsj-gHxrDuNcQY6kOT5CT2txkbsUsE,33977
23
23
  teradataml/analytics/sqle/DecisionTreePredict.py,sha256=gacMEgCbKPsLcrzpdiegBB5ySa_wsQvYouLEqp7eshk,22289
24
24
  teradataml/analytics/sqle/NaiveBayesPredict.py,sha256=uPw3srh5U_I4lhOZQY1KQnaTcBy0LqH-6nika9M_Y8o,19508
25
- teradataml/analytics/sqle/__init__.py,sha256=qNbIurro1KkEljSI_jFDq3tp9HaPYb385XhyQdzwdiI,4166
25
+ teradataml/analytics/sqle/__init__.py,sha256=xyuXkW1fc3N6yjxj5PMUBD-FsySdSpOIKY6A9IEyxLg,4194
26
26
  teradataml/analytics/sqle/json/decisiontreepredict_sqle.json,sha256=rQ9nB-IE7FgWEZH6KY1MxxbhWT9n1kRPuZCqEL5-R5Y,2196
27
27
  teradataml/analytics/sqle/json/naivebayespredict_sqle.json,sha256=ehvbAugEnH73nUxdJqfOfzWL70zIc_oIWfdgEOnpO7Y,1683
28
- teradataml/analytics/table_operator/__init__.py,sha256=KqQAvD_soft-xTDe_EBraPppWfwB4X0CNvPuq3Qwc0U,529
29
- teradataml/analytics/uaf/__init__.py,sha256=M3wSKuyn5M5TmUfv0nOX28j4d5K5PrldH-FoYPbf20o,3017
28
+ teradataml/analytics/table_operator/__init__.py,sha256=OBxjuKXWlwhCw2lowtl2VfRGwS729Y4rbZkmRt2Mp8o,545
29
+ teradataml/analytics/uaf/__init__.py,sha256=Esh1vLn8CUOWPAMlqv0JUHGzNdj3l1I9RDlOI9lNXc8,3028
30
30
  teradataml/automl/__init__.py,sha256=juaGQuSeWZH0qJdXLMrZ4bx5btaGrMij2rSKu5Ev4MQ,134808
31
31
  teradataml/automl/custom_json_utils.py,sha256=LRcORPatvV15fGbDcp8tQWcEiIZYnK7SakATy5QUVyM,66780
32
- teradataml/automl/data_preparation.py,sha256=2vqxsC-88OWenbmO8oU3KblK6X40fuRvRbLPI68H3Zw,41697
32
+ teradataml/automl/data_preparation.py,sha256=N2BJ8cAYkQGFxZQ-D-fhsG6wx8saPWU3LCPwah-KXOg,41712
33
33
  teradataml/automl/data_transformation.py,sha256=jFanI9bKUcMWDvCTqfhJYaxbol6ipFDJD2KhP5HbJU8,42784
34
- teradataml/automl/feature_engineering.py,sha256=_zh_NZA-c9AMtaZOEnFRNJX6wJtzv-E5ypID_UO5p5A,94526
34
+ teradataml/automl/feature_engineering.py,sha256=lATEWrbziHfg-n-NPkUt81Pw6QHlwNy4eZpA5WDFhL8,94803
35
35
  teradataml/automl/feature_exploration.py,sha256=mlxXUnx0EyePxYChAutKg1KZTNVJgGBM7hwXp64BINc,21986
36
36
  teradataml/automl/model_evaluation.py,sha256=A_j7hiw4DRrsGOAcfUZV5ejjJ0Hs2eYNpxpisTKBhoc,5867
37
- teradataml/automl/model_training.py,sha256=vfHK03Eujw3J3XTadKx1-MGkyZH7MvS_9_hwKdstTpM,41791
37
+ teradataml/automl/model_training.py,sha256=oygbUYZjUr6fqbjDxJUR0qzgN_qeUhjop0hVunGnowc,42108
38
38
  teradataml/catalog/__init__.py,sha256=JmX5fC634ewbSyYy24rsTIk9mg9gSIMFTc15coJKTWQ,134
39
39
  teradataml/catalog/byom.py,sha256=6sZ-lyOr65XGmDcJo1SHogXmoSvCFooFOKeAIN8JUms,99687
40
40
  teradataml/catalog/function_argument_mapper.py,sha256=fTu0YrTb4ZgbcFmw15H-G7I8iln_QRImy38BhXsph34,40018
@@ -42,20 +42,20 @@ teradataml/catalog/model_cataloging_utils.py,sha256=g6S6kwkE87c1rd02YAWIQ-u2z9Oh
42
42
  teradataml/clients/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
43
  teradataml/clients/auth_client.py,sha256=G_abYn8Y4Y6JAW4tEzWQ14OBI3Vi7JdauD9CRrAp4Bo,3981
44
44
  teradataml/clients/pkce_client.py,sha256=m7FYwfMf_xTP7-L4_wFLQdWWpO4sTEEIyZCZSHJVjkA,16604
45
- teradataml/common/__init__.py,sha256=KeFSq3wtcYMpZEFepWsgC7e9ocmmsv6WSrDosIviAVY,52
45
+ teradataml/common/__init__.py,sha256=8x9tqa-EYdQtO9JHpAwrtSFApkJVjq29kvH6pRgJWoo,112
46
46
  teradataml/common/aed_utils.py,sha256=oMxLrtf5M2LVd5Xrm9hLkistQ9QFs5Uxki1omAmW3RA,106195
47
47
  teradataml/common/bulk_exposed_utils.py,sha256=tV5xvysJAXibUIm8AyzV4cE4USQFe7Eubhyl9m4ZiJY,4622
48
- teradataml/common/constants.py,sha256=P0UoGBaDnVJ_qDLLQ58rDohIXSkY5WQ0Z66pRHzyW78,59611
48
+ teradataml/common/constants.py,sha256=qZGlF8C9KfjdeG6pvoY0YDXW6wbF8FX44zcBF7HhyQg,61463
49
49
  teradataml/common/deprecations.py,sha256=-KkDiJe9_08CIvCR4Xbzg3_WPZlJ5rqyKVlfpMhKrk0,6211
50
50
  teradataml/common/exceptions.py,sha256=U3rze_QiIVMPP-2xr4a3Bnz1UQ_mbODC_uwbdBQ46aA,2775
51
51
  teradataml/common/formula.py,sha256=IBBDwllFru21EerpV4v9zjbYCBqILZJy4M-vQnT1yd8,31089
52
- teradataml/common/garbagecollector.py,sha256=DIZjMsDgh57VIbJ6UrSmDSc0cE1manb2_sXplWloljg,28264
53
- teradataml/common/messagecodes.py,sha256=kHzLAUROzdyXojkn9pWsqgL3XeAZ4u_xZ9FboiqGTvo,28583
54
- teradataml/common/messages.py,sha256=NJ4biPRlX59quDj1wYNleZZz_lKwa4127DvJmBRj1vw,17728
52
+ teradataml/common/garbagecollector.py,sha256=ebvLmRn-M4dNPJCrTH1l0gccljmcT_gdIId5xaRf6vo,28428
53
+ teradataml/common/messagecodes.py,sha256=aWJ2Vgp485LobYvksJ8KcqMYIAtKxzHsRTX_eTlxA6s,28930
54
+ teradataml/common/messages.py,sha256=kqXjvmfjENQtA3ncA_HtKbmCMn7vDElzQewTY51DbVE,17903
55
55
  teradataml/common/pylogger.py,sha256=8G36wPGbnCVAaabYeimuSuRazwbnX-NhKyZc-a_deJ0,1752
56
- teradataml/common/sqlbundle.py,sha256=z8WohDcoKvknTjDtLVsM16sPHlNdspMDH2WgH7D-gtY,23657
56
+ teradataml/common/sqlbundle.py,sha256=wcA7Kwmv6Hy0tOko-k7zMgRm3qFar8J0EISGQhm6SsM,25217
57
57
  teradataml/common/td_coltype_code_to_tdtype.py,sha256=8RzvJAnC9iHXsCHVVDbPXG3e1ESyZFLVtvw00M1Tj3I,1193
58
- teradataml/common/utils.py,sha256=VOlEYLz_v7cxHthv-5bEeAM_DEJhe9ww3zW7a0InhHE,92376
58
+ teradataml/common/utils.py,sha256=ZsdMOseH2Dzf8o-6U42mnib2vY0FVPUEs8Ae7VfkgJo,96439
59
59
  teradataml/common/warnings.py,sha256=Dg36oFozNTFFV1yUlWSoJnkRdABGERJVhkmVzlJJdWo,721
60
60
  teradataml/common/wrapper_utils.py,sha256=f2DxS-FqgEqbAJbHpOtKD4wU7GLj2XSX_d3xWNn9VvM,27843
61
61
  teradataml/config/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -66,7 +66,7 @@ teradataml/config/sqlengine_alias_definitions_v1.1,sha256=iHEB832KDSO0DdugW8Mivh
66
66
  teradataml/config/sqlengine_alias_definitions_v1.3,sha256=pCt661hEVA_YM_i4WL69DwwD1wKm_A4uzqHqwzRf0bo,534
67
67
  teradataml/context/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  teradataml/context/aed_context.py,sha256=qNCX27R8KxJ3LScU9wXQzos1Gm78Cv0ahVdwSg5iq6Y,7578
69
- teradataml/context/context.py,sha256=MqaQLkKnbkquUatAfgNyWeuTSPTfuslyeZJmLOKv1Xw,45345
69
+ teradataml/context/context.py,sha256=Nzc9viYF8v9tY-bcFbkofaobHfz0U8d-kKLvah2trTc,45759
70
70
  teradataml/data/A_loan.csv,sha256=HFfTfH1cC-xh4yiYGddaoiB0hHG17pWKbmySolOLdoc,584
71
71
  teradataml/data/BINARY_REALS_LEFT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
72
72
  teradataml/data/BINARY_REALS_RIGHT.csv,sha256=LW8o1jCKyUv9UFM3E5WbRMDYPQfwkFMZtifDAf9cp30,416
@@ -82,6 +82,7 @@ teradataml/data/DFFTConv_Real_8_8.csv,sha256=IKpOjDob6Hp7j8I5klHvN-GLTirahB4mOEm
82
82
  teradataml/data/Orders1_12mf.csv,sha256=YpBMpVutv0H7uEaagw7zsb-8KRMMbKi2e-TbztNlpfk,312
83
83
  teradataml/data/Pi_loan.csv,sha256=7-kKbP69zD3W0GwpkSE39ZPFCQTbCrxsmDCt5QPdZSY,191
84
84
  teradataml/data/SMOOTHED_DATA.csv,sha256=jYD3ps_XSKCFAWEjVjB6Yv-r_IpTIlpZB_bcaC8OUYE,117
85
+ teradataml/data/SQL_Fundamentals.pdf,sha256=N9dplUEwi-Eqd7LNXeC-j4T6CsOR6wxqzjSSOYUBmsA,980617
85
86
  teradataml/data/TestDFFT8.csv,sha256=pdob7s4-lD0WMsO9vk3UGyEpngufGRsqeN_wa5cMUVU,122
86
87
  teradataml/data/TestRiver.csv,sha256=Mv2Np9eAIRd_-ux5kKSprAa0tqFOQS6c3P7sIhDzl6I,1633
87
88
  teradataml/data/Traindata.csv,sha256=Hyv67nz4DvUK6JraIL_XFDl7XyHlOcIpZLdOtRwh79U,3329
@@ -184,7 +185,7 @@ teradataml/data/customer_loyalty.csv,sha256=Z5YW-Apil6Xz6MgTS12kxJYptQXo5dLH84vf
184
185
  teradataml/data/customer_loyalty_newseq.csv,sha256=ufn_bjCqWoLaZ5l0ZSVAdWfboinduvc4L5jwiGxZAFc,805
185
186
  teradataml/data/customer_segmentation_test.csv,sha256=8iaPDIFgn249mytmwxOi8cU_FnzRo0EtaRV_SXrxmP4,125982
186
187
  teradataml/data/customer_segmentation_train.csv,sha256=U4aGWbqHv2vOfPVMT1ga4FjMj--Mdlp2CZAyLMUERsE,403494
187
- teradataml/data/dataframe_example.json,sha256=gEPGGnR6qpx-b25-L0qwFl8Vjn1ldXDSc_SvVpTRMeE,4244
188
+ teradataml/data/dataframe_example.json,sha256=JqOAAv-v-GDu4Z0MTxK4dJG51pECvJtS0Gt51x6jVWw,4707
188
189
  teradataml/data/decisionforest_example.json,sha256=USwkJRLKXN-OFixZto9gkmh8RVlnD7Pug_XkwxiSgPQ,1188
189
190
  teradataml/data/decisionforestpredict_example.json,sha256=uuvBRtE4Ftc2UbMCfJtTbXXyjd16PqbX2J4SfqC7INA,1364
190
191
  teradataml/data/decisiontree_example.json,sha256=6DLmN9BeqnR1-4GlZJz1DlBGW4wwsBNASLno9j22fzs,560
@@ -299,6 +300,7 @@ teradataml/data/load_example_data.py,sha256=6fEDd5l87SfzAy6clQTwBM7PkNYhjaiY8-2X
299
300
  teradataml/data/loan_prediction.csv,sha256=lEXZzLSKXaZbdpaQgYVBwcMa3-r5S8OemwMsQoD89rc,4591
300
301
  teradataml/data/lungcancer.csv,sha256=ek_VkMKU2EbttSTjXzcwzGs47jcW-o_QHhjJbKhqFfY,5873
301
302
  teradataml/data/mappingdata.csv,sha256=hYsq_JLXcCjyEHx577POhxdvScQ_ynKUlcnTJiAjPeg,84
303
+ teradataml/data/medical_readings.csv,sha256=VuKNn9bvFM4uYZ_h8RvUYIsV2lYa6FZhHkOnwlTrCnc,4219
302
304
  teradataml/data/milk_timeseries.csv,sha256=U0woD3Bs4myyFbYdUtlKNcomLAo45iSIJ0D44JyR74w,3498
303
305
  teradataml/data/min_max_titanic.csv,sha256=wu7CXqLRfp3SBKT4foFjFHqZLm6nO-C13Le6gWmQlXU,88
304
306
  teradataml/data/minhash_example.json,sha256=KKjXit6ed08c38FQ4oisD9_gW5xPzt_QHD_b6NPbuVE,87
@@ -358,6 +360,7 @@ teradataml/data/pagerank_example.json,sha256=1DhseHJJhzxjyE6hukmBVyXkEN6EVNO3K1w
358
360
  teradataml/data/paragraphs_input.csv,sha256=_9owa9OoNgqLR1QhGnAIcCu6txVUwdzZSMj-EujTvNk,3000
359
361
  teradataml/data/pathanalyzer_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
360
362
  teradataml/data/pathgenerator_example.json,sha256=AiiJxKnvF4Q536y1-6kdr6ZcfxtQqMERTHiEn1nxebM,138
363
+ teradataml/data/patient_profile.csv,sha256=TwZzE3TII362SjT_1yMfscZnkJ6gK6hvy7k3KyUfigg,3729
361
364
  teradataml/data/peppers.png,sha256=imrSYKQni781u4YSajHlrS9qVM7NRMtkB6buXYb_PjU,732014
362
365
  teradataml/data/phrases.csv,sha256=CX_QEgAX37IUVKf8ctD6uNkG4bixeH0Tn1LM0nCEco0,110
363
366
  teradataml/data/pivot_example.json,sha256=ZHd3QFtx0yXPZm7fIfss8SsyZU5-mTG40Wv1Qliln5M,165
@@ -445,6 +448,7 @@ teradataml/data/svmsparsepredict_example.json,sha256=4ZI9vcMSC4gdL8pyeB29wm3WOZU
445
448
  teradataml/data/svmsparsesummary_example.json,sha256=bOqLVJnyyCJTSY2hdxG6DRAsGRzBCOjMBHmv6_TLGCw,156
446
449
  teradataml/data/target_mobile_data.csv,sha256=FBT4cAV5zHloVOCR9cKZx3JFyv4OC5vlqrJoClQQ-4c,316
447
450
  teradataml/data/target_mobile_data_dense.csv,sha256=HIeUmij5i2pSUA6TaxLl2oNjwWnlshWB0vu0AouTQmw,122
451
+ teradataml/data/target_udt_data.csv,sha256=BRiHn4P68J1Pyh9MvTmxtKe0eEze-EUuBVYMV228JqY,141
448
452
  teradataml/data/templatedata.csv,sha256=_NYyMgobQ0-oIjZhIUcv16iOM4EtajZ4mKOrx39cfDY,22391
449
453
  teradataml/data/teradata_icon.ico,sha256=M4qHNiblJAmGmYqsy9bD5xSP83ePf6089KdFuoQhaFM,1150
450
454
  teradataml/data/teradataml_example.json,sha256=-yi0pDmv41RheeShirk0k1WC624ra4-2SMTzWyqEp4o,41742
@@ -494,7 +498,7 @@ teradataml/data/us_air_pass.csv,sha256=LdhRm7SOl573NEP8jJYaB4d44lBhfsDO1vXw8SLSt
494
498
  teradataml/data/us_population.csv,sha256=KcNP7DOv-X3qvQ2tg2yz154FYPg5xeVFyQ-nG15aT4M,18420
495
499
  teradataml/data/us_states_shapes.csv,sha256=Uk75jUs3LV9B3Hy_fgQ3N_ql0e1GcrCqjdTEVqSNCIA,86308
496
500
  teradataml/data/varmax_example.json,sha256=g1x_2iIncL6OAE1DVvI65J822swD4HXPAbzZfCZ9WPs,429
497
- teradataml/data/vectordistance_example.json,sha256=tG87HwgTSyUXOLdNOfWJExrSMIhtpm6c4T39X_Od_mw,585
501
+ teradataml/data/vectordistance_example.json,sha256=1E5xNeC7lQWScf_HP6Nj_DMPH23U-aHHBzhQqhRnomc,665
498
502
  teradataml/data/ville_climatedata.csv,sha256=Fkltl7-Ia9GeI3gPgFgKhQ-hyubf8miJPW2dZex9MX8,7231
499
503
  teradataml/data/ville_tempdata.csv,sha256=7kmSNztvrPx_j4_nX0-r3_d7YF0c7AWFmkmAhpQyWNs,355
500
504
  teradataml/data/ville_tempdata1.csv,sha256=YK3_E1cQh4s3CKq-8lyXSJ58HEsBuCt4WwOzcV-V2lo,335
@@ -604,7 +608,7 @@ teradataml/data/docs/sqle/docs_17_20/KNN.py,sha256=qsTD6BbQ7UFTS5WtnV_-ZBBvLVqMd
604
608
  teradataml/data/docs/sqle/docs_17_20/MovingAverage.py,sha256=DSbxNLB1OpnYgS_6v_MVAJDxtS49UtGIcOrOzUVhbus,5738
605
609
  teradataml/data/docs/sqle/docs_17_20/NGramSplitter.py,sha256=bgJbAsi36ymoqWmAlxaZAz0aLM7KnGubriSxgIhrW2U,9358
606
610
  teradataml/data/docs/sqle/docs_17_20/NPath.py,sha256=CBof2pQwE0tXJRLYxPruimIyOd6nEnwj6f8r1SpTys8,13931
607
- teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=TS-sJeSR3cWwXWhSwTaPBNF-QSDEtPTQ_hbIGGsqWOA,7653
611
+ teradataml/data/docs/sqle/docs_17_20/NaiveBayes.py,sha256=_O_MUZX1qmaZTpAehrdiy5dre3OLoQ0o0yZYFLU8yKA,7665
608
612
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesPredict.py,sha256=9P9iLhGmB3bPvrNZzh2gtWRjZRP8s66NHhzvqLKJuRs,5379
609
613
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierPredict.py,sha256=POgE-rQseF6eUxBisxDJfsrVvWWXWNxZ9Zb10aSCrsA,8157
610
614
  teradataml/data/docs/sqle/docs_17_20/NaiveBayesTextClassifierTrainer.py,sha256=cNW60bF1i_rk-KHgR0p8RmqZqoFujtuCjFv2huZmJGU,5724
@@ -639,7 +643,7 @@ teradataml/data/docs/sqle/docs_17_20/ScaleFit.py,sha256=y67VVIICmcpHfDzftwLnrBCb
639
643
  teradataml/data/docs/sqle/docs_17_20/ScaleTransform.py,sha256=YAUkjAcvU_Dd8l8vKPabFM72yS0Oz8_D8NhK6Qds6qs,9189
640
644
  teradataml/data/docs/sqle/docs_17_20/SentimentExtractor.py,sha256=2Q3kKkkKtHUA7BTl_pUtQnWW-Ij6lNpsEQ2FgUekPwQ,10065
641
645
  teradataml/data/docs/sqle/docs_17_20/Sessionize.py,sha256=g9W05OfIYtvHsn5-IPzurT26-MhC8WzxJtRmN6AABes,4895
642
- teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=u90DmJCuCSOG4nwIRGF1XzL8JApeNlEqOY1Owoa83OQ,8686
646
+ teradataml/data/docs/sqle/docs_17_20/Shap.py,sha256=zUr0JXV1hMhHzm2o7ihHiK9g2qeHC3mI2pW7tMI7o9A,8902
643
647
  teradataml/data/docs/sqle/docs_17_20/Silhouette.py,sha256=odUI2pvYF7dk9gBIhHdquAI_Wy6XzVynveDF33RDTkM,7243
644
648
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeFit.py,sha256=1eHyE7RLjdLY_vSHaaDrt0Ou9b8LYWHDlXHdVRBv-kI,4881
645
649
  teradataml/data/docs/sqle/docs_17_20/SimpleImputeTransform.py,sha256=ZlUVxA_teZnsheh2blnGnq97tKCo-9vie0HLZb3dz7s,4631
@@ -647,11 +651,11 @@ teradataml/data/docs/sqle/docs_17_20/StrApply.py,sha256=ZbYLGiyLJIIqqPCwZ79jHjPS
647
651
  teradataml/data/docs/sqle/docs_17_20/StringSimilarity.py,sha256=J-m4qiPM7BhFP4b3ZaEf-uvwaHzQor-mhp6PSU1C4yk,7576
648
652
  teradataml/data/docs/sqle/docs_17_20/TDDecisionForestPredict.py,sha256=Chb-269nY2d94wY8tw-7uJ3CnV1uoXwzQidBZhncebk,10207
649
653
  teradataml/data/docs/sqle/docs_17_20/TDGLMPredict.py,sha256=OH-hnCDBD0vSCJoPiktwNqfenPt_9RHZxH4BOVOEuv0,15433
650
- teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=PTVf_P88on9r_l92fTpsna3PXrJocSnTEesKf8Ep6pE,9370
654
+ teradataml/data/docs/sqle/docs_17_20/TDNaiveBayesPredict.py,sha256=E68CcMdaXarPSJ7UAHVJORzGS3P--9LoDcOs9pd9Yf8,9402
651
655
  teradataml/data/docs/sqle/docs_17_20/TFIDF.py,sha256=Kjvggu2W2EV3PjA8In1ksyYo4ByA4c-x2hSbVIOj_wU,5797
652
656
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingFit.py,sha256=K_BOaUNA9Zi2XaHC32vMpLbTfA51AieaUR0LMimWflQ,12698
653
657
  teradataml/data/docs/sqle/docs_17_20/TargetEncodingTransform.py,sha256=ga8DeTlJUmszVPBJj_kfASst6aK7Oc1yb46lPSwuoog,6510
654
- teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=FwCdeIrYKkeOUYV3m0e8Z-2z_Zd2b5OsIoALE65DSs8,7559
658
+ teradataml/data/docs/sqle/docs_17_20/TextParser.py,sha256=I419XK5ZhiXQD8vd1GL4v0PJCoKwxABIQALPFQO9VvE,7562
655
659
  teradataml/data/docs/sqle/docs_17_20/TrainTestSplit.py,sha256=WtGPOcE8GdX2BYcaaUQHO_Q15HdUdzzUMeu5ZnEr1Tg,7603
656
660
  teradataml/data/docs/sqle/docs_17_20/Transform.py,sha256=Mm2SYFZpEnJ3nOATDA8ZOxfNz73r7O-N8JsRkeM9c3A,5732
657
661
  teradataml/data/docs/sqle/docs_17_20/UnivariateStatistics.py,sha256=PUPH8k-CRdL5kM6mJ5i7wIadRyJvsP8B4eww39FLGbU,6001
@@ -674,6 +678,7 @@ teradataml/data/docs/tableoperator/docs_17_05/__init__.py,sha256=47DEQpj8HBSa-_T
674
678
  teradataml/data/docs/tableoperator/docs_17_10/ReadNOS.py,sha256=K4BZEoQKBrA0sXlN1gBok_l9DllROzXV6bal71zOZkE,23570
675
679
  teradataml/data/docs/tableoperator/docs_17_10/WriteNOS.py,sha256=uwP3j9tRO38Bc83D4ZFtD-B49gX3xP9yxi4XZNjtgFM,18554
676
680
  teradataml/data/docs/tableoperator/docs_17_10/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
681
+ teradataml/data/docs/tableoperator/docs_17_20/Image2Matrix.py,sha256=mGzV0LYuWIaOk_Iq-QbgTxGphZZFX2b_ekepan_rvPs,4956
677
682
  teradataml/data/docs/tableoperator/docs_17_20/ReadNOS.py,sha256=Kgd6-tAYGKNfD6VLbDDkvsN3ocOOgmnQmAMdUuhYpv8,25369
678
683
  teradataml/data/docs/tableoperator/docs_17_20/WriteNOS.py,sha256=fDnIpFl9RidXamu_qCvgViD0fDplbG4BfBuy-ClXGy8,20423
679
684
  teradataml/data/docs/tableoperator/docs_17_20/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -690,6 +695,7 @@ teradataml/data/docs/uaf/docs_17_20/BreuschGodfrey.py,sha256=xrQZwpNB4RzxujJ4UTu
690
695
  teradataml/data/docs/uaf/docs_17_20/BreuschPaganGodfrey.py,sha256=DF2uVAREW13rSOd2NScIKb1a30LISeFv9CSO_oBk0Xc,7605
691
696
  teradataml/data/docs/uaf/docs_17_20/Convolve.py,sha256=BY8a2hbxw3OW_HP84ITTe5yY0-HlJC3-0Op6p4WTtGs,11093
692
697
  teradataml/data/docs/uaf/docs_17_20/Convolve2.py,sha256=ePINkBVSJ65jB5e-UbhHC7pHLhQXDWFKWoZyfappuN4,10348
698
+ teradataml/data/docs/uaf/docs_17_20/CopyArt.py,sha256=5gbep83z82bJusgpLwIrgax6PqEpCVBsys7IV9uchMI,5728
693
699
  teradataml/data/docs/uaf/docs_17_20/CumulPeriodogram.py,sha256=Fs0NzzzxMtefpWvXMmdTjHlLu_GtVFh-AkOPXkohMb0,8475
694
700
  teradataml/data/docs/uaf/docs_17_20/DFFT.py,sha256=eym9uqsRSR9ne_Tjt9UQUn-X79dZBbddmk1YqFcvm5A,9026
695
701
  teradataml/data/docs/uaf/docs_17_20/DFFT2.py,sha256=x6CvaDd482J0EfM4vCyCEUHbLfd1q3rLubGmY8ZUG6U,9662
@@ -699,7 +705,7 @@ teradataml/data/docs/uaf/docs_17_20/DIFF.py,sha256=QQLYLVW5bbm2orirYrr7avv4UcQKO
699
705
  teradataml/data/docs/uaf/docs_17_20/DTW.py,sha256=Gvkr55dwBV_gxhk_k6O1JhO3Pcm0N0w8PZMf9lg41OM,7299
700
706
  teradataml/data/docs/uaf/docs_17_20/DWT.py,sha256=luav08ng-JxSEsTCFCAgl89Bm_LBe7g0i8-lvl5Lz78,9728
701
707
  teradataml/data/docs/uaf/docs_17_20/DWT2D.py,sha256=UwjeV7wcudow6WnX8w3fuj1HPCwJAQjtvLyVZug60Pk,9248
702
- teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=fHNNRwhDVUh7ZszoXK4NH0-ckRJzVO1fqnSEFuvYRGQ,5872
708
+ teradataml/data/docs/uaf/docs_17_20/DickeyFuller.py,sha256=v0D2wcaOsJ2AxmJqQfdG0d_QQeB9hqav90jyNCLQhUA,5975
703
709
  teradataml/data/docs/uaf/docs_17_20/DurbinWatson.py,sha256=lI07DSn8XeSMoUBqiiHyWcOgw1E3x0YN_UL7c4TsnrE,7874
704
710
  teradataml/data/docs/uaf/docs_17_20/ExtractResults.py,sha256=KZNhDt2jcC6JiGEmSc194guAtVx3uFlY3EL0DHC3578,9314
705
711
  teradataml/data/docs/uaf/docs_17_20/FilterFactory1d.py,sha256=f9Fxm3Mm9Gy1k7IxgC4wWMNW5cO24rLuNNSv9MieJ9Y,6873
@@ -919,7 +925,7 @@ teradataml/data/jsons/sqle/17.20/TD_StrApply.json,sha256=5DsnIIeb1BJqa12lh74mzHe
919
925
  teradataml/data/jsons/sqle/17.20/TD_TFIDF.json,sha256=IDQ7Dq9jVS8d64s02ero2-2hHvWd0qsCqqJ5sB0cNFM,5744
920
926
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingFit.json,sha256=SWIiQ5RNcNNkAL-VTUys-ymUf8ftHv4_S4AItnLvf_E,9314
921
927
  teradataml/data/jsons/sqle/17.20/TD_TargetEncodingTransform.json,sha256=v26bCdOLPKZR-oNwp6jXSge-Mi3sT9ktUnQF46tiIFg,2765
922
- teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=uBK2ftzgYog6d3jGIP3JQXnbF-7EakupvjTl6xlvZEM,5925
928
+ teradataml/data/jsons/sqle/17.20/TD_TextParser.json,sha256=SadLzx_KuhRFUSkZl3xuNLgbMFKz-MnTjc8OsVSoiVc,5926
923
929
  teradataml/data/jsons/sqle/17.20/TD_TrainTestSplit.json,sha256=-iTh6laaD6gf7WWEyz6lQFoDBGR2kwvaeTsavZsyW9Y,5744
924
930
  teradataml/data/jsons/sqle/17.20/TD_UnivariateStatistics.json,sha256=nMK_V8EAw01qjsuZP5uhyprw_Mh5G9ZimQt8TfPSsYw,4807
925
931
  teradataml/data/jsons/sqle/17.20/TD_Unpivoting.json,sha256=JYjxIZCXHDipqcuSNH9O0o9hoUD674WZ2ke5IL4ZA8w,8680
@@ -932,12 +938,17 @@ teradataml/data/jsons/sqle/17.20/TD_XGBoostPredict.json,sha256=vePCDT17Ho9H1b1cx
932
938
  teradataml/data/jsons/sqle/17.20/TD_ZTest.json,sha256=vDxIYCnmgPTnxJnfrivB8AkOKNrJXY_s84_moFFjsLE,8202
933
939
  teradataml/data/jsons/sqle/17.20/Unpack.json,sha256=XoTH6HH8cQ-WWMkhx4gIH-hkn0q4G8StVxNMcUIM3SY,13420
934
940
  teradataml/data/jsons/sqle/17.20/nPath.json,sha256=_x0_7ZVAZ23JNd3Xy-xfBFfXD-VWpgDKzhpnUmt5GAs,14122
941
+ teradataml/data/jsons/sqle/20.00/TD_KMeans.json,sha256=yknTTt9x6pYsXV_L9C5caqOcfxTCCch5cMqowbAI9hc,8886
942
+ teradataml/data/jsons/sqle/20.00/TD_SMOTE.json,sha256=mf3S5Q2ZlvE025yDdPkkWJ7zi94q4diIPs0lQwCWMao,9937
943
+ teradataml/data/jsons/sqle/20.00/TD_VectorDistance.json,sha256=HBFTmnlbAATu5xUt9ztByZsB5ka6HP8Z1hQ1PUmlViE,9841
944
+ teradataml/data/jsons/storedprocedure/17.20/TD_COPYART.json,sha256=vp0hpBDk8JmyLE-htYchk-JGZQd3oaNNKegwKYI87C4,2241
935
945
  teradataml/data/jsons/storedprocedure/17.20/TD_FILTERFACTORY1D.json,sha256=x5bzoY38TzDHaLztMBmf6qMie4gykuQN__rN65NgaKo,7756
936
946
  teradataml/data/jsons/tableoperator/17.00/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
937
947
  teradataml/data/jsons/tableoperator/17.05/read_nos.json,sha256=AU0xz-LTu-evaZfWR1TATJN7XKQUSvCCRiagLZYU_Og,25804
938
948
  teradataml/data/jsons/tableoperator/17.05/write_nos.json,sha256=RxlbMg0c2MAv_SweZL6rB7Ew34zSdcJxF4lgxf2N4L4,15256
939
949
  teradataml/data/jsons/tableoperator/17.10/read_nos.json,sha256=DJu_Ux7VQV9EXIcuCSkc3B5m3690VdK7Pl6epHDgE30,27897
940
950
  teradataml/data/jsons/tableoperator/17.10/write_nos.json,sha256=dofQigRkF9jKyYRO9dOQL5jKBwd9i4h02rs4UYBJkzM,18115
951
+ teradataml/data/jsons/tableoperator/17.20/IMAGE2MATRIX.json,sha256=5tooGwxALY4n13sIVcUD-JG4vJqjcNeAkmhxQk1yMsU,2224
941
952
  teradataml/data/jsons/tableoperator/17.20/read_nos.json,sha256=dXmnLi7pXayTjeZEIeBRCK8ysdmdLiXy8iHZx_LXdCM,23674
942
953
  teradataml/data/jsons/tableoperator/17.20/write_nos.json,sha256=I-526Zymf3LdRZw1ojfD3MAZSqxkXD9JW0rs7BvOjRg,19158
943
954
  teradataml/data/jsons/uaf/17.20/TD_ACF.json,sha256=sdCp6-xPkCTHyCN96bAVR6xivoAx3OC3oWPYHUBLq60,5952
@@ -957,7 +968,7 @@ teradataml/data/jsons/uaf/17.20/TD_DFFT.json,sha256=_kpih5WRCU5UwZrYqI8lZM0ra4TQ
957
968
  teradataml/data/jsons/uaf/17.20/TD_DFFT2.json,sha256=foL65oFgS3b8ERqXA5K_oMBusoVMT1jUd77dZ3XN73o,9129
958
969
  teradataml/data/jsons/uaf/17.20/TD_DFFT2CONV.json,sha256=c7Bd_1anlfw-ZNbgc_L7KJWcUS8VQYGv-iL2cZ-T6mI,7797
959
970
  teradataml/data/jsons/uaf/17.20/TD_DFFTCONV.json,sha256=s1RrzJ_vdzoEip0DP9fr643D3KYt8rPc4kLnKLN-vtw,7689
960
- teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=WlrAJpViFPK0f4qeQSRfQ1_D1IaHARJN48S-SGh9FJ0,5225
971
+ teradataml/data/jsons/uaf/17.20/TD_DICKEY_FULLER.json,sha256=qMPAYUUeJMfeVUwyd1SsO1OkHZgrwwLtWzGYiZUh8ig,4422
961
972
  teradataml/data/jsons/uaf/17.20/TD_DIFF.json,sha256=HRBGm5GdjG0OYiYEuFKZEfm1t6DKrHn3Pv6BqD_9GGY,5371
962
973
  teradataml/data/jsons/uaf/17.20/TD_DTW.json,sha256=IqkbCHGZDOEdG6sno00CvdgdjccWEnsvnH1r4qnITjQ,7234
963
974
  teradataml/data/jsons/uaf/17.20/TD_DURBIN_WATSON.json,sha256=vkB6WUS_J0M2XQMoMGuQEmJ2kl6WeDeDpApWYhXodGg,5779
@@ -987,7 +998,7 @@ teradataml/data/jsons/uaf/17.20/TD_PORTMAN.json,sha256=Y2BejE5qpRqrjvqg6wM9-rHQt
987
998
  teradataml/data/jsons/uaf/17.20/TD_POWERSPEC.json,sha256=l3FV5T28DvSUvkoMtvsuiBxlswPi5NcduecoTgB2DbM,10531
988
999
  teradataml/data/jsons/uaf/17.20/TD_POWERTRANSFORM.json,sha256=aJ-3gSBvL5ZP-X2_PbosnSbQUHAJhkbr8nq35xsD8us,5080
989
1000
  teradataml/data/jsons/uaf/17.20/TD_RESAMPLE.json,sha256=R_oJNYdC28fRSdIhNMLRc2yGalBZRxQFrGluqmJ-Yyw,11684
990
- teradataml/data/jsons/uaf/17.20/TD_SAX.json,sha256=MtKvfUCZVy-gt0EpFXtUYMMq48Z2F8dalVvBlp5_9iU,7856
1001
+ teradataml/data/jsons/uaf/17.20/TD_SAX.json,sha256=osZ-Q1fzRdR-hDZDzUEp-4UavAbvA4FkOacMAx_PrZ8,7903
991
1002
  teradataml/data/jsons/uaf/17.20/TD_SEASONALNORMALIZE.json,sha256=U7r9HaGMYzOIhrMeC8tkXZLOLIZ4dD9IhzTk2avLfpk,8428
992
1003
  teradataml/data/jsons/uaf/17.20/TD_SELECTION_CRITERIA.json,sha256=L0Cms4EvbgdMiUctSKl8iPTYL1UDt8AwImCTuPI3hEU,5600
993
1004
  teradataml/data/jsons/uaf/17.20/TD_SIGNIF_PERIODICITIES.json,sha256=HsrXUJttjDR6vsbzIjxcD_3QaOokL9Jo-Vlna4KIvSk,5259
@@ -999,7 +1010,7 @@ teradataml/data/jsons/uaf/17.20/TD_TRACKINGOP.json,sha256=rdohAD71rUtlQQvGHoLNUQ
999
1010
  teradataml/data/jsons/uaf/17.20/TD_UNDIFF.json,sha256=pNZUHXVb9BjV_-_tVRiuG0mMxG0PIxT956YRqo_Fu18,6836
1000
1011
  teradataml/data/jsons/uaf/17.20/TD_UNNORMALIZE.json,sha256=XsbOEduKsTkumHXh-DJvP0jbJ56Zydq_JFkhfNBTJcI,4753
1001
1012
  teradataml/data/jsons/uaf/17.20/TD_WHITES_GENERAL.json,sha256=gaiixvAjMIms_hVJG9_WmBjK10f1wz8tCR6Y161SHZI,4800
1002
- teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json,sha256=TdcAkYbTvnRRfN2jJ7JmwUp19-CGXRDAbhazed8Rj70,23405
1013
+ teradataml/data/jsons/uaf/17.20/TD_WINDOWDFFT.json,sha256=iDLbonW4lEhFiy2HJGWTxI6_8szAwyognHRGuZLszIg,23831
1003
1014
  teradataml/data/models/License_file.txt,sha256=SnWU9MK5E-B6ZUwR1TB19iSUyCcQaTxJ9Zar_WVQ7_g,14
1004
1015
  teradataml/data/models/License_file_empty.txt,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1005
1016
  teradataml/data/models/dataiku_iris_data_ann_thin,sha256=9cfSt9MHz_ouXXMzfoByrX-yD-iVINFr8Txn3e7VukA,20894
@@ -1026,34 +1037,38 @@ teradataml/data/scripts/deploy_script.py,sha256=ap99Pp0DWA32E7s7cedL84VIQEvvb4bA
1026
1037
  teradataml/data/scripts/mapper.R,sha256=wsa90rHfJDOCzpPAiHy6EzpiNskC7d2K4QnJCuXrLqI,613
1027
1038
  teradataml/data/scripts/mapper.py,sha256=8l0tJl96icteNBFRG4cROuho1iWUJtU81l7R7Jz6SmY,547
1028
1039
  teradataml/data/scripts/mapper_replace.py,sha256=qBcXNMb19LccZ3KhMtZBgrpib33KWZjrJ5MoW5l6G98,552
1040
+ teradataml/data/scripts/lightgbm/dataset.template,sha256=PDgd5_4FWpHUKbttjjSfdXFYA2n_crgJs0BuH3ns5_0,5915
1041
+ teradataml/data/scripts/lightgbm/lightgbm_class_functions.template,sha256=KW75Y7lp-bmLr1SZzs-qT0RUyJ-Vuv2ZmwNJ0oOUXGA,9875
1042
+ teradataml/data/scripts/lightgbm/lightgbm_function.template,sha256=MRQWuk7UiqyMWaLKUtUOdhzOcH56qEx_D3vCWoPTNg8,10286
1043
+ teradataml/data/scripts/lightgbm/lightgbm_sklearn.template,sha256=BNbeEN4UnHJwzY1mPaDLEebt4Prm25p3ovg5URyASvI,6121
1029
1044
  teradataml/data/scripts/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1030
- teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=ZIe9WIOroGT5iCCedS8iNY5AZaMyL6j7SwaLo0zPak4,6650
1031
- teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=QOBt6fFS9qdkOYM_qYqWSpDDKuBxnnRJ_3uPHjlxjCY,4946
1032
- teradataml/data/scripts/sklearn/sklearn_function.template,sha256=d8xS7KSGHirsA3ogeQgoQayFinMBHJoYeZAYX9PodqI,5426
1033
- teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=0oyIv7oKZ_Vde-y3CY_sw9Qv8f48DGQGlapOGrSLba0,5979
1045
+ teradataml/data/scripts/sklearn/sklearn_fit.py,sha256=eP2vQl6OFyFOxzFNGAS9nxqbMQWOjue6BDIv3gmbGYo,8400
1046
+ teradataml/data/scripts/sklearn/sklearn_fit_predict.py,sha256=zOICrgKeWeJsdiE6s2r87l4eMug2PH2_Bsi0pnlSfcg,6035
1047
+ teradataml/data/scripts/sklearn/sklearn_function.template,sha256=M0GsFvj4Y0vtC1-Zol5US7ZT9yAbvdzcpXE9dtcV1LQ,4815
1048
+ teradataml/data/scripts/sklearn/sklearn_model_selection_split.py,sha256=SKdueW62_GhXR0Jn74XOnxV5xz1kjBgl2I8VRH0e6Kg,7005
1034
1049
  teradataml/data/scripts/sklearn/sklearn_neighbors.py,sha256=Uqyn6blWs2epKUlZtdhpCWpWT_vMa5ZRkMaT6g-u9Z0,5938
1035
1050
  teradataml/data/scripts/sklearn/sklearn_score.py,sha256=VtEP3sGJUasWWDHKWZau08vwShECy15vQ9OFINt9N4A,4754
1036
- teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=Cjz35WuC_IRmRWnMph6YpdngmA4ciadq0kDng9QzEiU,10107
1037
- teradataml/data/templates/open_source_ml.json,sha256=V5eH98283NQcNahpfAvXNJgCP3M9fwU7asNrT2zXYYg,255
1051
+ teradataml/data/scripts/sklearn/sklearn_transform.py,sha256=EgrVc5_Uw0AMdhy2GBDhGA0WNMA2A9DkQUC5n2MXsCI,14613
1052
+ teradataml/data/templates/open_source_ml.json,sha256=dLbP86NVftkR8eoQRLQr_vFpJYszhnPvWNcSF1LRG78,308
1038
1053
  teradataml/dataframe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1039
1054
  teradataml/dataframe/copy_to.py,sha256=VXbICedzrPsdPdWWCvmmoYzB-VXb4MC7kxbnxJkscsQ,76419
1040
1055
  teradataml/dataframe/data_transfer.py,sha256=-7zk_4knyvLChQbb_Hmrj-eWxbg-REQZ_Bn-V4BqVhk,123719
1041
- teradataml/dataframe/dataframe.py,sha256=0C4QVUaHSk3xnUweedLLZgFHvv7h_UquxQAn9TG_l1s,956262
1056
+ teradataml/dataframe/dataframe.py,sha256=gImgGaF3pspGE0bJsVn8Cl_1IC_NrgN2ouXSoEU0hYw,977096
1042
1057
  teradataml/dataframe/dataframe_utils.py,sha256=vbvKogavhqXSVe39zKepFcjGkyJuy6radN2ninHdc3Y,88417
1043
1058
  teradataml/dataframe/fastload.py,sha256=Qyq4xEzS9E5NRDvEUlmv3hoAQy5nhTDEfW1QiVg3e9U,42032
1044
- teradataml/dataframe/functions.py,sha256=sos_ERl17m6xdDHir8bp8qfSdX8r2Oto5muAWjo0oac,17550
1059
+ teradataml/dataframe/functions.py,sha256=PQjoHu56kZ9nWu3x-5pJiRdeV2NliGDdeJCWF5rMGjw,38745
1045
1060
  teradataml/dataframe/indexer.py,sha256=xDLYMuUy77VpVo1rO0RHrM-fpexr1Mm3o1hF_I3PsdQ,19787
1046
1061
  teradataml/dataframe/row.py,sha256=zgt4G-05ZE8QOfC0aCJVpK3WwC9_ExIgpMV7ZD3wKu0,4622
1047
1062
  teradataml/dataframe/setop.py,sha256=EBJeUiOYtRMhrCbKUIBelQjtMe7pQ3aePuQSb0_VqPA,56931
1048
- teradataml/dataframe/sql.py,sha256=D8kvMqxP7C7G4Dvrlfcd4CRLSDpyeby-ioVjue7QNI4,638329
1063
+ teradataml/dataframe/sql.py,sha256=yvYpMp0axrp4dBz9pB_eK9RFmaM_etVAyMl63-qvQ4o,645455
1049
1064
  teradataml/dataframe/sql_function_parameters.py,sha256=BVuHGJ78TjxbrwMdytXfUVKrMZb4Ge20taVwcj0E8gU,22241
1050
1065
  teradataml/dataframe/sql_functions.py,sha256=-v5Gx8x_Tr-Ru9YrmjrM-JfIDhguk8HcO2G1xMcg0Wo,29482
1051
1066
  teradataml/dataframe/sql_interfaces.py,sha256=WzM-jq7JyRmEMs7yZTgX6W3nnD7YjxXwdTHauI4BQPA,3812
1052
1067
  teradataml/dataframe/vantage_function_types.py,sha256=4p4EX3ZtbqYBqcdQ7l_Vx0UW8sEIeEVnpRghcGpyFNY,28381
1053
1068
  teradataml/dataframe/window.py,sha256=YkrBcLPrvebZ4Ekylkv3JO8kMedAQ80pnOapMaarJNI,32755
1054
1069
  teradataml/dbutils/__init__.py,sha256=qnquQDBxYoHuaLb3VzM0Mb08Ooc-sDVO6JQCcPhSYlE,221
1055
- teradataml/dbutils/dbutils.py,sha256=hdMrt_hnVleyRNHD1ymBoyd7OpvXppvNtEa3Iqr_WJ8,62139
1056
- teradataml/dbutils/filemgr.py,sha256=6VdGuiHtpNPXRcdxa2lH-jHAFOyb2AM4XXIJQ3bVPig,12337
1070
+ teradataml/dbutils/dbutils.py,sha256=cU5T7Zqf3nBRX_TS0egLD5Dq1goAwvKBW_YiCnx5L1U,79361
1071
+ teradataml/dbutils/filemgr.py,sha256=vvrKLk_TGJcRnEqNlnf-WG8fSKXeyngobChKwUJysd8,14252
1057
1072
  teradataml/gen_ai/__init__.py,sha256=kYGvNpZOR_E2VDcf3-LOfvFGox1YRpPeblwa5mqDvAM,91
1058
1073
  teradataml/gen_ai/convAI.py,sha256=HN_Rm38FY5Nr2Pq5nMmuT9gH9XsTwtE47NaQIaFyiFg,16473
1059
1074
  teradataml/geospatial/__init__.py,sha256=DZZNBHBYN1EDYSXz-7C_Ic_W2ZsVuak69hw_nWTcto8,292
@@ -1064,17 +1079,18 @@ teradataml/hyperparameter_tuner/__init__.py,sha256=RQvotxJqh80M8Du-5IWdjdJvKYHDi
1064
1079
  teradataml/hyperparameter_tuner/optimizer.py,sha256=IvrbNGtS9B6cVu3xsx9hEmU2LiomLRh8nyQQegA9RlE,197968
1065
1080
  teradataml/hyperparameter_tuner/utils.py,sha256=Bu0A_mP1WPyWtoBGz9NTkNhWOz_nZUkc5gsqcPrYfnk,11727
1066
1081
  teradataml/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1067
- teradataml/lib/aed_0_1.dll,sha256=MydYBEPKmrydDFQdL2_ZiQ0QgOw2TOqjRIix_eMMNOQ,3928816
1082
+ teradataml/lib/aed_0_1.dll,sha256=VKZZxFY8RVQdVN_uBXuiU1dwNcgun0w4cpbsgVKKFc8,3928816
1068
1083
  teradataml/lib/libaed_0_1.dylib,sha256=nKlbPxiSJw-kCw6NktpqMy-UDfq4zYq7gLy6S2N2Ppg,1806401
1069
1084
  teradataml/lib/libaed_0_1.so,sha256=xi4gwYQtbbdUlRTXsTEJSf0J0e9jt-cguTzdPQdrsEU,1040824
1070
- teradataml/opensource/__init__.py,sha256=ysO_7mcfAHpQkE6qmcoxBOgtRWS97z_XDXkNk1I1VzY,54
1071
- teradataml/opensource/sklearn/__init__.py,sha256=N9goinLnrCyYQvicxKOpJ24bVlos8SJrjaGtNS3jV9E,32
1072
- teradataml/opensource/sklearn/_class.py,sha256=69hRN5Fu6rIGvJ0azmulcRKBBCjEF-c2yo1wz7-rBCo,9572
1073
- teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=CtZDle-0XrvJskaXYyr8-jVQuRcMkea7ntecGucFc6Y,87646
1074
- teradataml/opensource/sklearn/_wrapper_utils.py,sha256=T8ojlibH_EW0MU7CsgCEwmZiGQ9CrABJHZRzeqc9Kz4,12199
1075
- teradataml/opensource/sklearn/constants.py,sha256=D-XbA8e3VIx2v817aKm9ARsiu49lKBUnofm-3axFU2M,2598
1076
- teradataml/options/__init__.py,sha256=RaEdmCe-MnvdvnbezFBPj8pIbjoxpiZ3WWgZLiVYKRo,5872
1077
- teradataml/options/configure.py,sha256=kUQc7shsbT2WXnuVPT82Q1jAXWetJxgcK-QUdvW_Idc,20518
1085
+ teradataml/opensource/__init__.py,sha256=-EOpCOiaaHWuCFP1vDCOlHkqyPNid4CrnkQnQ0BOzKo,66
1086
+ teradataml/opensource/_class.py,sha256=UPf6-DXx_EvQXDFwe902Yw6JjL1-B8ElHAymOxin4R8,13100
1087
+ teradataml/opensource/_lightgbm.py,sha256=Su9f4eD2zlFzcWf_1nA1sHPZZxm82LOPuxlm2IpdXz4,48976
1088
+ teradataml/opensource/_wrapper_utils.py,sha256=CKlt5hpgJaf06rx8gvu8frgBWDcWAR_a7ViMQEV1C-Y,12122
1089
+ teradataml/opensource/constants.py,sha256=10omodLZBTQ8pF70ckHVudJ8ZiaaI5lHsanvajTWbD8,2809
1090
+ teradataml/opensource/sklearn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1091
+ teradataml/opensource/sklearn/_sklearn_wrapper.py,sha256=y7v2tgwGlLnA67j1uMxLW3MRGvM0V55SasB9mmZX75U,106500
1092
+ teradataml/options/__init__.py,sha256=mr8WGSfc0Hb67OLWKENPlPeHSRv1eqHJ4FPQ7bLwgas,5087
1093
+ teradataml/options/configure.py,sha256=W3M1V_UlbY847xQ_D0RxUNohd8z2r6Cl49CgIYpRv1A,22015
1078
1094
  teradataml/options/display.py,sha256=sprj5VEp6cBafnICFDdrsssstXNKl5oYvr5JwBPB_3c,7960
1079
1095
  teradataml/plot/__init__.py,sha256=pKzD81TdmCSnrHtWsR2Gt_nyDQzXqAdxydepUQvKl6g,126
1080
1096
  teradataml/plot/axis.py,sha256=_JjcP1p8-nL3oa5MDCfyqd0wlZuz18yNeqj7XirXXJo,54272
@@ -1083,34 +1099,41 @@ teradataml/plot/figure.py,sha256=hyGRMfDgDUMeuZJWz8MpHbHMlzMoeIiYQHpMKA364eE,123
1083
1099
  teradataml/plot/plot.py,sha256=nSfg0WeCUFn32zMTSW0HwErkodd-Zu6aaBVwO51F2-Y,30826
1084
1100
  teradataml/plot/query_generator.py,sha256=so8_w73Qday0b5hGUvJNrx9ELkYgXFpwjTUsbjNZvJg,3552
1085
1101
  teradataml/plot/subplot.py,sha256=c-Npnr5LWb4TUHwfdwzMsZBiti6FunzdFC5EtcuOWjY,10246
1086
- teradataml/scriptmgmt/UserEnv.py,sha256=gK4p1HEPV8l6mwfl9PDBdydY7OVNBk3hTsfeGGA3Sb4,176976
1102
+ teradataml/scriptmgmt/UserEnv.py,sha256=AdQLWjdux-jz_dNRJUQYLHOw6xOCoRtSUuG44n-rlHY,177029
1087
1103
  teradataml/scriptmgmt/__init__.py,sha256=dG0Yef5V3gLu1KasRhBLd6OgdC2NAFqjzJC8BDhark8,185
1088
- teradataml/scriptmgmt/lls_utils.py,sha256=Dzx__GwFlKc8AiiTs1k5TQnT6uZveckwARWTy3xWP0U,74623
1104
+ teradataml/scriptmgmt/lls_utils.py,sha256=oUftiz6FdsMhmt1SSxijC42hAW29hmpAmo_4-taQV3I,77431
1089
1105
  teradataml/series/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1090
1106
  teradataml/series/series.py,sha256=nJF6tJmF_rsPHH1kboGrWdTvEUZZFu_JunKSoKnN3tI,17724
1091
1107
  teradataml/series/series_utils.py,sha256=ufuY8Z5oVB6K3ro23AXaxg6aAjjjEYg4jbAf1_W8aDU,2681
1108
+ teradataml/store/__init__.py,sha256=SkMK4KWtorw2N4egwUVmzg00alRxuX0ylfvM8ZliTpA,458
1109
+ teradataml/store/feature_store/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1110
+ teradataml/store/feature_store/constants.py,sha256=KliwCsQyd65XG1ERW2GIHjy47rGEUC2CA3zBs97wh8s,8918
1111
+ teradataml/store/feature_store/feature_store.py,sha256=yQVqYfVqHI1wkDY2jgynDaiAeMkQ_rt_-F32ghHHQes,87548
1112
+ teradataml/store/feature_store/models.py,sha256=c9jXQ9eDrcFREkrmwy_fL5ULVZ7eNEBnwvETH5e2Jh0,57741
1113
+ teradataml/store/vector_store/__init__.py,sha256=8-RR61XKhF1mjqMMDQjImxTDzFNqvsHpmb-q5pygMqo,67240
1092
1114
  teradataml/table_operators/Apply.py,sha256=nTZBx0oP1B3i4_hNndlY1gjCif7fJOJiUKolrJfi0ec,43363
1093
1115
  teradataml/table_operators/Script.py,sha256=QeAn5GZWj2uyNe8Y8fK8-X3kZKfJ3L06nFHzfZPqBAs,77179
1094
1116
  teradataml/table_operators/TableOperator.py,sha256=qpHgt-_Sa2uqUSLII51EBK0KTUUkcEbDmTNUcZhuw0w,76904
1095
1117
  teradataml/table_operators/__init__.py,sha256=MTuTiCyGt7Le4MQ5XEfTyp_9Za-vAIreZhfz9GEAzrU,106
1096
1118
  teradataml/table_operators/apply_query_generator.py,sha256=41ah294SyyG0tl88h8og7AXOWDzT1Lb1J1GjO0M1swA,12207
1097
- teradataml/table_operators/query_generator.py,sha256=zuuD47ec7jsTS-O8iNLvsQZcngFdHz5KPoeg9ag3WTs,23002
1098
- teradataml/table_operators/table_operator_query_generator.py,sha256=0cqOLZRPjW9Q-GpkwJawuIdTFdbw-ui-OKBGgaIIhdg,22340
1099
- teradataml/table_operators/table_operator_util.py,sha256=3Hx13NNb_2wCfKM7mKhqhm__0MpHlPUrXyyxHIvPe3c,31645
1119
+ teradataml/table_operators/query_generator.py,sha256=984JEgcnrz63ala-Mm8y5NqGAlqltfMpUn-OhPEoeLQ,23201
1120
+ teradataml/table_operators/table_operator_query_generator.py,sha256=luATy6uVS8-ixvObaxmPvNro76BNCiVwytYIHOnAnK8,22456
1121
+ teradataml/table_operators/table_operator_util.py,sha256=9z6tEIsO_e8nnGS2bpmrlyZ04HmlkEIcpdnZ0EnfJ6M,31961
1100
1122
  teradataml/table_operators/templates/dataframe_apply.template,sha256=3FiK_nivSf343xlYHfCJA2pn0dycvX_pB0daKBXg64M,8054
1101
1123
  teradataml/table_operators/templates/dataframe_map.template,sha256=KrTTYj0HFco0Z_mV6FcLvkw-kzngCDw-zhmmTSX0J7k,7683
1124
+ teradataml/table_operators/templates/dataframe_register.template,sha256=VfBq8Pay_GZuaAY566vVNsk2LVPywJZ_pM3RGb3UJTw,2836
1102
1125
  teradataml/table_operators/templates/dataframe_udf.template,sha256=kAr5FcafoUrGQs4aRjEj5E9sS69pa8msZ5UnaWMvx7s,2555
1103
1126
  teradataml/table_operators/templates/script_executor.template,sha256=dLqU8z2WXi1BfGppyD3sRdv-oukjrjhO5gr0ClUljI0,6976
1104
1127
  teradataml/telemetry_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1105
1128
  teradataml/telemetry_utils/queryband.py,sha256=yMq-hY81elmNoFpHNsMBxOMv--jMB81d9QFxDUppV4g,2354
1106
1129
  teradataml/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1107
- teradataml/utils/dtypes.py,sha256=Wqzi0LcNjkxoFlNARSzv8KbRc0iaxbV7WIeL8N4qhKs,26279
1130
+ teradataml/utils/dtypes.py,sha256=RZEXBHyR7fDlC0V2fXKqbc5Av7NeP_aWKhGRg8DlTr8,26454
1108
1131
  teradataml/utils/internal_buffer.py,sha256=ftVgEv_9LUf3CffBNYyJyLPcBtjAPQGbPv5RczFjPGY,2085
1109
1132
  teradataml/utils/print_versions.py,sha256=m-ByrRZEQkiCmDyaBNknwpE8UhYY1bPPlW3YYHDTrlc,6535
1110
1133
  teradataml/utils/utils.py,sha256=RDSUXNHNyG4bkgFSa6nGaGRc3W0mHjqX_mx_2vGvizw,17254
1111
- teradataml/utils/validators.py,sha256=tdNTPfGM9VY9tnfFlTe-i62Rg_ejXnPz7jHCgWg1P1Q,92491
1112
- teradataml-20.0.0.2.dist-info/METADATA,sha256=Er74UlewHF_VukCR0108F55rX9lUVMUT5ML4Ee-0D6k,111166
1113
- teradataml-20.0.0.2.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1114
- teradataml-20.0.0.2.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1115
- teradataml-20.0.0.2.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1116
- teradataml-20.0.0.2.dist-info/RECORD,,
1134
+ teradataml/utils/validators.py,sha256=RFBrdWSbuuOX9cIMw327c-P8qPXp8qVNKCWXtFIx6PU,93462
1135
+ teradataml-20.0.0.3.dist-info/METADATA,sha256=qfTI6EpLaovYWlpA66cAg7BOUELBe2L62wqS8UiwLJQ,120899
1136
+ teradataml-20.0.0.3.dist-info/WHEEL,sha256=G16H4A3IeoQmnOrYV4ueZGKSjhipXx8zc8nu9FGlvMA,92
1137
+ teradataml-20.0.0.3.dist-info/top_level.txt,sha256=j0jkK8Hmxb5acGSNrbbEePXSgqTQEItdFZXhyJT7qUM,11
1138
+ teradataml-20.0.0.3.dist-info/zip-safe,sha256=frcCV1k9oG9oKj3dpUqdJg1PxRT2RSN_XKdLCPjaYaY,2
1139
+ teradataml-20.0.0.3.dist-info/RECORD,,