tensorneko 0.3.5__py3-none-any.whl → 0.3.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tensorneko/arch/binary_classifier.py +13 -8
- tensorneko/callback/gpu_stats_logger.py +49 -12
- tensorneko/callback/system_stats_logger.py +25 -3
- tensorneko/evaluation/fid.py +2 -2
- tensorneko/neko_trainer.py +7 -3
- tensorneko/util/__init__.py +2 -1
- tensorneko/util/configuration.py +5 -3
- tensorneko/util/misc.py +2 -1
- tensorneko/util/type.py +0 -1
- tensorneko/version.txt +1 -1
- {tensorneko-0.3.5.dist-info → tensorneko-0.3.6.dist-info}/METADATA +3 -3
- {tensorneko-0.3.5.dist-info → tensorneko-0.3.6.dist-info}/RECORD +15 -15
- {tensorneko-0.3.5.dist-info → tensorneko-0.3.6.dist-info}/WHEEL +1 -1
- {tensorneko-0.3.5.dist-info → tensorneko-0.3.6.dist-info}/LICENSE +0 -0
- {tensorneko-0.3.5.dist-info → tensorneko-0.3.6.dist-info}/top_level.txt +0 -0
|
@@ -1,18 +1,17 @@
|
|
|
1
|
-
from
|
|
2
|
-
from typing import Optional, Union, Sequence, Dict
|
|
1
|
+
from typing import Optional, Union, Sequence, Dict, Any
|
|
3
2
|
|
|
4
3
|
from torch import Tensor
|
|
5
|
-
from torch.nn import BCEWithLogitsLoss
|
|
4
|
+
from torch.nn import BCEWithLogitsLoss, Module
|
|
6
5
|
from torch.optim import Adam
|
|
7
6
|
from torchmetrics import Accuracy, F1Score, AUROC
|
|
8
7
|
|
|
9
8
|
from ..neko_model import NekoModel
|
|
10
9
|
|
|
11
10
|
|
|
12
|
-
class BinaryClassifier(NekoModel
|
|
11
|
+
class BinaryClassifier(NekoModel):
|
|
13
12
|
|
|
14
|
-
def __init__(self, model
|
|
15
|
-
super().__init__()
|
|
13
|
+
def __init__(self, name, model: Module, learning_rate: float = 1e-4, distributed: bool = False):
|
|
14
|
+
super().__init__(name)
|
|
16
15
|
self.save_hyperparameters()
|
|
17
16
|
self.model = model
|
|
18
17
|
self.learning_rate = learning_rate
|
|
@@ -23,8 +22,10 @@ class BinaryClassifier(NekoModel, ABC):
|
|
|
23
22
|
self.auc_fn = AUROC(task="binary")
|
|
24
23
|
|
|
25
24
|
@classmethod
|
|
26
|
-
def from_module(cls, model, learning_rate: float = 1e-4,
|
|
27
|
-
|
|
25
|
+
def from_module(cls, model: Module, learning_rate: float = 1e-4, name: str = "binary_classifier",
|
|
26
|
+
distributed: bool = False
|
|
27
|
+
):
|
|
28
|
+
return cls(name, model, learning_rate, distributed)
|
|
28
29
|
|
|
29
30
|
def forward(self, x):
|
|
30
31
|
return self.model(x)
|
|
@@ -49,6 +50,10 @@ class BinaryClassifier(NekoModel, ABC):
|
|
|
49
50
|
) -> Dict[str, Tensor]:
|
|
50
51
|
return self.step(batch)
|
|
51
52
|
|
|
53
|
+
def predict_step(self, batch: Tensor, batch_idx: int, dataloader_idx: Optional[int] = None) -> Any:
|
|
54
|
+
x, y = batch
|
|
55
|
+
return self(x)
|
|
56
|
+
|
|
52
57
|
def configure_optimizers(self):
|
|
53
58
|
optimizer = Adam(self.parameters(), lr=self.learning_rate)
|
|
54
59
|
return [optimizer]
|
|
@@ -1,31 +1,68 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
1
3
|
from lightning.pytorch import Callback, Trainer, LightningModule
|
|
4
|
+
from lightning.pytorch.utilities.types import STEP_OUTPUT
|
|
2
5
|
|
|
3
6
|
|
|
4
7
|
class GpuStatsLogger(Callback):
|
|
5
8
|
"""Log GPU stats for each training epoch"""
|
|
6
9
|
|
|
7
|
-
def __init__(self, delay: float = 0.5):
|
|
10
|
+
def __init__(self, delay: float = 0.5, on_epoch: bool = True, on_step: bool = False):
|
|
8
11
|
try:
|
|
9
12
|
from gpumonitor.monitor import GPUStatMonitor
|
|
10
13
|
except ImportError:
|
|
11
14
|
raise ImportError("gpumonitor is required to use GPUStatsLogger")
|
|
12
15
|
|
|
13
|
-
self.
|
|
16
|
+
self.monitor_epoch = GPUStatMonitor(delay=delay) if on_epoch else None
|
|
17
|
+
self.monitor_step = GPUStatMonitor(delay=delay) if on_step else None
|
|
18
|
+
self.on_epoch = on_epoch
|
|
19
|
+
self.on_step = on_step
|
|
20
|
+
assert self.on_epoch or self.on_step, "on_epoch and on_step cannot be both False"
|
|
14
21
|
|
|
15
22
|
def on_train_epoch_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
|
|
16
|
-
self.
|
|
23
|
+
if not self.on_epoch:
|
|
24
|
+
return
|
|
25
|
+
self.monitor_epoch.reset()
|
|
17
26
|
|
|
18
27
|
def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
|
|
19
|
-
|
|
28
|
+
if not self.on_epoch:
|
|
29
|
+
return
|
|
30
|
+
for gpu in self.monitor_epoch.average_stats.gpus:
|
|
31
|
+
logged_info = {
|
|
32
|
+
f"gpu{gpu.index}_memory_used_epoch": gpu.memory_used / 1024,
|
|
33
|
+
f"gpu{gpu.index}_memory_total_epoch": gpu.memory_total / 1024,
|
|
34
|
+
f"gpu{gpu.index}_memory_util_epoch": gpu.memory_used / gpu.memory_total,
|
|
35
|
+
f"gpu{gpu.index}_temperature_epoch": float(gpu.temperature),
|
|
36
|
+
f"gpu{gpu.index}_utilization_epoch": gpu.utilization / 100,
|
|
37
|
+
f"gpu{gpu.index}_power_draw_epoch": float(gpu.power_draw),
|
|
38
|
+
f"gpu{gpu.index}_power_percentage_epoch": gpu.power_draw / gpu.power_limit,
|
|
39
|
+
f"gpu{gpu.index}_fan_speed_epoch": float(gpu.fan_speed) if gpu.fan_speed is not None else 0.,
|
|
40
|
+
}
|
|
41
|
+
pl_module.logger.log_metrics(logged_info, step=trainer.global_step)
|
|
42
|
+
pl_module.log_dict(logged_info, logger=False, sync_dist=pl_module.distributed)
|
|
43
|
+
|
|
44
|
+
def on_train_batch_start(
|
|
45
|
+
self, trainer: Trainer, pl_module: LightningModule, batch: Any, batch_idx: int
|
|
46
|
+
) -> None:
|
|
47
|
+
if not self.on_step:
|
|
48
|
+
return
|
|
49
|
+
self.monitor_step.reset()
|
|
50
|
+
|
|
51
|
+
def on_train_batch_end(
|
|
52
|
+
self, trainer: Trainer, pl_module: LightningModule, outputs: STEP_OUTPUT, batch: Any, batch_idx: int
|
|
53
|
+
) -> None:
|
|
54
|
+
if not self.on_step:
|
|
55
|
+
return
|
|
56
|
+
for gpu in self.monitor_step.average_stats.gpus:
|
|
20
57
|
logged_info = {
|
|
21
|
-
f"gpu{gpu.index}
|
|
22
|
-
f"gpu{gpu.index}
|
|
23
|
-
f"gpu{gpu.index}
|
|
24
|
-
f"gpu{gpu.index}
|
|
25
|
-
f"gpu{gpu.index}
|
|
26
|
-
f"gpu{gpu.index}
|
|
27
|
-
f"gpu{gpu.index}
|
|
28
|
-
f"gpu{gpu.index}
|
|
58
|
+
f"gpu{gpu.index}_memory_used_step": gpu.memory_used / 1024,
|
|
59
|
+
f"gpu{gpu.index}_memory_total_step": gpu.memory_total / 1024,
|
|
60
|
+
f"gpu{gpu.index}_memory_util_step": gpu.memory_used / gpu.memory_total,
|
|
61
|
+
f"gpu{gpu.index}_temperature_step": float(gpu.temperature),
|
|
62
|
+
f"gpu{gpu.index}_utilization_step": gpu.utilization / 100,
|
|
63
|
+
f"gpu{gpu.index}_power_draw_step": float(gpu.power_draw),
|
|
64
|
+
f"gpu{gpu.index}_power_percentage_step": gpu.power_draw / gpu.power_limit,
|
|
65
|
+
f"gpu{gpu.index}_fan_speed_step": float(gpu.fan_speed) if gpu.fan_speed is not None else 0.,
|
|
29
66
|
}
|
|
30
67
|
pl_module.logger.log_metrics(logged_info, step=trainer.global_step)
|
|
31
68
|
pl_module.log_dict(logged_info, logger=False, sync_dist=pl_module.distributed)
|
|
@@ -1,22 +1,44 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
1
3
|
from lightning.pytorch import Callback, Trainer, LightningModule
|
|
4
|
+
from lightning.pytorch.utilities.types import STEP_OUTPUT
|
|
2
5
|
|
|
3
6
|
|
|
4
7
|
class SystemStatsLogger(Callback):
|
|
5
8
|
"""Log system stats for each training epoch"""
|
|
6
9
|
|
|
7
|
-
def __init__(self):
|
|
10
|
+
def __init__(self, on_epoch: bool = True, on_step: bool = False):
|
|
8
11
|
try:
|
|
9
12
|
import psutil
|
|
10
13
|
except ImportError:
|
|
11
14
|
raise ImportError("psutil is required to use SystemStatsLogger")
|
|
12
15
|
self.psutil = psutil
|
|
16
|
+
self.on_epoch = on_epoch
|
|
17
|
+
self.on_step = on_step
|
|
18
|
+
assert self.on_epoch or self.on_step, "on_epoch and on_step cannot be both False"
|
|
13
19
|
|
|
14
20
|
def on_train_epoch_end(self, trainer: Trainer, pl_module: LightningModule) -> None:
|
|
21
|
+
if not self.on_epoch:
|
|
22
|
+
return
|
|
23
|
+
cpu_usage = self.psutil.cpu_percent()
|
|
24
|
+
memory_usage = self.psutil.virtual_memory().percent
|
|
25
|
+
logged_info = {
|
|
26
|
+
"cpu_usage_epoch": cpu_usage,
|
|
27
|
+
"memory_usage_epoch": memory_usage
|
|
28
|
+
}
|
|
29
|
+
pl_module.logger.log_metrics(logged_info, step=trainer.global_step)
|
|
30
|
+
pl_module.log_dict(logged_info, logger=False, sync_dist=pl_module.distributed)
|
|
31
|
+
|
|
32
|
+
def on_train_batch_end(
|
|
33
|
+
self, trainer: Trainer, pl_module: LightningModule, outputs: STEP_OUTPUT, batch: Any, batch_idx: int
|
|
34
|
+
) -> None:
|
|
35
|
+
if not self.on_step:
|
|
36
|
+
return
|
|
15
37
|
cpu_usage = self.psutil.cpu_percent()
|
|
16
38
|
memory_usage = self.psutil.virtual_memory().percent
|
|
17
39
|
logged_info = {
|
|
18
|
-
"
|
|
19
|
-
"
|
|
40
|
+
"cpu_usage_step": cpu_usage,
|
|
41
|
+
"memory_usage_step": memory_usage
|
|
20
42
|
}
|
|
21
43
|
pl_module.logger.log_metrics(logged_info, step=trainer.global_step)
|
|
22
44
|
pl_module.log_dict(logged_info, logger=False, sync_dist=pl_module.distributed)
|
tensorneko/evaluation/fid.py
CHANGED
|
@@ -90,8 +90,8 @@ class FID:
|
|
|
90
90
|
|
|
91
91
|
if progress_bar:
|
|
92
92
|
tqdm = import_tqdm_auto().tqdm
|
|
93
|
-
pred = tqdm(total=len(pred), desc="Forward predicted features")
|
|
94
|
-
true = tqdm(total=len(true), desc="Forward ground truth features")
|
|
93
|
+
pred = tqdm(pred, total=len(pred), desc="Forward predicted features")
|
|
94
|
+
true = tqdm(true, total=len(true), desc="Forward ground truth features")
|
|
95
95
|
|
|
96
96
|
for batch in pred:
|
|
97
97
|
self.fid.update(batch.to(self.device), real=False)
|
tensorneko/neko_trainer.py
CHANGED
|
@@ -3,16 +3,20 @@ from datetime import timedelta
|
|
|
3
3
|
from time import time
|
|
4
4
|
from typing import Optional, Union, List, Dict
|
|
5
5
|
|
|
6
|
+
from lightning.fabric.plugins.precision.precision import _PRECISION_INPUT
|
|
7
|
+
from lightning.fabric.utilities.types import _PATH
|
|
6
8
|
from lightning.pytorch import Trainer, Callback
|
|
7
9
|
from lightning.pytorch.accelerators import Accelerator
|
|
8
10
|
from lightning.pytorch.callbacks import ModelCheckpoint, Checkpoint
|
|
9
11
|
from lightning.pytorch.loggers import Logger, TensorBoardLogger
|
|
10
|
-
from lightning.pytorch.plugins import PLUGIN_INPUT
|
|
11
12
|
from lightning.pytorch.profilers import Profiler
|
|
12
13
|
from lightning.pytorch.strategies import Strategy
|
|
13
14
|
from lightning.pytorch.trainer.connectors.accelerator_connector import _LITERAL_WARN
|
|
14
|
-
|
|
15
|
-
|
|
15
|
+
|
|
16
|
+
try:
|
|
17
|
+
from lightning.pytorch.plugins import PLUGIN_INPUT
|
|
18
|
+
except ImportError:
|
|
19
|
+
from lightning.pytorch.plugins import _PLUGIN_INPUT as PLUGIN_INPUT
|
|
16
20
|
|
|
17
21
|
from .callback import NilCallback, LrLogger, EpochNumLogger, EpochTimeLogger, GpuStatsLogger, SystemStatsLogger
|
|
18
22
|
|
tensorneko/util/__init__.py
CHANGED
|
@@ -9,7 +9,7 @@ from . import type
|
|
|
9
9
|
from .configuration import Configuration
|
|
10
10
|
from .misc import reduce_dict_by, summarize_dict_by, with_printed_shape, is_bad_num, count_parameters, compose, \
|
|
11
11
|
generate_inf_seq, listdir, with_printed, ifelse, dict_add, as_list, identity, list_to_dict, circular_pad, \
|
|
12
|
-
load_py, try_until_success
|
|
12
|
+
load_py, try_until_success, sample_indexes
|
|
13
13
|
from .misc import get_tensorneko_path
|
|
14
14
|
from .dispatched_misc import sparse2binary, binary2sparse
|
|
15
15
|
from .reproducibility import Seed
|
|
@@ -71,6 +71,7 @@ __all__ = [
|
|
|
71
71
|
"circular_pad",
|
|
72
72
|
"load_py",
|
|
73
73
|
"try_until_success",
|
|
74
|
+
"sample_indexes",
|
|
74
75
|
"download_file",
|
|
75
76
|
"WindowMerger",
|
|
76
77
|
]
|
tensorneko/util/configuration.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
3
|
from abc import ABC, abstractmethod
|
|
4
|
-
from typing import
|
|
4
|
+
from typing import Generic
|
|
5
5
|
|
|
6
|
+
from tensorneko_util.util.type import T
|
|
6
7
|
|
|
7
|
-
|
|
8
|
+
|
|
9
|
+
class Configuration(ABC, Generic[T]):
|
|
8
10
|
"""
|
|
9
11
|
Configuration base abstract class.
|
|
10
12
|
|
|
@@ -55,7 +57,7 @@ class Configuration(ABC):
|
|
|
55
57
|
return iter((*self.args, *self.kwargs.values()))
|
|
56
58
|
|
|
57
59
|
@abstractmethod
|
|
58
|
-
def build(self) ->
|
|
60
|
+
def build(self) -> T:
|
|
59
61
|
"""
|
|
60
62
|
A method to build an object.
|
|
61
63
|
|
tensorneko/util/misc.py
CHANGED
|
@@ -9,7 +9,7 @@ from torch import Tensor
|
|
|
9
9
|
from torch.nn import Module
|
|
10
10
|
|
|
11
11
|
from tensorneko_util.util.misc import generate_inf_seq, listdir, with_printed, ifelse, dict_add, as_list, \
|
|
12
|
-
identity, list_to_dict, compose, circular_pad, load_py, try_until_success
|
|
12
|
+
identity, list_to_dict, compose, circular_pad, load_py, try_until_success, sample_indexes
|
|
13
13
|
from .type import T, A
|
|
14
14
|
|
|
15
15
|
|
|
@@ -165,3 +165,4 @@ list_to_dict = list_to_dict
|
|
|
165
165
|
circular_pad = circular_pad
|
|
166
166
|
load_py = load_py
|
|
167
167
|
try_until_success = try_until_success
|
|
168
|
+
sample_indexes = sample_indexes
|
tensorneko/util/type.py
CHANGED
tensorneko/version.txt
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
0.3.
|
|
1
|
+
0.3.6
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: tensorneko
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.6
|
|
4
4
|
Summary: Tensor Neural Engine Kompanion. An util library based on PyTorch and PyTorch Lightning.
|
|
5
5
|
Home-page: https://github.com/ControlNet/tensorneko
|
|
6
6
|
Author: ControlNet
|
|
@@ -33,7 +33,7 @@ Requires-Dist: pillow >=8.1
|
|
|
33
33
|
Requires-Dist: av >=8.0.3
|
|
34
34
|
Requires-Dist: numpy >=1.20.1
|
|
35
35
|
Requires-Dist: einops >=0.3.0
|
|
36
|
-
Requires-Dist: tensorneko-util ==0.3.
|
|
36
|
+
Requires-Dist: tensorneko-util ==0.3.6
|
|
37
37
|
Requires-Dist: pysoundfile >=0.9.0 ; platform_system == "Windows"
|
|
38
38
|
|
|
39
39
|
<h1 style="text-align: center">TensorNeko</h1>
|
|
@@ -50,7 +50,7 @@ Requires-Dist: pysoundfile >=0.9.0 ; platform_system == "Windows"
|
|
|
50
50
|
<div align="center">
|
|
51
51
|
<a href="https://www.python.org/"><img src="https://img.shields.io/pypi/pyversions/tensorneko?style=flat-square"></a>
|
|
52
52
|
<a href="https://pytorch.org/"><img src="https://img.shields.io/badge/PyTorch-%3E%3D1.9.0-EE4C2C?style=flat-square&logo=pytorch"></a>
|
|
53
|
-
<a href="https://www.pytorchlightning.ai/"><img src="https://img.shields.io/badge/Lightning-2.0
|
|
53
|
+
<a href="https://www.pytorchlightning.ai/"><img src="https://img.shields.io/badge/Lightning-2.0.*%20|%202.1.*-792EE5?style=flat-square&logo=lightning"></a>
|
|
54
54
|
</div>
|
|
55
55
|
|
|
56
56
|
<div align="center">
|
|
@@ -1,11 +1,11 @@
|
|
|
1
1
|
tensorneko/__init__.py,sha256=VPPK00Kduwi84QHnZKBZm8kBRdnPAji6f7J-adYAp_Y,770
|
|
2
2
|
tensorneko/neko_model.py,sha256=5ZE4Kh8pFBcdrq0uERZTawE3PDP9jokD2QapC2s8-gc,10145
|
|
3
3
|
tensorneko/neko_module.py,sha256=qELXvguSjWo_NvcRQibiFl0Qauzd9JWLSnT4dbGNS3Y,1473
|
|
4
|
-
tensorneko/neko_trainer.py,sha256=
|
|
5
|
-
tensorneko/version.txt,sha256=
|
|
4
|
+
tensorneko/neko_trainer.py,sha256=JC8qoKSZ5ngz3grf3S0SjvIFVktDIP_GExth5aFfbGA,10074
|
|
5
|
+
tensorneko/version.txt,sha256=c0yfowy-iqAhxsKbKQbn6GFeVjHOyTqrhcrsDPFq_Ok,5
|
|
6
6
|
tensorneko/arch/__init__.py,sha256=w4lTUeyBIZelrnSjlBFWUF0erzOmBFl9FqeWQuSOyKs,248
|
|
7
7
|
tensorneko/arch/auto_encoder.py,sha256=j6PWWyaNYaYNtw_zZ9ikzhCASqe9viXR3JGBIXSK92Y,2137
|
|
8
|
-
tensorneko/arch/binary_classifier.py,sha256=
|
|
8
|
+
tensorneko/arch/binary_classifier.py,sha256=x3fQxQ0igyQ48mPB6vjPcDI38Q9WsbBJ--eOpldzgeI,2159
|
|
9
9
|
tensorneko/arch/gan.py,sha256=ZAw6bNBXuTWmmC5rKpa7jgMisfpX-ti7gzyYkkh0_ls,7205
|
|
10
10
|
tensorneko/arch/vqvae.py,sha256=02bHKJljBg6DTUfghxS3k-T5nOgYknhDU1Em0nirsj0,3730
|
|
11
11
|
tensorneko/arch/wgan.py,sha256=k88x3ZtqqqKc0pIv6hiVqhpq-SitrVxrl7q8Etyqmpo,4712
|
|
@@ -15,10 +15,10 @@ tensorneko/callback/display_metrics_callback.py,sha256=qzhHcb68B7o9byfD1ZqEitSVk
|
|
|
15
15
|
tensorneko/callback/earlystop_lr.py,sha256=mL27eghHXigohA3FZgcy7vObxXiaqHHoYkzw7dsgLf8,1181
|
|
16
16
|
tensorneko/callback/epoch_num_logger.py,sha256=54BzG_Ez7hZHgx9Xvc4c42lMs9oppZivaEZIzIzaiYA,456
|
|
17
17
|
tensorneko/callback/epoch_time_logger.py,sha256=PwOFvlkYk1mkGzpBF__FMzNMGPyKaZRyCQN2DeG0kMQ,645
|
|
18
|
-
tensorneko/callback/gpu_stats_logger.py,sha256=
|
|
18
|
+
tensorneko/callback/gpu_stats_logger.py,sha256=vhX0uElDEDeoNrTl-hYdKhfMkE7pw4rdhmw6d8DEfeo,3420
|
|
19
19
|
tensorneko/callback/lr_logger.py,sha256=4nC_teyCX3wmlELrJPq3TGrt2KssRpmgDRyep0h2J2c,605
|
|
20
20
|
tensorneko/callback/nil_callback.py,sha256=-vKhOG3Ysv_ZToOdyYEkcZ8h0so9rBRY10f1OIoHeZs,131
|
|
21
|
-
tensorneko/callback/system_stats_logger.py,sha256=
|
|
21
|
+
tensorneko/callback/system_stats_logger.py,sha256=RGiVz24N9P0I_-M9gmouGNjwvLwmFZd_ifSCsw-yZvc,1754
|
|
22
22
|
tensorneko/dataset/__init__.py,sha256=6980ci9Ce57HSyhzrKMJfDz31PCQxifVz1aSf63JEsA,247
|
|
23
23
|
tensorneko/dataset/list_dataset.py,sha256=oo_cbGJHRlNG-6HyDsc-fqcexpSyRJLZNQb5Hs5Tfjc,396
|
|
24
24
|
tensorneko/dataset/nested_dataset.py,sha256=qUwyEmEcvSoCWkGfg_9m8liaHPVcFzX50mCq64iUsRo,942
|
|
@@ -28,7 +28,7 @@ tensorneko/dataset/sampler/sequential_iter_sampler.py,sha256=cx76cZjnV2Hk80Urc6L
|
|
|
28
28
|
tensorneko/debug/__init__.py,sha256=ZMfU3qquhMhl6EgPzM7Yuvvv0PWy3cR39UjPrrSmQcs,163
|
|
29
29
|
tensorneko/evaluation/__init__.py,sha256=jW8dh1JRMpx3npjTp7wJLzz-IxFZTBh7F-Ztfoep9xs,296
|
|
30
30
|
tensorneko/evaluation/enum.py,sha256=s3P8XAobku-as4in5vh6BanvVW5Ccwnff0t124lVFFg,137
|
|
31
|
-
tensorneko/evaluation/fid.py,sha256=
|
|
31
|
+
tensorneko/evaluation/fid.py,sha256=mDsgh7Ge7K8KrOLeWnSEVzzKfdCK0cI9TAWJJd5eqcQ,5550
|
|
32
32
|
tensorneko/evaluation/iou.py,sha256=phEmOWQ3cnWW377WeSHCoB8mGkHLHMHCl8_LL0IX3JA,2914
|
|
33
33
|
tensorneko/evaluation/psnr.py,sha256=DeKxvY_xxawWMXHY0z3Nvbsi4dR57OUV4hjtUoCINXc,3757
|
|
34
34
|
tensorneko/evaluation/secs.py,sha256=D710GgcSxQgbGyPcWlC5ffF5n1GselLrUr5aA5Vq7oE,1622
|
|
@@ -69,20 +69,20 @@ tensorneko/preprocess/enum.py,sha256=Wp5qFaUjea5XU4o3N0WxUd-qfzI-m5vr4ZWSqWjELb4
|
|
|
69
69
|
tensorneko/preprocess/pad.py,sha256=b4IbbhGNRotZ7weZcKA7hfDqSixPo5KjM6khnqzaeUA,3238
|
|
70
70
|
tensorneko/preprocess/resize.py,sha256=hitMlzVnN6n_8nEJwxy4C4ErZrTwpM86QGnYewsrmf8,3469
|
|
71
71
|
tensorneko/preprocess/face_detector/__init__.py,sha256=_ktIfUZqGTX0hk7RBgKf-zHwG2n9KRH4RS7rjuOI8Bo,262
|
|
72
|
-
tensorneko/util/__init__.py,sha256
|
|
73
|
-
tensorneko/util/configuration.py,sha256=
|
|
72
|
+
tensorneko/util/__init__.py,sha256=OviNLx2sXtQh6-mqjFEoph40UVhG_dnqAfGVcmrq7K4,2044
|
|
73
|
+
tensorneko/util/configuration.py,sha256=xXeAjDh1FCNTmSPwDdkL-uH-ULfzFF6Fg0LT7gsZ6nQ,2510
|
|
74
74
|
tensorneko/util/dispatched_misc.py,sha256=_0Go7XezdYB7bpMnCs1MDD_6mPNoWP5qt8DoKuPxynI,997
|
|
75
|
-
tensorneko/util/misc.py,sha256=
|
|
75
|
+
tensorneko/util/misc.py,sha256=LEvACtGDOX43iK86A8-Cek0S9rbXFR0AtTP1edE3XDI,4701
|
|
76
76
|
tensorneko/util/reproducibility.py,sha256=sw1vVi7VOnmzQYUocI5x9yKeZoHHiA4A5ja136XolrI,2102
|
|
77
77
|
tensorneko/util/string_getter.py,sha256=Cq2mDYr3q758xJ9OBTwLDf-b6EMSYwlnNB0-kfsElfs,2491
|
|
78
|
-
tensorneko/util/type.py,sha256=
|
|
78
|
+
tensorneko/util/type.py,sha256=IaLpRQ5l8Ci6FZaGRohIb1ygrnJ3NTalomxDbhz68VM,716
|
|
79
79
|
tensorneko/visualization/__init__.py,sha256=PuNMhLz3oosY39AmKUr0biIgjfc_G_rQzp960me08Fg,626
|
|
80
80
|
tensorneko/visualization/log_graph.py,sha256=NvOwWVc_petXWYdgaHosPFLa43sHBeacbYcfNtdRQg4,1511
|
|
81
81
|
tensorneko/visualization/matplotlib.py,sha256=xs9Ssc44ojZX65QU8-fftA7Ug_pBuZ3TBtM8vETNq9w,1568
|
|
82
82
|
tensorneko/visualization/image_browser/__init__.py,sha256=AtykhAE3bXQS6SOWbeYFeeUE9ts9XOFMvrL31z0LoMg,63
|
|
83
83
|
tensorneko/visualization/watcher/__init__.py,sha256=Nq752qIYvfRUZ8VctKQRSqhxh5KmFbWcqPfZlijVx6s,379
|
|
84
|
-
tensorneko-0.3.
|
|
85
|
-
tensorneko-0.3.
|
|
86
|
-
tensorneko-0.3.
|
|
87
|
-
tensorneko-0.3.
|
|
88
|
-
tensorneko-0.3.
|
|
84
|
+
tensorneko-0.3.6.dist-info/LICENSE,sha256=Vd75kwgJpVuMnCRBWasQzceMlXt4YQL13ikBLy8G5h0,1067
|
|
85
|
+
tensorneko-0.3.6.dist-info/METADATA,sha256=hjmVydZW60cgUcxWrx07q9ohUPwcfl7Yl-aZmCuiI3o,18892
|
|
86
|
+
tensorneko-0.3.6.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
|
|
87
|
+
tensorneko-0.3.6.dist-info/top_level.txt,sha256=sZHwlP0iyk7_zHuhRHzSBkdY9yEgyC48f6UVuZ6CvqE,11
|
|
88
|
+
tensorneko-0.3.6.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|