tensorneko 0.3.21__py3-none-any.whl → 0.3.22__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,21 @@
1
+ from typing import overload
2
+
3
+ from torch import Tensor
4
+
5
+ from .enum import Reduction
6
+
7
+
8
+ @overload
9
+ def psnr_image(pred: str, real: str) -> Tensor: ...
10
+
11
+
12
+ @overload
13
+ def psnr_image(pred: Tensor, real: Tensor, reduction: Reduction = Reduction.MEAN) -> Tensor: ...
14
+
15
+
16
+ @overload
17
+ def psnr_video(pred: str, real: str, use_ffmpeg: bool = False) -> Tensor: ...
18
+
19
+
20
+ @overload
21
+ def psnr_video(pred: Tensor, real: Tensor) -> Tensor: ...
@@ -0,0 +1,21 @@
1
+ from typing import overload
2
+
3
+ from torch import Tensor
4
+
5
+ from .enum import Reduction
6
+
7
+
8
+ @overload
9
+ def ssim_image(pred: str, real: str) -> Tensor: ...
10
+
11
+
12
+ @overload
13
+ def ssim_image(pred: Tensor, real: Tensor, reduction: Reduction = Reduction.MEAN) -> Tensor: ...
14
+
15
+
16
+ @overload
17
+ def ssim_video(pred: str, real: str, use_ffmpeg: bool = False) -> Tensor: ...
18
+
19
+
20
+ @overload
21
+ def ssim_video(pred: Tensor, real: Tensor) -> Tensor: ...
@@ -0,0 +1,16 @@
1
+ from typing import overload, Union
2
+
3
+ from numpy import ndarray
4
+ from torch import Tensor
5
+
6
+
7
+ @overload
8
+ def crop_with_padding(image: ndarray, x1: int, x2: int, y1: int, y2: int, pad_value: Union[int, float] = 0.,
9
+ batch: bool = False
10
+ ) -> ndarray: ...
11
+
12
+
13
+ @overload
14
+ def crop_with_padding(image: Tensor, x1: int, x2: int, y1: int, y2: int, pad_value: Union[int, float] = 0.,
15
+ batch: bool = False
16
+ ) -> Tensor: ...
@@ -0,0 +1,34 @@
1
+ from typing import overload, List
2
+
3
+ from numpy import ndarray
4
+ from torch import Tensor
5
+
6
+
7
+ @overload
8
+ def sparse2binary(x: Tensor, length: int = None) -> Tensor:
9
+ ...
10
+
11
+
12
+ @overload
13
+ def sparse2binary(x: ndarray, length: int = None) -> ndarray:
14
+ ...
15
+
16
+
17
+ @overload
18
+ def sparse2binary(x: List[int], length: int = None) -> ndarray:
19
+ ...
20
+
21
+
22
+ @overload
23
+ def binary2sparse(x: Tensor) -> Tensor:
24
+ ...
25
+
26
+
27
+ @overload
28
+ def binary2sparse(x: ndarray) -> ndarray:
29
+ ...
30
+
31
+
32
+ @overload
33
+ def binary2sparse(x: List[int]) -> List[int]:
34
+ ...
tensorneko/version.txt CHANGED
@@ -1 +1 @@
1
- 0.3.21
1
+ 0.3.22
@@ -1,21 +1,20 @@
1
- Metadata-Version: 2.1
1
+ Metadata-Version: 2.4
2
2
  Name: tensorneko
3
- Version: 0.3.21
3
+ Version: 0.3.22
4
4
  Summary: Tensor Neural Engine Kompanion. An util library based on PyTorch and PyTorch Lightning.
5
5
  Home-page: https://github.com/ControlNet/tensorneko
6
6
  Author: ControlNet
7
7
  Author-email: smczx@hotmail.com
8
- License: UNKNOWN
9
8
  Project-URL: Bug Tracker, https://github.com/ControlNet/tensorneko/issues
10
9
  Project-URL: Source Code, https://github.com/ControlNet/tensorneko
11
10
  Keywords: deep learning,pytorch,AI,data processing
12
- Platform: UNKNOWN
13
11
  Classifier: Programming Language :: Python :: 3
14
12
  Classifier: Programming Language :: Python :: 3.8
15
13
  Classifier: Programming Language :: Python :: 3.9
16
14
  Classifier: Programming Language :: Python :: 3.10
17
15
  Classifier: Programming Language :: Python :: 3.11
18
16
  Classifier: Programming Language :: Python :: 3.12
17
+ Classifier: Programming Language :: Python :: 3.13
19
18
  Classifier: License :: OSI Approved :: MIT License
20
19
  Classifier: Operating System :: OS Independent
21
20
  Classifier: Intended Audience :: Developers
@@ -23,19 +22,33 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
23
22
  Classifier: Topic :: Utilities
24
23
  Requires-Python: >=3.8
25
24
  Description-Content-Type: text/markdown
26
- Requires-Dist: av (>=8.0.3)
27
- Requires-Dist: einops (>=0.3.0)
28
- Requires-Dist: numpy (>=1.20.1)
29
- Requires-Dist: pillow (>=8.1)
30
- Requires-Dist: tensorneko-util (==0.3.21)
31
- Requires-Dist: torch (>=1.9.0)
32
- Requires-Dist: torchaudio (>=0.9.0)
33
- Requires-Dist: torchmetrics (>=0.7.3)
34
- Requires-Dist: torchvision (>=0.10.0)
35
- Requires-Dist: pysoundfile (>=0.9.0) ; platform_system == "Windows"
25
+ License-File: LICENSE
26
+ Requires-Dist: torch>=1.9.0
27
+ Requires-Dist: torchaudio>=0.9.0
28
+ Requires-Dist: torchvision>=0.10.0
29
+ Requires-Dist: torchmetrics>=0.7.3
30
+ Requires-Dist: pillow>=8.1
31
+ Requires-Dist: av>=8.0.3
32
+ Requires-Dist: pysoundfile>=0.9.0; platform_system == "Windows"
33
+ Requires-Dist: numpy>=1.20.1
34
+ Requires-Dist: einops>=0.3.0
35
+ Requires-Dist: tensorneko_util==0.3.22
36
36
  Provides-Extra: lightning
37
- Requires-Dist: lightning (<3,>=2.0) ; extra == 'lightning'
38
- Requires-Dist: tensorboard (>=2.0.0) ; extra == 'lightning'
37
+ Requires-Dist: tensorboard>=2.0.0; extra == "lightning"
38
+ Requires-Dist: lightning<3,>=2.0; extra == "lightning"
39
+ Dynamic: author
40
+ Dynamic: author-email
41
+ Dynamic: classifier
42
+ Dynamic: description
43
+ Dynamic: description-content-type
44
+ Dynamic: home-page
45
+ Dynamic: keywords
46
+ Dynamic: license-file
47
+ Dynamic: project-url
48
+ Dynamic: provides-extra
49
+ Dynamic: requires-dist
50
+ Dynamic: requires-python
51
+ Dynamic: summary
39
52
 
40
53
  <h1 style="text-align: center">TensorNeko</h1>
41
54
 
@@ -71,7 +84,7 @@ pip install tensorneko # for PyTorch only
71
84
  pip install tensorneko[lightning] # for PyTorch and Lightning
72
85
  ```
73
86
 
74
- To use the library without PyTorch and PyTorch Lightning, you can install the util library (support Python 3.7 ~ 3.12 with limited features) with following command.
87
+ To use the library without PyTorch and PyTorch Lightning, you can install the util library (support Python 3.7 ~ 3.13 with limited features) with following command.
75
88
  ```shell
76
89
  pip install tensorneko_util
77
90
  ```
@@ -276,7 +289,7 @@ t0 = time.time()
276
289
  with Server(view, port=8000):
277
290
  for i, data in enumerate(data_list):
278
291
  preprocessing(data) # do some processing here
279
-
292
+
280
293
  x = time.time() - t0 # time since the start of the program
281
294
  y = i # processed number of data
282
295
  line_chart.add(x, y) # add to the line chart
@@ -525,7 +538,7 @@ def process_data(n: int):
525
538
  return n
526
539
  else:
527
540
  return None
528
-
541
+
529
542
 
530
543
  data = get_data()
531
544
  data = data.map(process_data).get_or_else(-1) # if the response is None, return -1
@@ -734,5 +747,3 @@ The `gotify` can send a message to the Gotify server, with the environment varia
734
747
  ```shell
735
748
  tensorneko gotify "Script finished!"
736
749
  ```
737
-
738
-
@@ -2,7 +2,7 @@ tensorneko/__init__.py,sha256=uh1HNn1sNpX1bbOqAE_kNJfrH4eMtEzus0hO-Fh9tEw,990
2
2
  tensorneko/neko_model.py,sha256=hUMi7puzxW_6FOpA1jiFN1__oO5DZPlhhp3WXqhJXgg,10581
3
3
  tensorneko/neko_module.py,sha256=qELXvguSjWo_NvcRQibiFl0Qauzd9JWLSnT4dbGNS3Y,1473
4
4
  tensorneko/neko_trainer.py,sha256=GqdRsPkzWj36DJ_Wroe1TI6QKlk3N8Q8gK4uEnI0w9Q,10190
5
- tensorneko/version.txt,sha256=UfuS4cRkfbFuN1IeX9oKpvyZc11Pi5MXqTuYUmK9f5I,7
5
+ tensorneko/version.txt,sha256=6OtxZVjxPBSh3JDaCbhkG17yxSVMldJs7t7a1E9-Q58,7
6
6
  tensorneko/arch/__init__.py,sha256=w4lTUeyBIZelrnSjlBFWUF0erzOmBFl9FqeWQuSOyKs,248
7
7
  tensorneko/arch/auto_encoder.py,sha256=j6PWWyaNYaYNtw_zZ9ikzhCASqe9viXR3JGBIXSK92Y,2137
8
8
  tensorneko/arch/binary_classifier.py,sha256=1MkEbReXKLdDksRG5Rsife40grJk08EVDcNKp54Xvb4,2316
@@ -31,8 +31,10 @@ tensorneko/evaluation/enum.py,sha256=s3P8XAobku-as4in5vh6BanvVW5Ccwnff0t124lVFFg
31
31
  tensorneko/evaluation/fid.py,sha256=fNuE1CEp2rPXbaZfI0E1CspluInzFlUdKc8XZEexUME,5568
32
32
  tensorneko/evaluation/iou.py,sha256=phEmOWQ3cnWW377WeSHCoB8mGkHLHMHCl8_LL0IX3JA,2914
33
33
  tensorneko/evaluation/psnr.py,sha256=DeKxvY_xxawWMXHY0z3Nvbsi4dR57OUV4hjtUoCINXc,3757
34
+ tensorneko/evaluation/psnr.pyi,sha256=aRGK9JEyXGyK3Wc247xFiajocOP-ukvvXub6yUji2CQ,416
34
35
  tensorneko/evaluation/secs.py,sha256=D710GgcSxQgbGyPcWlC5ffF5n1GselLrUr5aA5Vq7oE,1622
35
36
  tensorneko/evaluation/ssim.py,sha256=6vPS4VQqoKxHOG49lChH51KxwNo07B4XHdhLub5DEPU,3758
37
+ tensorneko/evaluation/ssim.pyi,sha256=I5vGo2KiPajl-z_VRwAHVLF4UIrrEKBdyiY2Gq3NOJw,416
36
38
  tensorneko/io/__init__.py,sha256=QEyA0mOC-BlKKskYYbDYttYWWRjCeh73lX-yKAUGNik,213
37
39
  tensorneko/io/reader.py,sha256=DSeTGLh84sFYwCwJmNTr-fGWkluudCbf7je29t0Z2U8,1303
38
40
  tensorneko/io/writer.py,sha256=BR_1h-wXekBdctXymJBU44HoWsKxPhbbh6N3AKYNkjE,1292
@@ -69,6 +71,7 @@ tensorneko/optim/__init__.py,sha256=89XjYQICij8SkrW5iryfZgmbxcTDxA3hhVZTgR4588o,
69
71
  tensorneko/optim/lr_scheduler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
70
72
  tensorneko/preprocess/__init__.py,sha256=0Z0eA3_I2wphyyZlzZYRrx2muWTF0QMFq2Y-jh8oVKU,808
71
73
  tensorneko/preprocess/crop.py,sha256=Y9eWyYdzasQK3US2uBP_sUO9bPVedik0pnrrl006zZ4,2732
74
+ tensorneko/preprocess/crop.pyi,sha256=Aq_ywCG4ovcopH5-sj8ZVLchLgfpnt0z9cvSPccWHn8,411
72
75
  tensorneko/preprocess/enum.py,sha256=Wp5qFaUjea5XU4o3N0WxUd-qfzI-m5vr4ZWSqWjELb4,874
73
76
  tensorneko/preprocess/pad.py,sha256=b4IbbhGNRotZ7weZcKA7hfDqSixPo5KjM6khnqzaeUA,3238
74
77
  tensorneko/preprocess/resize.py,sha256=hitMlzVnN6n_8nEJwxy4C4ErZrTwpM86QGnYewsrmf8,3469
@@ -76,6 +79,7 @@ tensorneko/preprocess/face_detector/__init__.py,sha256=_ktIfUZqGTX0hk7RBgKf-zHwG
76
79
  tensorneko/util/__init__.py,sha256=39G34a2k5ktVtBAh4N4RMsePEak5rzPDhbNNdXo-Ye4,2258
77
80
  tensorneko/util/configuration.py,sha256=xXeAjDh1FCNTmSPwDdkL-uH-ULfzFF6Fg0LT7gsZ6nQ,2510
78
81
  tensorneko/util/dispatched_misc.py,sha256=_0Go7XezdYB7bpMnCs1MDD_6mPNoWP5qt8DoKuPxynI,997
82
+ tensorneko/util/dispatched_misc.pyi,sha256=K8qZehCayr-nQIifK0w2Kp6pjVQ9uiJ0ZvxF7G5VxPA,520
79
83
  tensorneko/util/gc.py,sha256=P3bOZ-2VUNyswnfVz5xfj__ecTSAHpu_kLp2wFcpb6M,185
80
84
  tensorneko/util/misc.py,sha256=LEvACtGDOX43iK86A8-Cek0S9rbXFR0AtTP1edE3XDI,4701
81
85
  tensorneko/util/reproducibility.py,sha256=sw1vVi7VOnmzQYUocI5x9yKeZoHHiA4A5ja136XolrI,2102
@@ -86,8 +90,8 @@ tensorneko/visualization/log_graph.py,sha256=NvOwWVc_petXWYdgaHosPFLa43sHBeacbYc
86
90
  tensorneko/visualization/matplotlib.py,sha256=xs9Ssc44ojZX65QU8-fftA7Ug_pBuZ3TBtM8vETNq9w,1568
87
91
  tensorneko/visualization/image_browser/__init__.py,sha256=AtykhAE3bXQS6SOWbeYFeeUE9ts9XOFMvrL31z0LoMg,63
88
92
  tensorneko/visualization/watcher/__init__.py,sha256=Nq752qIYvfRUZ8VctKQRSqhxh5KmFbWcqPfZlijVx6s,379
89
- tensorneko-0.3.21.dist-info/LICENSE,sha256=Vd75kwgJpVuMnCRBWasQzceMlXt4YQL13ikBLy8G5h0,1067
90
- tensorneko-0.3.21.dist-info/METADATA,sha256=Wc-2VJsFvNoT8f5d4rliimhmpxRAug5aVBmOL5TahQY,20813
91
- tensorneko-0.3.21.dist-info/WHEEL,sha256=g4nMs7d-Xl9-xC9XovUrsDHGXt-FT0E17Yqo92DEfvY,92
92
- tensorneko-0.3.21.dist-info/top_level.txt,sha256=sZHwlP0iyk7_zHuhRHzSBkdY9yEgyC48f6UVuZ6CvqE,11
93
- tensorneko-0.3.21.dist-info/RECORD,,
93
+ tensorneko-0.3.22.dist-info/licenses/LICENSE,sha256=Vd75kwgJpVuMnCRBWasQzceMlXt4YQL13ikBLy8G5h0,1067
94
+ tensorneko-0.3.22.dist-info/METADATA,sha256=B0Hzs1YnIRVHChwNAabMoYfpQ1NoyjuYmiRpsRNDHGc,21104
95
+ tensorneko-0.3.22.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
96
+ tensorneko-0.3.22.dist-info/top_level.txt,sha256=sZHwlP0iyk7_zHuhRHzSBkdY9yEgyC48f6UVuZ6CvqE,11
97
+ tensorneko-0.3.22.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: bdist_wheel (0.34.2)
2
+ Generator: setuptools (79.0.1)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5