tensorneko 0.3.20__py3-none-any.whl → 0.3.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tensorneko/dataset/list_dataset.py +8 -1
- tensorneko/dataset/nested_dataset.py +8 -1
- tensorneko/dataset/round_robin_dataset.py +7 -1
- tensorneko/dataset/sampler/sequential_iter_sampler.py +8 -1
- tensorneko/evaluation/psnr.pyi +21 -0
- tensorneko/evaluation/ssim.pyi +21 -0
- tensorneko/msg/__init__.py +8 -2
- tensorneko/neko_trainer.py +2 -0
- tensorneko/preprocess/crop.pyi +16 -0
- tensorneko/util/dispatched_misc.pyi +34 -0
- tensorneko/version.txt +1 -1
- {tensorneko-0.3.20.dist-info → tensorneko-0.3.22.dist-info}/METADATA +69 -30
- {tensorneko-0.3.20.dist-info → tensorneko-0.3.22.dist-info}/RECORD +16 -12
- {tensorneko-0.3.20.dist-info → tensorneko-0.3.22.dist-info}/WHEEL +1 -1
- {tensorneko-0.3.20.dist-info → tensorneko-0.3.22.dist-info/licenses}/LICENSE +0 -0
- {tensorneko-0.3.20.dist-info → tensorneko-0.3.22.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,13 @@
|
|
|
1
1
|
from typing import List
|
|
2
2
|
|
|
3
|
-
from torch.utils.data.dataset import Dataset
|
|
3
|
+
from torch.utils.data.dataset import Dataset
|
|
4
|
+
|
|
5
|
+
try:
|
|
6
|
+
# for pytorch < 2.5
|
|
7
|
+
from torch.utils.data.dataset import T_co
|
|
8
|
+
except ImportError:
|
|
9
|
+
# For pytorch >= 2.5
|
|
10
|
+
from torch.utils.data.dataset import _T_co as T_co
|
|
4
11
|
|
|
5
12
|
|
|
6
13
|
class ListDataset(Dataset[T_co]):
|
|
@@ -2,7 +2,14 @@ from abc import abstractmethod, ABC
|
|
|
2
2
|
from typing import Tuple
|
|
3
3
|
|
|
4
4
|
import numpy as np
|
|
5
|
-
from torch.utils.data.dataset import Dataset
|
|
5
|
+
from torch.utils.data.dataset import Dataset
|
|
6
|
+
|
|
7
|
+
try:
|
|
8
|
+
# for pytorch < 2.5
|
|
9
|
+
from torch.utils.data.dataset import T_co
|
|
10
|
+
except ImportError:
|
|
11
|
+
# For pytorch >= 2.5
|
|
12
|
+
from torch.utils.data.dataset import _T_co as T_co
|
|
6
13
|
|
|
7
14
|
|
|
8
15
|
class NestedDataset(Dataset[T_co], ABC):
|
|
@@ -2,7 +2,13 @@ import random
|
|
|
2
2
|
from typing import List, Optional
|
|
3
3
|
|
|
4
4
|
from torch.utils.data import Dataset
|
|
5
|
-
|
|
5
|
+
|
|
6
|
+
try:
|
|
7
|
+
# for pytorch < 2.5
|
|
8
|
+
from torch.utils.data.dataset import T_co
|
|
9
|
+
except ImportError:
|
|
10
|
+
# For pytorch >= 2.5
|
|
11
|
+
from torch.utils.data.dataset import _T_co as T_co
|
|
6
12
|
|
|
7
13
|
from ..util import circular_pad
|
|
8
14
|
|
|
@@ -1,6 +1,13 @@
|
|
|
1
1
|
from typing import Sized
|
|
2
2
|
|
|
3
|
-
from torch.utils.data.sampler import Sampler
|
|
3
|
+
from torch.utils.data.sampler import Sampler
|
|
4
|
+
|
|
5
|
+
try:
|
|
6
|
+
# for pytorch < 2.5
|
|
7
|
+
from torch.utils.data.sampler import T_co
|
|
8
|
+
except ImportError:
|
|
9
|
+
# For pytorch >= 2.5
|
|
10
|
+
from torch.utils.data.sampler import _T_co as T_co
|
|
4
11
|
|
|
5
12
|
|
|
6
13
|
class SequentialIterSampler(Sampler[T_co]):
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
from typing import overload
|
|
2
|
+
|
|
3
|
+
from torch import Tensor
|
|
4
|
+
|
|
5
|
+
from .enum import Reduction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@overload
|
|
9
|
+
def psnr_image(pred: str, real: str) -> Tensor: ...
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@overload
|
|
13
|
+
def psnr_image(pred: Tensor, real: Tensor, reduction: Reduction = Reduction.MEAN) -> Tensor: ...
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@overload
|
|
17
|
+
def psnr_video(pred: str, real: str, use_ffmpeg: bool = False) -> Tensor: ...
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@overload
|
|
21
|
+
def psnr_video(pred: Tensor, real: Tensor) -> Tensor: ...
|
|
@@ -0,0 +1,21 @@
|
|
|
1
|
+
from typing import overload
|
|
2
|
+
|
|
3
|
+
from torch import Tensor
|
|
4
|
+
|
|
5
|
+
from .enum import Reduction
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
@overload
|
|
9
|
+
def ssim_image(pred: str, real: str) -> Tensor: ...
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@overload
|
|
13
|
+
def ssim_image(pred: Tensor, real: Tensor, reduction: Reduction = Reduction.MEAN) -> Tensor: ...
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
@overload
|
|
17
|
+
def ssim_video(pred: str, real: str, use_ffmpeg: bool = False) -> Tensor: ...
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@overload
|
|
21
|
+
def ssim_video(pred: Tensor, real: Tensor) -> Tensor: ...
|
tensorneko/msg/__init__.py
CHANGED
tensorneko/neko_trainer.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
|
1
1
|
import os
|
|
2
|
+
import warnings
|
|
2
3
|
from datetime import timedelta
|
|
3
4
|
from time import time
|
|
4
5
|
from typing import Optional, Union, List, Dict
|
|
@@ -70,6 +71,7 @@ class NekoTrainer(Trainer):
|
|
|
70
71
|
callbacks = []
|
|
71
72
|
# build checkpoint callback or from user defined
|
|
72
73
|
if enable_checkpointing and len([c for c in callbacks if isinstance(c, Checkpoint)]) == 0:
|
|
74
|
+
warnings.warn("Checkpoint callback is not defined, using default checkpoint callback.")
|
|
73
75
|
# use default checkpoint callback
|
|
74
76
|
new_callback = ModelCheckpoint(
|
|
75
77
|
dirpath=os.path.join("logs", self.log_name, "checkpoints"),
|
|
@@ -0,0 +1,16 @@
|
|
|
1
|
+
from typing import overload, Union
|
|
2
|
+
|
|
3
|
+
from numpy import ndarray
|
|
4
|
+
from torch import Tensor
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@overload
|
|
8
|
+
def crop_with_padding(image: ndarray, x1: int, x2: int, y1: int, y2: int, pad_value: Union[int, float] = 0.,
|
|
9
|
+
batch: bool = False
|
|
10
|
+
) -> ndarray: ...
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@overload
|
|
14
|
+
def crop_with_padding(image: Tensor, x1: int, x2: int, y1: int, y2: int, pad_value: Union[int, float] = 0.,
|
|
15
|
+
batch: bool = False
|
|
16
|
+
) -> Tensor: ...
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
from typing import overload, List
|
|
2
|
+
|
|
3
|
+
from numpy import ndarray
|
|
4
|
+
from torch import Tensor
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@overload
|
|
8
|
+
def sparse2binary(x: Tensor, length: int = None) -> Tensor:
|
|
9
|
+
...
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@overload
|
|
13
|
+
def sparse2binary(x: ndarray, length: int = None) -> ndarray:
|
|
14
|
+
...
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@overload
|
|
18
|
+
def sparse2binary(x: List[int], length: int = None) -> ndarray:
|
|
19
|
+
...
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
@overload
|
|
23
|
+
def binary2sparse(x: Tensor) -> Tensor:
|
|
24
|
+
...
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@overload
|
|
28
|
+
def binary2sparse(x: ndarray) -> ndarray:
|
|
29
|
+
...
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@overload
|
|
33
|
+
def binary2sparse(x: List[int]) -> List[int]:
|
|
34
|
+
...
|
tensorneko/version.txt
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
0.3.
|
|
1
|
+
0.3.22
|
|
@@ -1,21 +1,20 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorneko
|
|
3
|
-
Version: 0.3.
|
|
3
|
+
Version: 0.3.22
|
|
4
4
|
Summary: Tensor Neural Engine Kompanion. An util library based on PyTorch and PyTorch Lightning.
|
|
5
5
|
Home-page: https://github.com/ControlNet/tensorneko
|
|
6
6
|
Author: ControlNet
|
|
7
7
|
Author-email: smczx@hotmail.com
|
|
8
|
-
License: UNKNOWN
|
|
9
8
|
Project-URL: Bug Tracker, https://github.com/ControlNet/tensorneko/issues
|
|
10
9
|
Project-URL: Source Code, https://github.com/ControlNet/tensorneko
|
|
11
10
|
Keywords: deep learning,pytorch,AI,data processing
|
|
12
|
-
Platform: UNKNOWN
|
|
13
11
|
Classifier: Programming Language :: Python :: 3
|
|
14
12
|
Classifier: Programming Language :: Python :: 3.8
|
|
15
13
|
Classifier: Programming Language :: Python :: 3.9
|
|
16
14
|
Classifier: Programming Language :: Python :: 3.10
|
|
17
15
|
Classifier: Programming Language :: Python :: 3.11
|
|
18
16
|
Classifier: Programming Language :: Python :: 3.12
|
|
17
|
+
Classifier: Programming Language :: Python :: 3.13
|
|
19
18
|
Classifier: License :: OSI Approved :: MIT License
|
|
20
19
|
Classifier: Operating System :: OS Independent
|
|
21
20
|
Classifier: Intended Audience :: Developers
|
|
@@ -23,19 +22,33 @@ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
|
23
22
|
Classifier: Topic :: Utilities
|
|
24
23
|
Requires-Python: >=3.8
|
|
25
24
|
Description-Content-Type: text/markdown
|
|
26
|
-
|
|
27
|
-
Requires-Dist:
|
|
28
|
-
Requires-Dist:
|
|
29
|
-
Requires-Dist:
|
|
30
|
-
Requires-Dist:
|
|
31
|
-
Requires-Dist:
|
|
32
|
-
Requires-Dist:
|
|
33
|
-
Requires-Dist:
|
|
34
|
-
Requires-Dist:
|
|
35
|
-
Requires-Dist:
|
|
25
|
+
License-File: LICENSE
|
|
26
|
+
Requires-Dist: torch>=1.9.0
|
|
27
|
+
Requires-Dist: torchaudio>=0.9.0
|
|
28
|
+
Requires-Dist: torchvision>=0.10.0
|
|
29
|
+
Requires-Dist: torchmetrics>=0.7.3
|
|
30
|
+
Requires-Dist: pillow>=8.1
|
|
31
|
+
Requires-Dist: av>=8.0.3
|
|
32
|
+
Requires-Dist: pysoundfile>=0.9.0; platform_system == "Windows"
|
|
33
|
+
Requires-Dist: numpy>=1.20.1
|
|
34
|
+
Requires-Dist: einops>=0.3.0
|
|
35
|
+
Requires-Dist: tensorneko_util==0.3.22
|
|
36
36
|
Provides-Extra: lightning
|
|
37
|
-
Requires-Dist:
|
|
38
|
-
Requires-Dist:
|
|
37
|
+
Requires-Dist: tensorboard>=2.0.0; extra == "lightning"
|
|
38
|
+
Requires-Dist: lightning<3,>=2.0; extra == "lightning"
|
|
39
|
+
Dynamic: author
|
|
40
|
+
Dynamic: author-email
|
|
41
|
+
Dynamic: classifier
|
|
42
|
+
Dynamic: description
|
|
43
|
+
Dynamic: description-content-type
|
|
44
|
+
Dynamic: home-page
|
|
45
|
+
Dynamic: keywords
|
|
46
|
+
Dynamic: license-file
|
|
47
|
+
Dynamic: project-url
|
|
48
|
+
Dynamic: provides-extra
|
|
49
|
+
Dynamic: requires-dist
|
|
50
|
+
Dynamic: requires-python
|
|
51
|
+
Dynamic: summary
|
|
39
52
|
|
|
40
53
|
<h1 style="text-align: center">TensorNeko</h1>
|
|
41
54
|
|
|
@@ -71,7 +84,7 @@ pip install tensorneko # for PyTorch only
|
|
|
71
84
|
pip install tensorneko[lightning] # for PyTorch and Lightning
|
|
72
85
|
```
|
|
73
86
|
|
|
74
|
-
To use the library without PyTorch and PyTorch Lightning, you can install the util library (support Python 3.7 ~ 3.
|
|
87
|
+
To use the library without PyTorch and PyTorch Lightning, you can install the util library (support Python 3.7 ~ 3.13 with limited features) with following command.
|
|
75
88
|
```shell
|
|
76
89
|
pip install tensorneko_util
|
|
77
90
|
```
|
|
@@ -88,7 +101,7 @@ pipx install tensorneko_tool # or `pip install tensorneko_tool`
|
|
|
88
101
|
|
|
89
102
|
Then you can use the CLI tools `tensorneko` in the terminal.
|
|
90
103
|
|
|
91
|
-
##
|
|
104
|
+
## Layers, Modules and Architectures
|
|
92
105
|
|
|
93
106
|
Build an MLP with linear layers. The activation and normalization will be placed in the hidden layers.
|
|
94
107
|
|
|
@@ -177,7 +190,7 @@ print(f(torch.rand(16)).shape)
|
|
|
177
190
|
# torch.Size([1])
|
|
178
191
|
```
|
|
179
192
|
|
|
180
|
-
##
|
|
193
|
+
## IO
|
|
181
194
|
|
|
182
195
|
Easily load and save different modal data.
|
|
183
196
|
|
|
@@ -227,7 +240,7 @@ neko.io.write.json("path/to/json.json", json_obj)
|
|
|
227
240
|
Besides, the read/write for `mat` and `pickle` files is also supported.
|
|
228
241
|
|
|
229
242
|
|
|
230
|
-
##
|
|
243
|
+
## Preprocessing
|
|
231
244
|
|
|
232
245
|
```python
|
|
233
246
|
import tensorneko as neko
|
|
@@ -254,7 +267,7 @@ if `ffmpeg` is available, you can use below ffmpeg wrappers.
|
|
|
254
267
|
- `resample_video_fps`
|
|
255
268
|
- `mp32wav`
|
|
256
269
|
|
|
257
|
-
##
|
|
270
|
+
## Visualization
|
|
258
271
|
|
|
259
272
|
### Variable Web Watcher
|
|
260
273
|
Start a web server to watch the variable status when the program (e.g. training, inference, data preprocessing) is running.
|
|
@@ -276,7 +289,7 @@ t0 = time.time()
|
|
|
276
289
|
with Server(view, port=8000):
|
|
277
290
|
for i, data in enumerate(data_list):
|
|
278
291
|
preprocessing(data) # do some processing here
|
|
279
|
-
|
|
292
|
+
|
|
280
293
|
x = time.time() - t0 # time since the start of the program
|
|
281
294
|
y = i # processed number of data
|
|
282
295
|
line_chart.add(x, y) # add to the line chart
|
|
@@ -405,14 +418,14 @@ trainer = neko.NekoTrainer(log_every_n_steps=100, gpus=1, logger=model.name, pre
|
|
|
405
418
|
trainer.fit(model, dm)
|
|
406
419
|
```
|
|
407
420
|
|
|
408
|
-
##
|
|
421
|
+
## Callbacks
|
|
409
422
|
|
|
410
423
|
Some simple but useful pytorch-lightning callbacks are provided.
|
|
411
424
|
|
|
412
425
|
- `DisplayMetricsCallback`
|
|
413
426
|
- `EarlyStoppingLR`: Early stop training when learning rate reaches threshold.
|
|
414
427
|
|
|
415
|
-
##
|
|
428
|
+
## Notebook Helpers
|
|
416
429
|
Here are some helper functions to better interact with Jupyter Notebook.
|
|
417
430
|
```python
|
|
418
431
|
import tensorneko as neko
|
|
@@ -424,7 +437,7 @@ neko.notebook.display.audio("path/to/audio.wav")
|
|
|
424
437
|
neko.notebook.display.code("path/to/code.java")
|
|
425
438
|
```
|
|
426
439
|
|
|
427
|
-
##
|
|
440
|
+
## Debug Tools
|
|
428
441
|
|
|
429
442
|
Get the default values from `ArgumentParser` args. It's convenient to use this in the notebook.
|
|
430
443
|
```python
|
|
@@ -440,7 +453,7 @@ print(args.integers) # [1, 2, 3]
|
|
|
440
453
|
print(args.accumulate) # <function sum at ...>
|
|
441
454
|
```
|
|
442
455
|
|
|
443
|
-
##
|
|
456
|
+
## Evaluation
|
|
444
457
|
|
|
445
458
|
Some metrics function for evaluation are provided.
|
|
446
459
|
|
|
@@ -451,8 +464,36 @@ Some metrics function for evaluation are provided.
|
|
|
451
464
|
- `ssim_video`
|
|
452
465
|
- `ssim_image`
|
|
453
466
|
|
|
467
|
+
## Message (Access to other services)
|
|
468
|
+
|
|
469
|
+
### Gotify
|
|
470
|
+
|
|
471
|
+
Send a message to the Gotify server.
|
|
472
|
+
|
|
473
|
+
The title, URL and APP_TOKEN is the environment variable `GOTIFY_TITLE`, `GOTIFY_URL` and `GOTIFY_TOKEN`, or overwritten
|
|
474
|
+
in the function arguments.
|
|
475
|
+
|
|
476
|
+
```python
|
|
477
|
+
from tensorneko.msg import gotify
|
|
478
|
+
gotify.push("This is a test message", "<URL>", "<APP_TOKEN>")
|
|
479
|
+
# then the message will be sent to the Gotify server.
|
|
480
|
+
# title = "<HOST_NAME>", message = "This is a test message", priority = 0
|
|
481
|
+
```
|
|
482
|
+
|
|
483
|
+
### Postgres
|
|
454
484
|
|
|
455
|
-
|
|
485
|
+
Require the `psycopg` package. Provide one single function to execute one SQL query with a temp connection.
|
|
486
|
+
|
|
487
|
+
The database URL is the environment variable `DB_URL`, or overwritten in the function arguments.
|
|
488
|
+
```python
|
|
489
|
+
from tensorneko.msg import postgres
|
|
490
|
+
result = postgres.execute("<SQL>", "<DB_URL>")
|
|
491
|
+
# also async version is provided
|
|
492
|
+
result = await postgres.execute_async("<SQL>", "<DB_URL>")
|
|
493
|
+
```
|
|
494
|
+
|
|
495
|
+
|
|
496
|
+
## Utilities
|
|
456
497
|
|
|
457
498
|
### Misc functions
|
|
458
499
|
|
|
@@ -497,7 +538,7 @@ def process_data(n: int):
|
|
|
497
538
|
return n
|
|
498
539
|
else:
|
|
499
540
|
return None
|
|
500
|
-
|
|
541
|
+
|
|
501
542
|
|
|
502
543
|
data = get_data()
|
|
503
544
|
data = data.map(process_data).get_or_else(-1) # if the response is None, return -1
|
|
@@ -706,5 +747,3 @@ The `gotify` can send a message to the Gotify server, with the environment varia
|
|
|
706
747
|
```shell
|
|
707
748
|
tensorneko gotify "Script finished!"
|
|
708
749
|
```
|
|
709
|
-
|
|
710
|
-
|
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
tensorneko/__init__.py,sha256=uh1HNn1sNpX1bbOqAE_kNJfrH4eMtEzus0hO-Fh9tEw,990
|
|
2
2
|
tensorneko/neko_model.py,sha256=hUMi7puzxW_6FOpA1jiFN1__oO5DZPlhhp3WXqhJXgg,10581
|
|
3
3
|
tensorneko/neko_module.py,sha256=qELXvguSjWo_NvcRQibiFl0Qauzd9JWLSnT4dbGNS3Y,1473
|
|
4
|
-
tensorneko/neko_trainer.py,sha256=
|
|
5
|
-
tensorneko/version.txt,sha256=
|
|
4
|
+
tensorneko/neko_trainer.py,sha256=GqdRsPkzWj36DJ_Wroe1TI6QKlk3N8Q8gK4uEnI0w9Q,10190
|
|
5
|
+
tensorneko/version.txt,sha256=6OtxZVjxPBSh3JDaCbhkG17yxSVMldJs7t7a1E9-Q58,7
|
|
6
6
|
tensorneko/arch/__init__.py,sha256=w4lTUeyBIZelrnSjlBFWUF0erzOmBFl9FqeWQuSOyKs,248
|
|
7
7
|
tensorneko/arch/auto_encoder.py,sha256=j6PWWyaNYaYNtw_zZ9ikzhCASqe9viXR3JGBIXSK92Y,2137
|
|
8
8
|
tensorneko/arch/binary_classifier.py,sha256=1MkEbReXKLdDksRG5Rsife40grJk08EVDcNKp54Xvb4,2316
|
|
@@ -20,19 +20,21 @@ tensorneko/callback/lr_logger.py,sha256=28xmAZ_UOFg0wqg1VjJoifwjzvBsOs-g2nd4bog9
|
|
|
20
20
|
tensorneko/callback/nil_callback.py,sha256=-vKhOG3Ysv_ZToOdyYEkcZ8h0so9rBRY10f1OIoHeZs,131
|
|
21
21
|
tensorneko/callback/system_stats_logger.py,sha256=dS4AOhEADU5cop6vSW5HnVew58jO9SdzKh4lkyssgcE,1782
|
|
22
22
|
tensorneko/dataset/__init__.py,sha256=6980ci9Ce57HSyhzrKMJfDz31PCQxifVz1aSf63JEsA,247
|
|
23
|
-
tensorneko/dataset/list_dataset.py,sha256=
|
|
24
|
-
tensorneko/dataset/nested_dataset.py,sha256=
|
|
25
|
-
tensorneko/dataset/round_robin_dataset.py,sha256=
|
|
23
|
+
tensorneko/dataset/list_dataset.py,sha256=kRLIlnLObctqOJYbTwy9pslSw6sBorOLQwMKu7ZqfXk,1407
|
|
24
|
+
tensorneko/dataset/nested_dataset.py,sha256=qVovwAgmBLdEgy6jTYlCHnosLWMG4HMvC-LtDSiDQ4Y,2243
|
|
25
|
+
tensorneko/dataset/round_robin_dataset.py,sha256=5yxeaKe5tEG-t4JkVcrohSU3bQsUKyH33Q6wky8tK-A,3207
|
|
26
26
|
tensorneko/dataset/sampler/__init__.py,sha256=inj-7M5IjafU5yzSpU2BY9FWAiRp0u7RqkgAcIZj2Qk,102
|
|
27
|
-
tensorneko/dataset/sampler/sequential_iter_sampler.py,sha256=
|
|
27
|
+
tensorneko/dataset/sampler/sequential_iter_sampler.py,sha256=RHzkFKqab6Azi50t5wAFWN6S9k9aeQAqEfrr9A6XoMY,1599
|
|
28
28
|
tensorneko/debug/__init__.py,sha256=ZMfU3qquhMhl6EgPzM7Yuvvv0PWy3cR39UjPrrSmQcs,163
|
|
29
29
|
tensorneko/evaluation/__init__.py,sha256=jW8dh1JRMpx3npjTp7wJLzz-IxFZTBh7F-Ztfoep9xs,296
|
|
30
30
|
tensorneko/evaluation/enum.py,sha256=s3P8XAobku-as4in5vh6BanvVW5Ccwnff0t124lVFFg,137
|
|
31
31
|
tensorneko/evaluation/fid.py,sha256=fNuE1CEp2rPXbaZfI0E1CspluInzFlUdKc8XZEexUME,5568
|
|
32
32
|
tensorneko/evaluation/iou.py,sha256=phEmOWQ3cnWW377WeSHCoB8mGkHLHMHCl8_LL0IX3JA,2914
|
|
33
33
|
tensorneko/evaluation/psnr.py,sha256=DeKxvY_xxawWMXHY0z3Nvbsi4dR57OUV4hjtUoCINXc,3757
|
|
34
|
+
tensorneko/evaluation/psnr.pyi,sha256=aRGK9JEyXGyK3Wc247xFiajocOP-ukvvXub6yUji2CQ,416
|
|
34
35
|
tensorneko/evaluation/secs.py,sha256=D710GgcSxQgbGyPcWlC5ffF5n1GselLrUr5aA5Vq7oE,1622
|
|
35
36
|
tensorneko/evaluation/ssim.py,sha256=6vPS4VQqoKxHOG49lChH51KxwNo07B4XHdhLub5DEPU,3758
|
|
37
|
+
tensorneko/evaluation/ssim.pyi,sha256=I5vGo2KiPajl-z_VRwAHVLF4UIrrEKBdyiY2Gq3NOJw,416
|
|
36
38
|
tensorneko/io/__init__.py,sha256=QEyA0mOC-BlKKskYYbDYttYWWRjCeh73lX-yKAUGNik,213
|
|
37
39
|
tensorneko/io/reader.py,sha256=DSeTGLh84sFYwCwJmNTr-fGWkluudCbf7je29t0Z2U8,1303
|
|
38
40
|
tensorneko/io/writer.py,sha256=BR_1h-wXekBdctXymJBU44HoWsKxPhbbh6N3AKYNkjE,1292
|
|
@@ -63,12 +65,13 @@ tensorneko/module/inception.py,sha256=2p8AjgTIk5wLGC-JnrmXIehh6yNCu2tYc2axjzUTGM
|
|
|
63
65
|
tensorneko/module/mlp.py,sha256=AFN6xmvlrNWOflLqVl-zVkoOJRZpYxYB4bnI10JG5CU,3361
|
|
64
66
|
tensorneko/module/residual.py,sha256=S59TqiiD_310HQ3a6s3r49XY_7Dc4RGxONQtSvzEfN0,2958
|
|
65
67
|
tensorneko/module/transformer.py,sha256=h4NvH3zGa0rZt0bv6e8VM31SimbQKRcocSR42zJYVoY,7602
|
|
66
|
-
tensorneko/msg/__init__.py,sha256=
|
|
68
|
+
tensorneko/msg/__init__.py,sha256=0v56ICUDhBUKnypwjLj4epnzfqkr9M4p00HuYpPc3x8,172
|
|
67
69
|
tensorneko/notebook/__init__.py,sha256=4cCi3ZyaX48hLDvJQqW0G3a4z_vdzmh_jtJ-Jzil4SM,197
|
|
68
70
|
tensorneko/optim/__init__.py,sha256=89XjYQICij8SkrW5iryfZgmbxcTDxA3hhVZTgR4588o,33
|
|
69
71
|
tensorneko/optim/lr_scheduler/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
70
72
|
tensorneko/preprocess/__init__.py,sha256=0Z0eA3_I2wphyyZlzZYRrx2muWTF0QMFq2Y-jh8oVKU,808
|
|
71
73
|
tensorneko/preprocess/crop.py,sha256=Y9eWyYdzasQK3US2uBP_sUO9bPVedik0pnrrl006zZ4,2732
|
|
74
|
+
tensorneko/preprocess/crop.pyi,sha256=Aq_ywCG4ovcopH5-sj8ZVLchLgfpnt0z9cvSPccWHn8,411
|
|
72
75
|
tensorneko/preprocess/enum.py,sha256=Wp5qFaUjea5XU4o3N0WxUd-qfzI-m5vr4ZWSqWjELb4,874
|
|
73
76
|
tensorneko/preprocess/pad.py,sha256=b4IbbhGNRotZ7weZcKA7hfDqSixPo5KjM6khnqzaeUA,3238
|
|
74
77
|
tensorneko/preprocess/resize.py,sha256=hitMlzVnN6n_8nEJwxy4C4ErZrTwpM86QGnYewsrmf8,3469
|
|
@@ -76,6 +79,7 @@ tensorneko/preprocess/face_detector/__init__.py,sha256=_ktIfUZqGTX0hk7RBgKf-zHwG
|
|
|
76
79
|
tensorneko/util/__init__.py,sha256=39G34a2k5ktVtBAh4N4RMsePEak5rzPDhbNNdXo-Ye4,2258
|
|
77
80
|
tensorneko/util/configuration.py,sha256=xXeAjDh1FCNTmSPwDdkL-uH-ULfzFF6Fg0LT7gsZ6nQ,2510
|
|
78
81
|
tensorneko/util/dispatched_misc.py,sha256=_0Go7XezdYB7bpMnCs1MDD_6mPNoWP5qt8DoKuPxynI,997
|
|
82
|
+
tensorneko/util/dispatched_misc.pyi,sha256=K8qZehCayr-nQIifK0w2Kp6pjVQ9uiJ0ZvxF7G5VxPA,520
|
|
79
83
|
tensorneko/util/gc.py,sha256=P3bOZ-2VUNyswnfVz5xfj__ecTSAHpu_kLp2wFcpb6M,185
|
|
80
84
|
tensorneko/util/misc.py,sha256=LEvACtGDOX43iK86A8-Cek0S9rbXFR0AtTP1edE3XDI,4701
|
|
81
85
|
tensorneko/util/reproducibility.py,sha256=sw1vVi7VOnmzQYUocI5x9yKeZoHHiA4A5ja136XolrI,2102
|
|
@@ -86,8 +90,8 @@ tensorneko/visualization/log_graph.py,sha256=NvOwWVc_petXWYdgaHosPFLa43sHBeacbYc
|
|
|
86
90
|
tensorneko/visualization/matplotlib.py,sha256=xs9Ssc44ojZX65QU8-fftA7Ug_pBuZ3TBtM8vETNq9w,1568
|
|
87
91
|
tensorneko/visualization/image_browser/__init__.py,sha256=AtykhAE3bXQS6SOWbeYFeeUE9ts9XOFMvrL31z0LoMg,63
|
|
88
92
|
tensorneko/visualization/watcher/__init__.py,sha256=Nq752qIYvfRUZ8VctKQRSqhxh5KmFbWcqPfZlijVx6s,379
|
|
89
|
-
tensorneko-0.3.
|
|
90
|
-
tensorneko-0.3.
|
|
91
|
-
tensorneko-0.3.
|
|
92
|
-
tensorneko-0.3.
|
|
93
|
-
tensorneko-0.3.
|
|
93
|
+
tensorneko-0.3.22.dist-info/licenses/LICENSE,sha256=Vd75kwgJpVuMnCRBWasQzceMlXt4YQL13ikBLy8G5h0,1067
|
|
94
|
+
tensorneko-0.3.22.dist-info/METADATA,sha256=B0Hzs1YnIRVHChwNAabMoYfpQ1NoyjuYmiRpsRNDHGc,21104
|
|
95
|
+
tensorneko-0.3.22.dist-info/WHEEL,sha256=SmOxYU7pzNKBqASvQJ7DjX3XGUF92lrGhMb3R6_iiqI,91
|
|
96
|
+
tensorneko-0.3.22.dist-info/top_level.txt,sha256=sZHwlP0iyk7_zHuhRHzSBkdY9yEgyC48f6UVuZ6CvqE,11
|
|
97
|
+
tensorneko-0.3.22.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|