tensorneko 0.3.11__py3-none-any.whl → 0.3.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tensorneko/version.txt CHANGED
@@ -1 +1 @@
1
- 0.3.11
1
+ 0.3.12
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tensorneko
3
- Version: 0.3.11
3
+ Version: 0.3.12
4
4
  Summary: Tensor Neural Engine Kompanion. An util library based on PyTorch and PyTorch Lightning.
5
5
  Home-page: https://github.com/ControlNet/tensorneko
6
6
  Author: ControlNet
@@ -33,7 +33,7 @@ Requires-Dist: pillow >=8.1
33
33
  Requires-Dist: av >=8.0.3
34
34
  Requires-Dist: numpy >=1.20.1
35
35
  Requires-Dist: einops >=0.3.0
36
- Requires-Dist: tensorneko-util ==0.3.11
36
+ Requires-Dist: tensorneko-util ==0.3.12
37
37
  Requires-Dist: pysoundfile >=0.9.0 ; platform_system == "Windows"
38
38
 
39
39
  <h1 style="text-align: center">TensorNeko</h1>
@@ -72,6 +72,11 @@ To use the library without PyTorch and PyTorch Lightning, you can install the ut
72
72
  pip install tensorneko_util
73
73
  ```
74
74
 
75
+ Some cpu bound functions are implemented by `pyo3`, and you can install the optimized version with below command.
76
+ ```shell
77
+ pip install tensorneko_lib
78
+ ```
79
+
75
80
  ## Neko Layers, Modules and Architectures
76
81
 
77
82
  Build an MLP with linear layers. The activation and normalization will be placed in the hidden layers.
@@ -2,7 +2,7 @@ tensorneko/__init__.py,sha256=lLVC4StQ5q9OFJTceNrJbj-CIFHFMRvFQyGYJTjuRM4,812
2
2
  tensorneko/neko_model.py,sha256=QTbdOAg9ki0ix6mDL_Qu8Wmd5WJOoUFF3M1SXEp3KGc,10551
3
3
  tensorneko/neko_module.py,sha256=qELXvguSjWo_NvcRQibiFl0Qauzd9JWLSnT4dbGNS3Y,1473
4
4
  tensorneko/neko_trainer.py,sha256=JC8qoKSZ5ngz3grf3S0SjvIFVktDIP_GExth5aFfbGA,10074
5
- tensorneko/version.txt,sha256=uwKUQEii_mNynAGNtR46C6j_pf6qqEJGhQi__awgPc4,6
5
+ tensorneko/version.txt,sha256=_hgtyo8QjKpIz7Q25ZNWKcEobB5vDhbZZ42IVY16MxA,6
6
6
  tensorneko/arch/__init__.py,sha256=w4lTUeyBIZelrnSjlBFWUF0erzOmBFl9FqeWQuSOyKs,248
7
7
  tensorneko/arch/auto_encoder.py,sha256=j6PWWyaNYaYNtw_zZ9ikzhCASqe9viXR3JGBIXSK92Y,2137
8
8
  tensorneko/arch/binary_classifier.py,sha256=1MkEbReXKLdDksRG5Rsife40grJk08EVDcNKp54Xvb4,2316
@@ -84,8 +84,8 @@ tensorneko/visualization/log_graph.py,sha256=NvOwWVc_petXWYdgaHosPFLa43sHBeacbYc
84
84
  tensorneko/visualization/matplotlib.py,sha256=xs9Ssc44ojZX65QU8-fftA7Ug_pBuZ3TBtM8vETNq9w,1568
85
85
  tensorneko/visualization/image_browser/__init__.py,sha256=AtykhAE3bXQS6SOWbeYFeeUE9ts9XOFMvrL31z0LoMg,63
86
86
  tensorneko/visualization/watcher/__init__.py,sha256=Nq752qIYvfRUZ8VctKQRSqhxh5KmFbWcqPfZlijVx6s,379
87
- tensorneko-0.3.11.dist-info/LICENSE,sha256=Vd75kwgJpVuMnCRBWasQzceMlXt4YQL13ikBLy8G5h0,1067
88
- tensorneko-0.3.11.dist-info/METADATA,sha256=80EcebciWSMo9BNDrIh7LD7VKsXocsc-ZizHR_xZ7S4,18906
89
- tensorneko-0.3.11.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
90
- tensorneko-0.3.11.dist-info/top_level.txt,sha256=sZHwlP0iyk7_zHuhRHzSBkdY9yEgyC48f6UVuZ6CvqE,11
91
- tensorneko-0.3.11.dist-info/RECORD,,
87
+ tensorneko-0.3.12.dist-info/LICENSE,sha256=Vd75kwgJpVuMnCRBWasQzceMlXt4YQL13ikBLy8G5h0,1067
88
+ tensorneko-0.3.12.dist-info/METADATA,sha256=uUgd_ZqIZDu5O7cLceWJnQOW8FVGV6dXdjOK9nXux-Q,19061
89
+ tensorneko-0.3.12.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
90
+ tensorneko-0.3.12.dist-info/top_level.txt,sha256=sZHwlP0iyk7_zHuhRHzSBkdY9yEgyC48f6UVuZ6CvqE,11
91
+ tensorneko-0.3.12.dist-info/RECORD,,