tensorcircuit-nightly 1.3.0.dev20250807__py3-none-any.whl → 1.3.0.dev20250809__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tensorcircuit-nightly might be problematic. Click here for more details.

tensorcircuit/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "1.3.0.dev20250807"
1
+ __version__ = "1.3.0.dev20250809"
2
2
  __author__ = "TensorCircuit Authors"
3
3
  __creator__ = "refraction-ray"
4
4
 
@@ -352,7 +352,7 @@ class NMF(Model): # type: ignore
352
352
  spin_channel: int,
353
353
  *dimensions: int,
354
354
  _dtype: tf.DType = tf.float32,
355
- probamp: Optional[tf.Tensor] = None
355
+ probamp: Optional[tf.Tensor] = None,
356
356
  ):
357
357
  super().__init__()
358
358
  self.w = self.add_weight(
@@ -1745,7 +1745,7 @@ class ExtendedBackend:
1745
1745
  f: Callable[..., Any],
1746
1746
  static_argnums: Optional[Union[int, Sequence[int]]] = None,
1747
1747
  jit_compile: Optional[bool] = None,
1748
- **kws: Any
1748
+ **kws: Any,
1749
1749
  ) -> Callable[..., Any]:
1750
1750
  """
1751
1751
  Return the jitted version of function ``f``.
@@ -397,7 +397,7 @@ class NumpyBackend(numpy_backend.NumPyBackend, ExtendedBackend): # type: ignore
397
397
  f: Callable[..., Any],
398
398
  static_argnums: Optional[Union[int, Sequence[int]]] = None,
399
399
  jit_compile: Optional[bool] = None,
400
- **kws: Any
400
+ **kws: Any,
401
401
  ) -> Callable[..., Any]:
402
402
  logger.info("numpy backend has no jit interface, just do nothing")
403
403
  return f
@@ -661,7 +661,7 @@ class PyTorchBackend(pytorch_backend.PyTorchBackend, ExtendedBackend): # type:
661
661
  f: Callable[..., Any],
662
662
  static_argnums: Optional[Union[int, Sequence[int]]] = None,
663
663
  jit_compile: Optional[bool] = None,
664
- **kws: Any
664
+ **kws: Any,
665
665
  ) -> Any:
666
666
  if jit_compile is True:
667
667
  # experimental feature reusing the jit_compile flag for tf
@@ -908,7 +908,7 @@ class TensorFlowBackend(tensorflow_backend.TensorFlowBackend, ExtendedBackend):
908
908
  f: Callable[..., Any],
909
909
  static_argnums: Optional[Union[int, Sequence[int]]] = None,
910
910
  jit_compile: Optional[bool] = None,
911
- **kws: Any
911
+ **kws: Any,
912
912
  ) -> Any:
913
913
  # static_argnums not supported in tf case, this is only for a consistent interface
914
914
  # for more on static_argnums in tf.function, see issue: https://github.com/tensorflow/tensorflow/issues/52193
@@ -36,7 +36,7 @@ def submit_task(
36
36
  shots: Union[int, Sequence[int]] = 1024,
37
37
  version: str = "1",
38
38
  circuit: Optional[Union[AbstractCircuit, Sequence[AbstractCircuit]]] = None,
39
- **kws: Any
39
+ **kws: Any,
40
40
  ) -> List[Task]:
41
41
  def _circuit2result(c: AbstractCircuit) -> Dict[str, Any]:
42
42
  if device.name in ["testing", "default"]:
@@ -30,7 +30,7 @@ def submit_task(
30
30
  circuit: Optional[Union[AbstractCircuit, Sequence[AbstractCircuit]]] = None,
31
31
  source: Optional[Union[str, Sequence[str]]] = None,
32
32
  compile: bool = True,
33
- **kws: Any
33
+ **kws: Any,
34
34
  ) -> Task:
35
35
  if source is None:
36
36
 
@@ -133,7 +133,7 @@ def submit_task(
133
133
  enable_qos_gate_decomposition: bool = True,
134
134
  enable_qos_initial_mapping: bool = False,
135
135
  qos_dry_run: bool = False,
136
- **kws: Any
136
+ **kws: Any,
137
137
  ) -> List[Task]:
138
138
  """
139
139
  Submit task via tencent provider, we suggest to enable one of the compiling functionality:
@@ -109,7 +109,7 @@ def prune(
109
109
  circuit: Union[AbstractCircuit, List[Dict[str, Any]]],
110
110
  rtol: float = 1e-3,
111
111
  atol: float = 1e-3,
112
- **kws: Any
112
+ **kws: Any,
113
113
  ) -> Any:
114
114
  if isinstance(circuit, list):
115
115
  qir = circuit
@@ -251,7 +251,7 @@ def _merge(
251
251
  def merge(
252
252
  circuit: Union[AbstractCircuit, List[Dict[str, Any]]],
253
253
  rules: Optional[Dict[Tuple[str, ...], str]] = None,
254
- **kws: Any
254
+ **kws: Any,
255
255
  ) -> Any:
256
256
  merge_rules = copy(default_merge_rules)
257
257
  if rules is not None:
@@ -297,7 +297,7 @@ class DMCircuit(BaseCircuit):
297
297
  reuse: bool = True,
298
298
  noise_conf: Optional[Any] = None,
299
299
  status: Optional[Tensor] = None,
300
- **kws: Any
300
+ **kws: Any,
301
301
  ) -> tn.Node.tensor:
302
302
  """
303
303
  Compute the expectation of corresponding operators.
tensorcircuit/keras.py CHANGED
@@ -24,7 +24,7 @@ class QuantumLayer(Layer): # type: ignore
24
24
  initializer: Union[Text, Sequence[Text]] = "glorot_uniform",
25
25
  constraint: Optional[Union[Text, Sequence[Text]]] = None,
26
26
  regularizer: Optional[Union[Text, Sequence[Text]]] = None,
27
- **kwargs: Any
27
+ **kwargs: Any,
28
28
  ) -> None:
29
29
  """
30
30
  `QuantumLayer` wraps the quantum function `f` as a `keras.Layer`
@@ -103,7 +103,7 @@ class QuantumLayer(Layer): # type: ignore
103
103
  inputs: tf.Tensor,
104
104
  training: Optional[bool] = None,
105
105
  mask: Optional[tf.Tensor] = None,
106
- **kwargs: Any
106
+ **kwargs: Any,
107
107
  ) -> tf.Tensor:
108
108
  # input_shape = list(inputs.shape)
109
109
  # inputs = tf.reshape(inputs, (-1, input_shape[-1]))
@@ -154,7 +154,7 @@ class HardwareLayer(QuantumLayer):
154
154
  inputs: tf.Tensor,
155
155
  training: Optional[bool] = None,
156
156
  mask: Optional[tf.Tensor] = None,
157
- **kwargs: Any
157
+ **kwargs: Any,
158
158
  ) -> tf.Tensor:
159
159
  if inputs is None: # not possible
160
160
  result = self.f(*self.pqc_weights, **kwargs)
@@ -91,7 +91,7 @@ def QAOA_block(
91
91
  e2,
92
92
  unitary=G._zz_matrix,
93
93
  theta=paramzz * g[e1][e2].get("weight", 1.0),
94
- **kws
94
+ **kws,
95
95
  )
96
96
  else:
97
97
  i = 0
@@ -157,7 +157,7 @@ def qft(
157
157
  *index: int,
158
158
  do_swaps: bool = True,
159
159
  inverse: bool = False,
160
- insert_barriers: bool = False
160
+ insert_barriers: bool = False,
161
161
  ) -> Circuit:
162
162
  """
163
163
  This function applies quantum fourier transformation (QFT) to the selected circuit lines
@@ -1,17 +1,21 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tensorcircuit-nightly
3
- Version: 1.3.0.dev20250807
4
- Summary: nightly release for tensorcircuit
5
- Home-page: https://github.com/refraction-ray/tensorcircuit-dev
6
- Author: TensorCircuit Authors
7
- Author-email: znfesnpbh.tc@gmail.com
3
+ Version: 1.3.0.dev20250809
4
+ Summary: High performance unified quantum computing framework for the NISQ era
5
+ Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
6
+ License-Expression: Apache-2.0
7
+ Project-URL: Homepage, https://github.com/tensorcircuit/tensorcircuit-ng
8
+ Project-URL: Repository, https://github.com/tensorcircuit/tensorcircuit-ng
8
9
  Classifier: Programming Language :: Python :: 3
9
10
  Classifier: Operating System :: OS Independent
11
+ Classifier: Intended Audience :: Science/Research
12
+ Classifier: Topic :: Scientific/Engineering :: Physics
13
+ Requires-Python: >=3.9
10
14
  Description-Content-Type: text/markdown
11
15
  License-File: LICENSE
12
16
  Requires-Dist: numpy
13
17
  Requires-Dist: scipy
14
- Requires-Dist: tensornetwork
18
+ Requires-Dist: tensornetwork-ng
15
19
  Requires-Dist: networkx
16
20
  Provides-Extra: tensorflow
17
21
  Requires-Dist: tensorflow; extra == "tensorflow"
@@ -22,16 +26,12 @@ Provides-Extra: torch
22
26
  Requires-Dist: torch; extra == "torch"
23
27
  Provides-Extra: qiskit
24
28
  Requires-Dist: qiskit; extra == "qiskit"
25
- Dynamic: author
26
- Dynamic: author-email
27
- Dynamic: classifier
28
- Dynamic: description
29
- Dynamic: description-content-type
30
- Dynamic: home-page
29
+ Requires-Dist: sympy; extra == "qiskit"
30
+ Requires-Dist: symengine; extra == "qiskit"
31
+ Provides-Extra: cloud
32
+ Requires-Dist: qiskit; extra == "cloud"
33
+ Requires-Dist: mthree<2.8; extra == "cloud"
31
34
  Dynamic: license-file
32
- Dynamic: provides-extra
33
- Dynamic: requires-dist
34
- Dynamic: summary
35
35
 
36
36
  <p align="center">
37
37
  <a href="https://github.com/tensorcircuit/tensorcircuit-ng">
@@ -1,4 +1,4 @@
1
- tensorcircuit/__init__.py,sha256=QoJYXKg7gBMPJzwg6FQMApTXK0_EpDXUofrXAsGlMWE,2055
1
+ tensorcircuit/__init__.py,sha256=_6KvcdDZlt-9WHSkgICh1E9al1x2xviW0zVRaBvIiAo,2055
2
2
  tensorcircuit/about.py,sha256=DazTswU2nAwOmASTaDII3L04PVtaQ7oiWPty5YMI3Wk,5267
3
3
  tensorcircuit/abstractcircuit.py,sha256=0osacPqq7B1EJki-cI1aLYoVRmjFaG9q3XevWMs7SsA,44125
4
4
  tensorcircuit/asciiart.py,sha256=neY1OWFwtoW5cHPNwkQHgRPktDniQvdlP9QKHkk52fM,8236
@@ -6,11 +6,11 @@ tensorcircuit/basecircuit.py,sha256=ipCg3J55sgkciUZ2qCZqpVqE00YIWRlACu509nktg3I,
6
6
  tensorcircuit/channels.py,sha256=CFQxWI-JmkIxexslCBdjp_RSxUbHs6eAJv4LvlXXXCY,28637
7
7
  tensorcircuit/circuit.py,sha256=mE4b_9xRu3ydoB8iDffdx35V9GZLhAQD_tkjZDLnLjg,39105
8
8
  tensorcircuit/cons.py,sha256=uYKBeYKkDoJEqJTNrOZPRM31tBtkqe5aAg8GtVidJ1Y,33014
9
- tensorcircuit/densitymatrix.py,sha256=VqMBnWCxO5-OsOp6LOdc5RS2AzmB3U4-w40Vn_lqygo,14865
9
+ tensorcircuit/densitymatrix.py,sha256=ickqfqB9Btuyo6TwqJJY-RcaIXzPycqliGKMcscslBw,14866
10
10
  tensorcircuit/experimental.py,sha256=TGK4FaS6TS_ZhtjcIZgYVuAkGdRW50LN0DdXp-h4bos,29906
11
11
  tensorcircuit/fgs.py,sha256=J1TjAiiqZk9KO1xYX_V0xsgKlYZaUQ7Enm4s5zkRM50,49514
12
12
  tensorcircuit/gates.py,sha256=x-wA7adVpP7o0AQLt_xYUScFKj8tU_wUOV2mR1GyrPc,29322
13
- tensorcircuit/keras.py,sha256=5OF4dfhEeS8sRYglpqYtQsWPeqp7uK0i7-P-6RRJ7zQ,10126
13
+ tensorcircuit/keras.py,sha256=nMSuu9uZy7haWwuen1g_6GFVwYIirtX9IvejDyoH33M,10129
14
14
  tensorcircuit/mps_base.py,sha256=UZ-v8vsr_rAsKrfun8prVgbXJ-qsdqKy2DZIHpq3sxo,15400
15
15
  tensorcircuit/mpscircuit.py,sha256=COO9xzvA2Whe7Ncp6OqrgtXKmahHgTHxXTELAVHzFSY,36777
16
16
  tensorcircuit/noisemodel.py,sha256=vzxpoYEZbHVC4a6g7_Jk4dxsHi4wvhpRFwud8b616Qo,11878
@@ -30,7 +30,7 @@ tensorcircuit/applications/layers.py,sha256=tO5rFH1SFnSnR-MI6-ZbQUSfdlBs5aoDzLQ8
30
30
  tensorcircuit/applications/optimization.py,sha256=ycPSlKg3iOZU2ZMhH3Es8s8EOn36wakOQsDhT2SXNXs,14396
31
31
  tensorcircuit/applications/utils.py,sha256=MQKSYeFf_y9OUw5crAOsqpulNmhGRlX6HwD-8hu1rPA,14119
32
32
  tensorcircuit/applications/vags.py,sha256=lg4KRxIaRVjZgtA5gmsgCjDxAQPS-pkaGqA9fkJah1Q,36392
33
- tensorcircuit/applications/van.py,sha256=dfCoQd9L04yp7iEQnLfXbD6-L07VpC4YNbeumGhDrrE,15176
33
+ tensorcircuit/applications/van.py,sha256=c-vEQqWngM-GXJCMpBeonAiFvCftb2WjNK4xvu0NdrI,15177
34
34
  tensorcircuit/applications/vqes.py,sha256=OL4_vuF3yzV_iF37JrH-DbGy-0qTeKXd5aBbWjvhDjI,23417
35
35
  tensorcircuit/applications/ai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
36
36
  tensorcircuit/applications/ai/ensemble.py,sha256=JmnoAq9qwCRAfdnB8fvcox6aagOQHHu68aRwJDWYi9k,5956
@@ -40,29 +40,29 @@ tensorcircuit/applications/physics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQe
40
40
  tensorcircuit/applications/physics/baseline.py,sha256=RWrzMGnC0PtmpYSFkvCE7r1llR88gncXuCakAAhFE-w,1775
41
41
  tensorcircuit/applications/physics/fss.py,sha256=ny3U9ZDmT459PXjA1oUGfarBOlSKSy6fs04vD9s1XH4,3633
42
42
  tensorcircuit/backends/__init__.py,sha256=WiUmbUFzM29w3hKfhuKxVUk3PpqDFiXf4za9g0ctpZA,80
43
- tensorcircuit/backends/abstract_backend.py,sha256=fAzyKvZ-1Mw2wvbyuR5IScVGhwZjY7AxBVtRo6viVY0,61743
43
+ tensorcircuit/backends/abstract_backend.py,sha256=xhmQOlNxl2tysq_pjsAaBMyOVNigX1hWTW120eKZEew,61744
44
44
  tensorcircuit/backends/backend_factory.py,sha256=Z0aQ-RnxOnQzp-SRw8sefAH8XyBSlj2NXZwOlHinbfY,1713
45
45
  tensorcircuit/backends/cupy_backend.py,sha256=4vgO3lnQnsvWL5hukhskjJp37EAHqio6z6TVXTQcdjs,15077
46
46
  tensorcircuit/backends/jax_backend.py,sha256=GIWsJwhlz0PD_KcypRkNWcjkegdNdoFMsmo0u0RQqrk,26704
47
47
  tensorcircuit/backends/jax_ops.py,sha256=WyUGavch2R9uEFsI1Ap7eP1UcU4s2TItBgGsrVS3Hzs,9320
48
- tensorcircuit/backends/numpy_backend.py,sha256=hhjrm0GK0d05TBYHNCZrBBBIJQ7V6qN99m1KLl0WKro,14408
49
- tensorcircuit/backends/pytorch_backend.py,sha256=yhfZSrm99yNW-dmijk8t6zAkbVgLRd4b_aIWKrpT7bY,24230
48
+ tensorcircuit/backends/numpy_backend.py,sha256=fDMHxAJjsOuyEnptZqgNf_pf-iJbauI6hlAQzmS0q1w,14409
49
+ tensorcircuit/backends/pytorch_backend.py,sha256=GvrwQvEBZufa-e5FFt3GJ9B6bqPSoyWbr9OVn2VuwSY,24231
50
50
  tensorcircuit/backends/pytorch_ops.py,sha256=lLxpK6OqfpVwifyFlgsqhpnt-oIn4R5paPMVg51WaW0,3826
51
- tensorcircuit/backends/tensorflow_backend.py,sha256=CQhdWjUoqCNHxmJgfYOhUVpwDqjSo0RYrmsiaVWmxCU,37842
51
+ tensorcircuit/backends/tensorflow_backend.py,sha256=nfBdDL9yVzXUpqriz6FUiLw60g2jZgqjNaPtRgW0jA8,37843
52
52
  tensorcircuit/backends/tf_ops.py,sha256=FJwDU7LhZrt0VUIx12DJU0gZnWhMv7B7r9sAKG710As,3378
53
53
  tensorcircuit/cloud/__init__.py,sha256=n0Lx07GYF6YbdIa6AJCLJk4zlAm5CqaeHszvkxxuoI4,139
54
54
  tensorcircuit/cloud/abstraction.py,sha256=6aSxbz0MP21jBVdFbSMrvJPLQH117vGz9sSHbMFoodE,14582
55
55
  tensorcircuit/cloud/apis.py,sha256=e4dydZk7fxGicOdQ1HFd59yql_dj0Cd_Qm2bfWs7vxg,17960
56
56
  tensorcircuit/cloud/config.py,sha256=mk38XTQUSXCo6hhbXsAVC7EF8BuU1g9ZX5t8_jKVqcc,60
57
- tensorcircuit/cloud/local.py,sha256=81vM-Px5VSMwyTbOUVgNTz8JPTMdyWxJj0t-nAzAifs,2265
58
- tensorcircuit/cloud/quafu_provider.py,sha256=UFHhXflWVcdE9Dkac6RWuwdY0_vjJdqW2N1DQInegqY,2613
59
- tensorcircuit/cloud/tencent.py,sha256=VLvGWpesdIhxhYWuf73qRgBVeumrQsSbUSoUOIbTisE,14325
57
+ tensorcircuit/cloud/local.py,sha256=Qz9bC5wA_7Al_LhdVsyfYqHX0srhnpBUMEYMnncCj0w,2266
58
+ tensorcircuit/cloud/quafu_provider.py,sha256=wBgLFKYE2u3nfaBr92lgwHdLDkrR9I6o41UWkAYV1H0,2614
59
+ tensorcircuit/cloud/tencent.py,sha256=AcuOetzexzePvznAh8h_w6vtRBTY73qZQp21Fl_S0MA,14326
60
60
  tensorcircuit/cloud/utils.py,sha256=tEB2b93eP2b9KAIhRfSg_5myX6QOoz_aUTJ3Fc1HXI4,3623
61
61
  tensorcircuit/cloud/wrapper.py,sha256=R6HbqQulAjuHMfgcV6vE3MYWAJal9L9DIgPqkRuGttQ,11519
62
62
  tensorcircuit/compiler/__init__.py,sha256=PR1DENcO2YuT-e_cKrOoL9By7k91RbzLs1MvhLmOeCI,242
63
63
  tensorcircuit/compiler/composed_compiler.py,sha256=AsOGYg11rHYlZjr6olDovRkxr0B2LAm5nYiHkki5OzA,3258
64
64
  tensorcircuit/compiler/qiskit_compiler.py,sha256=qpz7DRpQATIxsfi4pj_C6-JBtKdUVcu3BQwhoWViSVA,6219
65
- tensorcircuit/compiler/simple_compiler.py,sha256=4OC1oYH0YqYF-UzV7ZiJ0qLitS6Z3xjvd8l02wicATM,9589
65
+ tensorcircuit/compiler/simple_compiler.py,sha256=Xt1dM1bHIBAkDUftOtdz0Zo9lhCC3xHqN8VTctHc_Lc,9591
66
66
  tensorcircuit/interfaces/__init__.py,sha256=cE2bZYRwIpxXaL0SLnIKtQS0jRZPDF3k1ep9rpesLVU,500
67
67
  tensorcircuit/interfaces/jax.py,sha256=q_nay20gcrPRyY2itvcOtkCjqtvcC4qotbvrgm2a3cU,6014
68
68
  tensorcircuit/interfaces/numpy.py,sha256=T7h64dG9e5xDG0KVOy9O8TXyrt5RWRnTWN9iXf3aGyY,1439
@@ -78,7 +78,7 @@ tensorcircuit/results/qem/benchmark_circuits.py,sha256=LlFuKCDFKihMOhiY6WUZt9QPy
78
78
  tensorcircuit/results/qem/qem_methods.py,sha256=v8HyVsRX9vkjgGfLyB1K0Eq5UyUnh-thysqo05kXo6E,12148
79
79
  tensorcircuit/templates/__init__.py,sha256=CzkNn6sAk9gkXYa0IemrsISXIqcaIqM2UWvGi2u2C38,237
80
80
  tensorcircuit/templates/ansatz.py,sha256=0hmMtdSvHq9qodzpzC0TKJIWV28kTlfZqzUHjBd9aYA,3229
81
- tensorcircuit/templates/blocks.py,sha256=xUzL7TVL8ym_sGV9NJ40_9x2c2pBjh2CevO8aCj9WzA,6183
81
+ tensorcircuit/templates/blocks.py,sha256=yrfOk1xkD3z4sbOgggPdu3B0P5FEqXSv8F13pfFCZFM,6185
82
82
  tensorcircuit/templates/chems.py,sha256=9ksMYTutfDEF3U04xrj9j0bYWb5gwTwMdMPi-SZKci0,171
83
83
  tensorcircuit/templates/conversions.py,sha256=D3chiKDr7G1ekCJngiol91k9iqrMag1DZQGSx0j_uH4,3023
84
84
  tensorcircuit/templates/dataset.py,sha256=ldPvCUlwjHU_S98E2ISQp34KqJzJPpPHmDIKJ4K-qYo,1933
@@ -86,7 +86,7 @@ tensorcircuit/templates/graphs.py,sha256=cPYrxjoem0xZ-Is9dZKAvEzWZL_FejfIRiCEOTA
86
86
  tensorcircuit/templates/hamiltonians.py,sha256=Ag8djD6lckTeU7I99gCbXiQAb2VYqzm_p7-hpXo-5u4,5554
87
87
  tensorcircuit/templates/lattice.py,sha256=P64OGUedE3o8vWekhM8XAs5nUe5CdG-gojLlTGA20TI,60534
88
88
  tensorcircuit/templates/measurements.py,sha256=pzc5Aa9S416Ilg4aOY77Z6ZhUlYcXnAkQNQFTuHjFFs,10943
89
- tensorcircuit_nightly-1.3.0.dev20250807.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
89
+ tensorcircuit_nightly-1.3.0.dev20250809.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
90
90
  tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
91
91
  tests/conftest.py,sha256=J9nHlLE3Zspz1rMyzadEuBWhaS5I4Q9sq0lnWybcdIA,1457
92
92
  tests/test_backends.py,sha256=MLxpRWavWF0qWcjVI61lIa3CYGbztvTO8ITFOYX47ao,38312
@@ -118,7 +118,7 @@ tests/test_templates.py,sha256=Xm9otFFaaBWG9TZpgJ-nNh9MBfRipTzFWL8fBOnie2k,7192
118
118
  tests/test_timeevol.py,sha256=zz17x21C-5f8ZvcgkXm30JzLgZMhsKaOCzyHCyS43h0,20333
119
119
  tests/test_torchnn.py,sha256=CHLTfWkF7Ses5_XnGFN_uv_JddfgenFEFzaDtSH8XYU,2848
120
120
  tests/test_van.py,sha256=kAWz860ivlb5zAJuYpzuBe27qccT-Yf0jatf5uXtTo4,3163
121
- tensorcircuit_nightly-1.3.0.dev20250807.dist-info/METADATA,sha256=xYzxKbkBOX1DZP5pUDEmRAfTalzJtRB8f956thFk3u0,34922
122
- tensorcircuit_nightly-1.3.0.dev20250807.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
123
- tensorcircuit_nightly-1.3.0.dev20250807.dist-info/top_level.txt,sha256=O_Iqeh2x02lasEYMI9iyPNNNtMzcpg5qvwMOkZQ7n4A,20
124
- tensorcircuit_nightly-1.3.0.dev20250807.dist-info/RECORD,,
121
+ tensorcircuit_nightly-1.3.0.dev20250809.dist-info/METADATA,sha256=mynu7-YoElvSJ0EsO6GAde-zC7XWNUJz_9Ix-nWIq0Y,35190
122
+ tensorcircuit_nightly-1.3.0.dev20250809.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
123
+ tensorcircuit_nightly-1.3.0.dev20250809.dist-info/top_level.txt,sha256=O_Iqeh2x02lasEYMI9iyPNNNtMzcpg5qvwMOkZQ7n4A,20
124
+ tensorcircuit_nightly-1.3.0.dev20250809.dist-info/RECORD,,