tensorcircuit-nightly 1.3.0.dev20250729__py3-none-any.whl → 1.3.0.dev20250731__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +1 -1
- tensorcircuit/backends/abstract_backend.py +76 -2
- tensorcircuit/backends/jax_backend.py +20 -1
- tensorcircuit/backends/jax_ops.py +108 -0
- tensorcircuit/backends/numpy_backend.py +8 -1
- tensorcircuit/backends/tensorflow_backend.py +38 -1
- tensorcircuit/fgs.py +5 -6
- tensorcircuit/quantum.py +1 -1
- tensorcircuit/stabilizercircuit.py +4 -2
- tensorcircuit/timeevol.py +495 -30
- {tensorcircuit_nightly-1.3.0.dev20250729.dist-info → tensorcircuit_nightly-1.3.0.dev20250731.dist-info}/METADATA +2 -2
- {tensorcircuit_nightly-1.3.0.dev20250729.dist-info → tensorcircuit_nightly-1.3.0.dev20250731.dist-info}/RECORD +17 -17
- tests/test_backends.py +121 -0
- tests/test_timeevol.py +412 -9
- {tensorcircuit_nightly-1.3.0.dev20250729.dist-info → tensorcircuit_nightly-1.3.0.dev20250731.dist-info}/WHEEL +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250729.dist-info → tensorcircuit_nightly-1.3.0.dev20250731.dist-info}/licenses/LICENSE +0 -0
- {tensorcircuit_nightly-1.3.0.dev20250729.dist-info → tensorcircuit_nightly-1.3.0.dev20250731.dist-info}/top_level.txt +0 -0
tensorcircuit/__init__.py
CHANGED
|
@@ -808,6 +808,21 @@ class ExtendedBackend:
|
|
|
808
808
|
"Backend '{}' has not implemented `solve`.".format(self.name)
|
|
809
809
|
)
|
|
810
810
|
|
|
811
|
+
def special_jv(self: Any, v: int, z: Tensor, M: int) -> Tensor:
|
|
812
|
+
"""
|
|
813
|
+
Special function: Bessel function of the first kind.
|
|
814
|
+
|
|
815
|
+
:param v: The order of the Bessel function.
|
|
816
|
+
:type v: int
|
|
817
|
+
:param z: The argument of the Bessel function.
|
|
818
|
+
:type z: Tensor
|
|
819
|
+
:return: The value of the Bessel function [J_0, ...J_{v-1}(z)].
|
|
820
|
+
:rtype: Tensor
|
|
821
|
+
"""
|
|
822
|
+
raise NotImplementedError(
|
|
823
|
+
"Backend '{}' has not implemented `special_jv`.".format(self.name)
|
|
824
|
+
)
|
|
825
|
+
|
|
811
826
|
def searchsorted(self: Any, a: Tensor, v: Tensor, side: str = "left") -> Tensor:
|
|
812
827
|
"""
|
|
813
828
|
Find indices where elements should be inserted to maintain order.
|
|
@@ -1251,6 +1266,26 @@ class ExtendedBackend:
|
|
|
1251
1266
|
"Backend '{}' has not implemented `sparse_dense_matmul`.".format(self.name)
|
|
1252
1267
|
)
|
|
1253
1268
|
|
|
1269
|
+
def sparse_csr_from_coo(self: Any, coo: Tensor, strict: bool = False) -> Tensor:
|
|
1270
|
+
"""
|
|
1271
|
+
transform a coo matrix to a csr matrix
|
|
1272
|
+
|
|
1273
|
+
:param coo: a coo matrix
|
|
1274
|
+
:type coo: Tensor
|
|
1275
|
+
:param strict: whether to enforce the transform, defaults to False,
|
|
1276
|
+
corresponding to return the coo matrix if there is no implementation for specific backend.
|
|
1277
|
+
:type strict: bool, optional
|
|
1278
|
+
:return: a csr matrix
|
|
1279
|
+
:rtype: Tensor
|
|
1280
|
+
"""
|
|
1281
|
+
if strict:
|
|
1282
|
+
raise NotImplementedError(
|
|
1283
|
+
"Backend '{}' has not implemented `sparse_csr_from_coo`.".format(
|
|
1284
|
+
self.name
|
|
1285
|
+
)
|
|
1286
|
+
)
|
|
1287
|
+
return coo
|
|
1288
|
+
|
|
1254
1289
|
def to_dense(self: Any, sp_a: Tensor) -> Tensor:
|
|
1255
1290
|
"""
|
|
1256
1291
|
Convert a sparse matrix to dense tensor.
|
|
@@ -1389,10 +1424,49 @@ class ExtendedBackend:
|
|
|
1389
1424
|
:rtype: Tensor
|
|
1390
1425
|
"""
|
|
1391
1426
|
carry = init
|
|
1392
|
-
|
|
1393
|
-
|
|
1427
|
+
# Check if `xs` is a PyTree (tuple or list) of arrays.
|
|
1428
|
+
if isinstance(xs, (tuple, list)):
|
|
1429
|
+
for x_slice_tuple in zip(*xs):
|
|
1430
|
+
# x_slice_tuple will be (k_elems[i], j_elems[i]) at each step.
|
|
1431
|
+
carry = f(carry, x_slice_tuple)
|
|
1432
|
+
else:
|
|
1433
|
+
# If xs is a single array, iterate normally.
|
|
1434
|
+
for x in xs:
|
|
1435
|
+
carry = f(carry, x)
|
|
1436
|
+
|
|
1394
1437
|
return carry
|
|
1395
1438
|
|
|
1439
|
+
def jaxy_scan(
|
|
1440
|
+
self: Any, f: Callable[[Tensor, Tensor], Tensor], init: Tensor, xs: Tensor
|
|
1441
|
+
) -> Tensor:
|
|
1442
|
+
"""
|
|
1443
|
+
This API follows jax scan style. TF use plain for loop
|
|
1444
|
+
|
|
1445
|
+
:param f: _description_
|
|
1446
|
+
:type f: Callable[[Tensor, Tensor], Tensor]
|
|
1447
|
+
:param init: _description_
|
|
1448
|
+
:type init: Tensor
|
|
1449
|
+
:param xs: _description_
|
|
1450
|
+
:type xs: Tensor
|
|
1451
|
+
:raises ValueError: _description_
|
|
1452
|
+
:return: _description_
|
|
1453
|
+
:rtype: Tensor
|
|
1454
|
+
"""
|
|
1455
|
+
if xs is None:
|
|
1456
|
+
raise ValueError("Either xs or length must be provided.")
|
|
1457
|
+
if xs is not None:
|
|
1458
|
+
length = len(xs)
|
|
1459
|
+
carry, outputs_to_stack = init, []
|
|
1460
|
+
for i in range(length):
|
|
1461
|
+
if isinstance(xs, (tuple, list)):
|
|
1462
|
+
x = [ele[i] for ele in xs]
|
|
1463
|
+
else:
|
|
1464
|
+
x = xs[i]
|
|
1465
|
+
new_carry, y = f(carry, x)
|
|
1466
|
+
carry = new_carry
|
|
1467
|
+
outputs_to_stack.append(y)
|
|
1468
|
+
return carry, self.stack(outputs_to_stack)
|
|
1469
|
+
|
|
1396
1470
|
def stop_gradient(self: Any, a: Tensor) -> Tensor:
|
|
1397
1471
|
"""
|
|
1398
1472
|
Stop backpropagation from ``a``.
|
|
@@ -418,6 +418,11 @@ class JaxBackend(jax_backend.JaxBackend, ExtendedBackend): # type: ignore
|
|
|
418
418
|
def solve(self, A: Tensor, b: Tensor, assume_a: str = "gen") -> Tensor: # type: ignore
|
|
419
419
|
return jsp.linalg.solve(A, b, assume_a=assume_a)
|
|
420
420
|
|
|
421
|
+
def special_jv(self, v: int, z: Tensor, M: int) -> Tensor:
|
|
422
|
+
from .jax_ops import bessel_jv_jax_rescaled
|
|
423
|
+
|
|
424
|
+
return bessel_jv_jax_rescaled(v, z, M)
|
|
425
|
+
|
|
421
426
|
def searchsorted(self, a: Tensor, v: Tensor, side: str = "left") -> Tensor:
|
|
422
427
|
if not self.is_tensor(a):
|
|
423
428
|
a = self.convert_to_tensor(a)
|
|
@@ -615,6 +620,11 @@ class JaxBackend(jax_backend.JaxBackend, ExtendedBackend): # type: ignore
|
|
|
615
620
|
carry, _ = libjax.lax.scan(f_jax, init, xs)
|
|
616
621
|
return carry
|
|
617
622
|
|
|
623
|
+
def jaxy_scan(
|
|
624
|
+
self, f: Callable[[Tensor, Tensor], Tensor], init: Tensor, xs: Tensor
|
|
625
|
+
) -> Tensor:
|
|
626
|
+
return libjax.lax.scan(f, init, xs)
|
|
627
|
+
|
|
618
628
|
def scatter(self, operand: Tensor, indices: Tensor, updates: Tensor) -> Tensor:
|
|
619
629
|
# updates = jnp.reshape(updates, indices.shape)
|
|
620
630
|
# return operand.at[indices].set(updates)
|
|
@@ -639,11 +649,20 @@ class JaxBackend(jax_backend.JaxBackend, ExtendedBackend): # type: ignore
|
|
|
639
649
|
) -> Tensor:
|
|
640
650
|
return sp_a @ b
|
|
641
651
|
|
|
652
|
+
def sparse_csr_from_coo(self, coo: Tensor, strict: bool = False) -> Tensor:
|
|
653
|
+
try:
|
|
654
|
+
return sparse.BCSR.from_bcoo(coo) # type: ignore
|
|
655
|
+
except AttributeError as e:
|
|
656
|
+
if not strict:
|
|
657
|
+
return coo
|
|
658
|
+
else:
|
|
659
|
+
raise e
|
|
660
|
+
|
|
642
661
|
def to_dense(self, sp_a: Tensor) -> Tensor:
|
|
643
662
|
return sp_a.todense()
|
|
644
663
|
|
|
645
664
|
def is_sparse(self, a: Tensor) -> bool:
|
|
646
|
-
return isinstance(a, sparse.
|
|
665
|
+
return isinstance(a, sparse.JAXSparse) # type: ignore
|
|
647
666
|
|
|
648
667
|
def device(self, a: Tensor) -> str:
|
|
649
668
|
(dev,) = a.devices()
|
|
@@ -3,8 +3,11 @@ Customized ops for ML framework
|
|
|
3
3
|
"""
|
|
4
4
|
|
|
5
5
|
# pylint: disable=invalid-name
|
|
6
|
+
# pylint: disable=unused-variable
|
|
7
|
+
|
|
6
8
|
|
|
7
9
|
from typing import Any, Tuple, Sequence
|
|
10
|
+
from functools import partial
|
|
8
11
|
|
|
9
12
|
import jax
|
|
10
13
|
import jax.numpy as jnp
|
|
@@ -174,3 +177,108 @@ def jaxeigh_bwd(r: Array, tangents: Array) -> Array:
|
|
|
174
177
|
|
|
175
178
|
adaware_eigh.defvjp(jaxeigh_fwd, jaxeigh_bwd)
|
|
176
179
|
adaware_eigh_jit = jax.jit(adaware_eigh)
|
|
180
|
+
|
|
181
|
+
|
|
182
|
+
@partial(jax.jit, static_argnums=[0, 2])
|
|
183
|
+
def bessel_jv_jax_rescaled(k: int, x: jnp.ndarray, M: int) -> jnp.ndarray:
|
|
184
|
+
"""
|
|
185
|
+
Computes Bessel function Jv using Miller's algorithm with dynamic rescaling,
|
|
186
|
+
implemented in JAX.
|
|
187
|
+
"""
|
|
188
|
+
if M <= k:
|
|
189
|
+
raise ValueError(
|
|
190
|
+
f"Recurrence length M ({M}) must be greater than the required order k ({k})."
|
|
191
|
+
)
|
|
192
|
+
|
|
193
|
+
# Use vmap to handle array inputs for x efficiently.
|
|
194
|
+
# We map _bessel_jv_scalar_rescaled over the last dimension of x.
|
|
195
|
+
return _bessel_jv_scalar_rescaled(k, M, x)
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
def _bessel_jv_scalar_rescaled(k: int, M: int, x_val: jnp.ndarray) -> jnp.ndarray:
|
|
199
|
+
"""
|
|
200
|
+
JAX implementation for a scalar input x_val.
|
|
201
|
+
This function will be vmapped for array inputs.
|
|
202
|
+
"""
|
|
203
|
+
rescale_threshold = 1e250
|
|
204
|
+
|
|
205
|
+
# Define the body of the recurrence loop
|
|
206
|
+
def recurrence_body(i, state): # type: ignore
|
|
207
|
+
# M - i is the current 'm' value in the original loop.
|
|
208
|
+
# Loop from M down to 1. jax.lax.fori_loop goes from lower to upper-1.
|
|
209
|
+
# So for m from M down to 1, we map i from 0 to M-1.
|
|
210
|
+
# Current m_val = M - i
|
|
211
|
+
# The loop range for m in numpy was `range(M, 0, -1)`, which means m goes from M, M-1, ..., 1.
|
|
212
|
+
# For lax.fori_loop (start, stop, body_fn, init_val), start is inclusive, stop is exclusive.
|
|
213
|
+
# So to iterate M times for m from M down to 1, we do i from 0 to M-1.
|
|
214
|
+
# m_val = M - i means that for i=0, m_val=M; for i=M-1, m_val=1.
|
|
215
|
+
m_val = M - i
|
|
216
|
+
f_m, f_m_p1, f_vals = state
|
|
217
|
+
|
|
218
|
+
# If x_val is near zero, this division could be an issue,
|
|
219
|
+
# but the outer lax.cond handles the x_val near zero case before this loop runs.
|
|
220
|
+
f_m_m1 = (2.0 * m_val / x_val) * f_m - f_m_p1
|
|
221
|
+
|
|
222
|
+
# --- Rescaling Step ---
|
|
223
|
+
# jax.lax.cond requires all branches to return the exact same type and shape.
|
|
224
|
+
def rescale_branch(vals): # type: ignore
|
|
225
|
+
f_m_val, f_m_p1_val, f_vals_arr = vals
|
|
226
|
+
scale_factor = f_m_m1
|
|
227
|
+
# Return new f_m, f_m_p1, updated f_vals_arr, and the new f_m_m1 value (which is 1.0)
|
|
228
|
+
return (
|
|
229
|
+
f_m_val / scale_factor,
|
|
230
|
+
f_m_p1_val / scale_factor,
|
|
231
|
+
f_vals_arr / scale_factor,
|
|
232
|
+
1.0,
|
|
233
|
+
)
|
|
234
|
+
|
|
235
|
+
def no_rescale_branch(vals): # type: ignore
|
|
236
|
+
f_m_val, f_m_p1_val, f_vals_arr = (
|
|
237
|
+
vals # Unpack to keep signatures consistent
|
|
238
|
+
)
|
|
239
|
+
# Return original f_m, f_m_p1, original f_vals_arr, and the computed f_m_m1
|
|
240
|
+
return (f_m_val, f_m_p1_val, f_vals_arr, f_m_m1)
|
|
241
|
+
|
|
242
|
+
f_m_rescaled, f_m_p1_rescaled, f_vals_rescaled, f_m_m1_effective = jax.lax.cond(
|
|
243
|
+
jnp.abs(f_m_m1) > rescale_threshold,
|
|
244
|
+
rescale_branch,
|
|
245
|
+
no_rescale_branch,
|
|
246
|
+
(f_m, f_m_p1, f_vals), # Arguments passed to branches
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
# Update f_vals at index m_val - 1. JAX uses .at[idx].set(val) for non-in-place updates.
|
|
250
|
+
f_vals_updated = f_vals_rescaled.at[m_val - 1].set(f_m_m1_effective)
|
|
251
|
+
|
|
252
|
+
# Return new state for the next iteration: (new f_m, new f_m_p1, updated f_vals)
|
|
253
|
+
return (f_m_m1_effective, f_m_rescaled, f_vals_updated)
|
|
254
|
+
|
|
255
|
+
# Initial state for the recurrence loop
|
|
256
|
+
f_m_p1_init = 0.0
|
|
257
|
+
f_m_init = 1e-30 # Start with a very small number
|
|
258
|
+
f_vals_init = jnp.zeros(M + 1).at[M].set(f_m_init)
|
|
259
|
+
|
|
260
|
+
# Use jax.lax.fori_loop for the backward recurrence
|
|
261
|
+
# Loop from i = 0 to M-1 (total M iterations)
|
|
262
|
+
# The 'body' function gets current 'i' and 'state', returns 'new_state'.
|
|
263
|
+
# We don't need the final f_m_p1, only f_m and f_vals.
|
|
264
|
+
final_f_m, _, f_vals = jax.lax.fori_loop(
|
|
265
|
+
0, M, recurrence_body, (f_m_init, f_m_p1_init, f_vals_init)
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
# Normalization using Neumann's sum rule
|
|
269
|
+
even_sum = jnp.sum(f_vals[2::2])
|
|
270
|
+
norm_const = f_vals[0] + 2.0 * even_sum
|
|
271
|
+
|
|
272
|
+
# Handle division by near-zero normalization constant
|
|
273
|
+
norm_const_safe = jnp.where(jnp.abs(norm_const) < 1e-12, 1e-12, norm_const)
|
|
274
|
+
|
|
275
|
+
# Conditional logic for x_val close to zero
|
|
276
|
+
def x_is_zero_case() -> jnp.ndarray:
|
|
277
|
+
# For x=0, J_0(0)=1, J_k(0)=0 for k>0
|
|
278
|
+
return jnp.zeros(k).at[0].set(1.0)
|
|
279
|
+
|
|
280
|
+
def x_is_not_zero_case() -> jnp.ndarray:
|
|
281
|
+
return f_vals[:k] / norm_const_safe # type: ignore
|
|
282
|
+
|
|
283
|
+
# Use lax.cond to select between the two cases based on x_val
|
|
284
|
+
return jax.lax.cond(jnp.abs(x_val) < 1e-12, x_is_zero_case, x_is_not_zero_case) # type: ignore
|
|
@@ -17,7 +17,7 @@ except ImportError: # np2.0 compatibility
|
|
|
17
17
|
|
|
18
18
|
import tensornetwork
|
|
19
19
|
from scipy.linalg import expm, solve, schur
|
|
20
|
-
from scipy.special import softmax, expit
|
|
20
|
+
from scipy.special import softmax, expit, jv
|
|
21
21
|
from scipy.sparse import coo_matrix, issparse
|
|
22
22
|
from tensornetwork.backends.numpy import numpy_backend
|
|
23
23
|
from .abstract_backend import ExtendedBackend
|
|
@@ -200,6 +200,7 @@ class NumpyBackend(numpy_backend.NumPyBackend, ExtendedBackend): # type: ignore
|
|
|
200
200
|
return softmax(a, axis=axis)
|
|
201
201
|
|
|
202
202
|
def onehot(self, a: Tensor, num: int) -> Tensor:
|
|
203
|
+
a = np.asarray(a)
|
|
203
204
|
res = np.eye(num)[a.reshape([-1])]
|
|
204
205
|
return res.reshape(list(a.shape) + [num])
|
|
205
206
|
# https://stackoverflow.com/questions/38592324/one-hot-encoding-using-numpy
|
|
@@ -244,6 +245,9 @@ class NumpyBackend(numpy_backend.NumPyBackend, ExtendedBackend): # type: ignore
|
|
|
244
245
|
# https://stackoverflow.com/questions/44672029/difference-between-numpy-linalg-solve-and-numpy-linalg-lu-solve/44710451
|
|
245
246
|
return solve(A, b, assume_a=assume_a)
|
|
246
247
|
|
|
248
|
+
def special_jv(self, v: int, z: Tensor, M: int) -> Tensor:
|
|
249
|
+
return jv(np.arange(v), z)
|
|
250
|
+
|
|
247
251
|
def searchsorted(self, a: Tensor, v: Tensor, side: str = "left") -> Tensor:
|
|
248
252
|
return np.searchsorted(a, v, side=side) # type: ignore
|
|
249
253
|
|
|
@@ -329,6 +333,9 @@ class NumpyBackend(numpy_backend.NumPyBackend, ExtendedBackend): # type: ignore
|
|
|
329
333
|
) -> Tensor:
|
|
330
334
|
return sp_a @ b
|
|
331
335
|
|
|
336
|
+
def sparse_csr_from_coo(self, coo: Tensor, strict: bool = False) -> Tensor:
|
|
337
|
+
return coo.tocsr()
|
|
338
|
+
|
|
332
339
|
def to_dense(self, sp_a: Tensor) -> Tensor:
|
|
333
340
|
return sp_a.todense()
|
|
334
341
|
|
|
@@ -360,6 +360,38 @@ tensornetwork.backends.tensorflow.tensorflow_backend.TensorFlowBackend.rq = _rq_
|
|
|
360
360
|
tensornetwork.backends.tensorflow.tensorflow_backend.TensorFlowBackend.svd = _svd_tf
|
|
361
361
|
|
|
362
362
|
|
|
363
|
+
def sparse_tensor_matmul(self: Tensor, other: Tensor) -> Tensor:
|
|
364
|
+
"""
|
|
365
|
+
An implementation of matrix multiplication (@) for tf.SparseTensor.
|
|
366
|
+
|
|
367
|
+
This function is designed to be monkey-patched onto the tf.SparseTensor class.
|
|
368
|
+
It handles multiplication with a dense vector (rank-1 Tensor) by temporarily
|
|
369
|
+
promoting it to a matrix (rank-2 Tensor) for the underlying TensorFlow call.
|
|
370
|
+
"""
|
|
371
|
+
# Ensure the 'other' tensor is of a compatible dtype
|
|
372
|
+
if not other.dtype.is_compatible_with(self.dtype):
|
|
373
|
+
other = tf.cast(other, self.dtype)
|
|
374
|
+
|
|
375
|
+
# tf.sparse.sparse_dense_matmul requires the dense tensor to be a 2D matrix.
|
|
376
|
+
# If we get a 1D vector, we need to reshape it.
|
|
377
|
+
is_vector = len(other.shape) == 1
|
|
378
|
+
|
|
379
|
+
if is_vector:
|
|
380
|
+
# Promote the vector to a column matrix [N] -> [N, 1]
|
|
381
|
+
other_matrix = tf.expand_dims(other, axis=1)
|
|
382
|
+
else:
|
|
383
|
+
other_matrix = other
|
|
384
|
+
|
|
385
|
+
# Perform the actual multiplication
|
|
386
|
+
result_matrix = tf.sparse.sparse_dense_matmul(self, other_matrix)
|
|
387
|
+
|
|
388
|
+
if is_vector:
|
|
389
|
+
# Demote the result matrix back to a vector [M, 1] -> [M]
|
|
390
|
+
return tf.squeeze(result_matrix, axis=1)
|
|
391
|
+
else:
|
|
392
|
+
return result_matrix
|
|
393
|
+
|
|
394
|
+
|
|
363
395
|
class TensorFlowBackend(tensorflow_backend.TensorFlowBackend, ExtendedBackend): # type: ignore
|
|
364
396
|
"""
|
|
365
397
|
See the original backend API at `tensorflow backend
|
|
@@ -378,6 +410,8 @@ class TensorFlowBackend(tensorflow_backend.TensorFlowBackend, ExtendedBackend):
|
|
|
378
410
|
)
|
|
379
411
|
tf = tensorflow
|
|
380
412
|
tf.sparse.SparseTensor.__add__ = tf.sparse.add
|
|
413
|
+
tf.SparseTensor.__matmul__ = sparse_tensor_matmul
|
|
414
|
+
|
|
381
415
|
self.minor = int(tf.__version__.split(".")[1])
|
|
382
416
|
self.name = "tensorflow"
|
|
383
417
|
logger = tf.get_logger() # .setLevel('ERROR')
|
|
@@ -719,7 +753,10 @@ class TensorFlowBackend(tensorflow_backend.TensorFlowBackend, ExtendedBackend):
|
|
|
719
753
|
def scan(
|
|
720
754
|
self, f: Callable[[Tensor, Tensor], Tensor], xs: Tensor, init: Tensor
|
|
721
755
|
) -> Tensor:
|
|
722
|
-
|
|
756
|
+
stacked_results = tf.scan(f, xs, init)
|
|
757
|
+
final_state = tf.nest.map_structure(lambda x: x[-1], stacked_results)
|
|
758
|
+
return final_state
|
|
759
|
+
# return tf.scan(f, xs, init)[-1]
|
|
723
760
|
|
|
724
761
|
def device(self, a: Tensor) -> str:
|
|
725
762
|
dev = a.device
|
tensorcircuit/fgs.py
CHANGED
|
@@ -28,7 +28,6 @@ def onehot_matrix(i: int, j: int, N: int) -> Tensor:
|
|
|
28
28
|
|
|
29
29
|
# TODO(@refraction-ray): efficiency benchmark with jit
|
|
30
30
|
# TODO(@refraction-ray): FGS mixed state support?
|
|
31
|
-
# TODO(@refraction-ray): overlap?
|
|
32
31
|
# TODO(@refraction-ray): fermionic logarithmic negativity
|
|
33
32
|
|
|
34
33
|
|
|
@@ -227,7 +226,7 @@ class FGSSimulator:
|
|
|
227
226
|
return self.alpha
|
|
228
227
|
|
|
229
228
|
def get_cmatrix(self, now_i: bool = True, now_j: bool = True) -> Tensor:
|
|
230
|
-
"""
|
|
229
|
+
r"""
|
|
231
230
|
Calculates the correlation matrix.
|
|
232
231
|
|
|
233
232
|
The correlation matrix is defined as :math:`C_{ij} = \langle c_i^\dagger c_j \rangle`.
|
|
@@ -509,7 +508,7 @@ class FGSSimulator:
|
|
|
509
508
|
|
|
510
509
|
@staticmethod
|
|
511
510
|
def hopping(chi: Tensor, i: int, j: int, L: int) -> Tensor:
|
|
512
|
-
"""
|
|
511
|
+
r"""
|
|
513
512
|
Constructs the hopping Hamiltonian between two sites.
|
|
514
513
|
|
|
515
514
|
The hopping Hamiltonian is given by :math:`\chi c_i^\dagger c_j + h.c.`.
|
|
@@ -550,7 +549,7 @@ class FGSSimulator:
|
|
|
550
549
|
|
|
551
550
|
@staticmethod
|
|
552
551
|
def chemical_potential(chi: Tensor, i: int, L: int) -> Tensor:
|
|
553
|
-
"""
|
|
552
|
+
r"""
|
|
554
553
|
Constructs the chemical potential Hamiltonian for a single site.
|
|
555
554
|
|
|
556
555
|
The chemical potential Hamiltonian is given by :math:`\chi c_i^\dagger c_i`.
|
|
@@ -572,7 +571,7 @@ class FGSSimulator:
|
|
|
572
571
|
|
|
573
572
|
@staticmethod
|
|
574
573
|
def sc_pairing(chi: Tensor, i: int, j: int, L: int) -> Tensor:
|
|
575
|
-
"""
|
|
574
|
+
r"""
|
|
576
575
|
Constructs the superconducting pairing Hamiltonian between two sites.
|
|
577
576
|
|
|
578
577
|
The superconducting pairing Hamiltonian is given by :math:`\chi c_i^\dagger c_j^\dagger + h.c.`.
|
|
@@ -637,7 +636,7 @@ class FGSSimulator:
|
|
|
637
636
|
self.evol_ihamiltonian(self.chemical_potential(chi, i, self.L))
|
|
638
637
|
|
|
639
638
|
def get_bogoliubov_uv(self) -> Tuple[Tensor, Tensor]:
|
|
640
|
-
"""
|
|
639
|
+
r"""
|
|
641
640
|
Returns the u and v matrices of the Bogoliubov transformation.
|
|
642
641
|
|
|
643
642
|
The Bogoliubov transformation is defined as:
|
tensorcircuit/quantum.py
CHANGED
|
@@ -1433,7 +1433,7 @@ def PauliStringSum2Dense(
|
|
|
1433
1433
|
return sparsem.todense()
|
|
1434
1434
|
sparsem = backend.coo_sparse_matrix_from_numpy(sparsem)
|
|
1435
1435
|
densem = backend.to_dense(sparsem)
|
|
1436
|
-
return densem
|
|
1436
|
+
return backend.convert_to_tensor(densem)
|
|
1437
1437
|
|
|
1438
1438
|
|
|
1439
1439
|
# already implemented as backend method
|
|
@@ -96,10 +96,12 @@ class StabilizerCircuit(AbstractCircuit):
|
|
|
96
96
|
|
|
97
97
|
if name.lower() in self.gate_map:
|
|
98
98
|
# self._stim_circuit.append(gate_map[name.lower()], list(index))
|
|
99
|
-
|
|
99
|
+
gn = self.gate_map[name.lower()]
|
|
100
|
+
instruction = f"{gn} {' '.join(map(str, index))}"
|
|
100
101
|
self._stim_circuit.append_from_stim_program_text(instruction)
|
|
101
102
|
# append is much slower
|
|
102
|
-
self.current_sim.do(stim.Circuit(instruction))
|
|
103
|
+
# self.current_sim.do(stim.Circuit(instruction))
|
|
104
|
+
getattr(self.current_sim, gn.lower())(*index)
|
|
103
105
|
else:
|
|
104
106
|
raise ValueError(f"Gate {name} is not supported in stabilizer simulation")
|
|
105
107
|
|