tensorcircuit-nightly 1.2.1.dev20250615__py3-none-any.whl → 1.2.1.dev20250618__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tensorcircuit-nightly might be problematic. Click here for more details.

tensorcircuit/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "1.2.1.dev20250615"
1
+ __version__ = "1.2.1.dev20250618"
2
2
  __author__ = "TensorCircuit Authors"
3
3
  __creator__ = "refraction-ray"
4
4
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tensorcircuit-nightly
3
- Version: 1.2.1.dev20250615
3
+ Version: 1.2.1.dev20250618
4
4
  Summary: nightly release for tensorcircuit
5
5
  Home-page: https://github.com/refraction-ray/tensorcircuit-dev
6
6
  Author: TensorCircuit Authors
@@ -72,7 +72,7 @@ Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full docume
72
72
 
73
73
  For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 80+ [example scripts](/examples) and 30+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative.
74
74
 
75
- For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basis and representative usage of TensorCircuit-NG.
75
+ For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
76
76
 
77
77
  The following are some minimal demos.
78
78
 
@@ -192,7 +192,7 @@ We also have [Docker support](/docker).
192
192
 
193
193
  - JIT, AD, vectorized parallelism compatible
194
194
 
195
- - GPU support, quantum device access support, hybrid deployment support
195
+ - GPU support, QPU access support, hybrid deployment support
196
196
 
197
197
  - HPC native, distributed simulation enabled, multiple devices/hosts support
198
198
 
@@ -407,7 +407,7 @@ For the setup and simulation code of neural network encoded variational quantum
407
407
 
408
408
  Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
409
409
 
410
- ### Effective temperature in approximate ansatzes
410
+ ### Effective temperature in ansatzes
411
411
 
412
412
  For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
413
413
 
@@ -417,6 +417,8 @@ Reference paper: https://arxiv.org/abs/2411.18921.
417
417
 
418
418
  For the simulation code and data for variational optimization of simutaneous excited states, see the [project repo](https://github.com/sxzgroup/quantum_excited_state).
419
419
 
420
+ Reference paper: https://arxiv.org/abs/2504.21459.
421
+
420
422
  ### More works
421
423
 
422
424
  <details>
@@ -460,7 +462,7 @@ For the simulation code and data for variational optimization of simutaneous exc
460
462
 
461
463
  - Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
462
464
 
463
- - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in PRB).
465
+ - Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
464
466
 
465
467
  - Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076.
466
468
 
@@ -1,4 +1,4 @@
1
- tensorcircuit/__init__.py,sha256=2L9saaIPqgzTcva8QSg61C2oceFuY574iUCoplArySM,2032
1
+ tensorcircuit/__init__.py,sha256=fTmQGtLJajV7q_L9oaVUUhEx_GJYcfNPTPzCS2XcO5w,2032
2
2
  tensorcircuit/about.py,sha256=DazTswU2nAwOmASTaDII3L04PVtaQ7oiWPty5YMI3Wk,5267
3
3
  tensorcircuit/abstractcircuit.py,sha256=0osacPqq7B1EJki-cI1aLYoVRmjFaG9q3XevWMs7SsA,44125
4
4
  tensorcircuit/asciiart.py,sha256=neY1OWFwtoW5cHPNwkQHgRPktDniQvdlP9QKHkk52fM,8236
@@ -83,7 +83,7 @@ tensorcircuit/templates/conversions.py,sha256=D3chiKDr7G1ekCJngiol91k9iqrMag1DZQ
83
83
  tensorcircuit/templates/dataset.py,sha256=ldPvCUlwjHU_S98E2ISQp34KqJzJPpPHmDIKJ4K-qYo,1933
84
84
  tensorcircuit/templates/graphs.py,sha256=cPYrxjoem0xZ-Is9dZKAvEzWZL_FejfIRiCEOTA4qd4,3935
85
85
  tensorcircuit/templates/measurements.py,sha256=pzc5Aa9S416Ilg4aOY77Z6ZhUlYcXnAkQNQFTuHjFFs,10943
86
- tensorcircuit_nightly-1.2.1.dev20250615.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
86
+ tensorcircuit_nightly-1.2.1.dev20250618.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
87
87
  tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
88
88
  tests/conftest.py,sha256=J9nHlLE3Zspz1rMyzadEuBWhaS5I4Q9sq0lnWybcdIA,1457
89
89
  tests/test_backends.py,sha256=rClxb2gyAoGeXd_ZYVSAJ0zEvJ7z_2btAeFM_Iy_wwY,33925
@@ -112,7 +112,7 @@ tests/test_stabilizer.py,sha256=tG78b8NZEBxgWQXPT2vmYGkGK1MeAempCT7Hsv5ZLrA,5252
112
112
  tests/test_templates.py,sha256=Xm9otFFaaBWG9TZpgJ-nNh9MBfRipTzFWL8fBOnie2k,7192
113
113
  tests/test_torchnn.py,sha256=CHLTfWkF7Ses5_XnGFN_uv_JddfgenFEFzaDtSH8XYU,2848
114
114
  tests/test_van.py,sha256=kAWz860ivlb5zAJuYpzuBe27qccT-Yf0jatf5uXtTo4,3163
115
- tensorcircuit_nightly-1.2.1.dev20250615.dist-info/METADATA,sha256=sIhbAoTOLcFVwgS9WuUryoJA-1B-XaRaaON5_Srh0ME,34022
116
- tensorcircuit_nightly-1.2.1.dev20250615.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
117
- tensorcircuit_nightly-1.2.1.dev20250615.dist-info/top_level.txt,sha256=O_Iqeh2x02lasEYMI9iyPNNNtMzcpg5qvwMOkZQ7n4A,20
118
- tensorcircuit_nightly-1.2.1.dev20250615.dist-info/RECORD,,
115
+ tensorcircuit_nightly-1.2.1.dev20250618.dist-info/METADATA,sha256=mP2Z86Ig5l9wINqRnUIdOh5E97JsOh_k1QVjMDovN-o,34052
116
+ tensorcircuit_nightly-1.2.1.dev20250618.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
117
+ tensorcircuit_nightly-1.2.1.dev20250618.dist-info/top_level.txt,sha256=O_Iqeh2x02lasEYMI9iyPNNNtMzcpg5qvwMOkZQ7n4A,20
118
+ tensorcircuit_nightly-1.2.1.dev20250618.dist-info/RECORD,,