tensorcircuit-nightly 1.0.2.dev20250108__py3-none-any.whl → 1.4.0.dev20251103__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tensorcircuit-nightly might be problematic. Click here for more details.
- tensorcircuit/__init__.py +18 -2
- tensorcircuit/about.py +46 -0
- tensorcircuit/abstractcircuit.py +4 -0
- tensorcircuit/analogcircuit.py +413 -0
- tensorcircuit/applications/layers.py +1 -1
- tensorcircuit/applications/van.py +1 -1
- tensorcircuit/backends/abstract_backend.py +320 -7
- tensorcircuit/backends/cupy_backend.py +3 -1
- tensorcircuit/backends/jax_backend.py +102 -4
- tensorcircuit/backends/jax_ops.py +110 -1
- tensorcircuit/backends/numpy_backend.py +49 -3
- tensorcircuit/backends/pytorch_backend.py +92 -3
- tensorcircuit/backends/tensorflow_backend.py +102 -3
- tensorcircuit/basecircuit.py +157 -98
- tensorcircuit/circuit.py +115 -57
- tensorcircuit/cloud/local.py +1 -1
- tensorcircuit/cloud/quafu_provider.py +1 -1
- tensorcircuit/cloud/tencent.py +1 -1
- tensorcircuit/compiler/simple_compiler.py +2 -2
- tensorcircuit/cons.py +142 -21
- tensorcircuit/densitymatrix.py +43 -14
- tensorcircuit/experimental.py +387 -129
- tensorcircuit/fgs.py +282 -81
- tensorcircuit/gates.py +66 -22
- tensorcircuit/interfaces/__init__.py +1 -3
- tensorcircuit/interfaces/jax.py +189 -0
- tensorcircuit/keras.py +3 -3
- tensorcircuit/mpscircuit.py +154 -65
- tensorcircuit/quantum.py +868 -152
- tensorcircuit/quditcircuit.py +733 -0
- tensorcircuit/quditgates.py +618 -0
- tensorcircuit/results/counts.py +147 -20
- tensorcircuit/results/readout_mitigation.py +4 -1
- tensorcircuit/shadows.py +1 -1
- tensorcircuit/simplify.py +3 -1
- tensorcircuit/stabilizercircuit.py +479 -0
- tensorcircuit/templates/__init__.py +2 -0
- tensorcircuit/templates/blocks.py +2 -2
- tensorcircuit/templates/hamiltonians.py +174 -0
- tensorcircuit/templates/lattice.py +1789 -0
- tensorcircuit/timeevol.py +896 -0
- tensorcircuit/translation.py +10 -3
- tensorcircuit/utils.py +7 -0
- {tensorcircuit_nightly-1.0.2.dev20250108.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/METADATA +73 -23
- tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD +96 -0
- {tensorcircuit_nightly-1.0.2.dev20250108.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/WHEEL +1 -1
- {tensorcircuit_nightly-1.0.2.dev20250108.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info}/top_level.txt +0 -1
- tensorcircuit_nightly-1.0.2.dev20250108.dist-info/RECORD +0 -115
- tests/__init__.py +0 -0
- tests/conftest.py +0 -67
- tests/test_backends.py +0 -1031
- tests/test_calibrating.py +0 -149
- tests/test_channels.py +0 -365
- tests/test_circuit.py +0 -1699
- tests/test_cloud.py +0 -219
- tests/test_compiler.py +0 -147
- tests/test_dmcircuit.py +0 -555
- tests/test_ensemble.py +0 -72
- tests/test_fgs.py +0 -310
- tests/test_gates.py +0 -156
- tests/test_interfaces.py +0 -429
- tests/test_keras.py +0 -160
- tests/test_miscs.py +0 -277
- tests/test_mpscircuit.py +0 -341
- tests/test_noisemodel.py +0 -156
- tests/test_qaoa.py +0 -86
- tests/test_qem.py +0 -152
- tests/test_quantum.py +0 -526
- tests/test_quantum_attr.py +0 -42
- tests/test_results.py +0 -347
- tests/test_shadows.py +0 -160
- tests/test_simplify.py +0 -46
- tests/test_templates.py +0 -218
- tests/test_torchnn.py +0 -99
- tests/test_van.py +0 -102
- {tensorcircuit_nightly-1.0.2.dev20250108.dist-info → tensorcircuit_nightly-1.4.0.dev20251103.dist-info/licenses}/LICENSE +0 -0
tensorcircuit/translation.py
CHANGED
|
@@ -13,8 +13,6 @@ logger = logging.getLogger(__name__)
|
|
|
13
13
|
|
|
14
14
|
try:
|
|
15
15
|
import qiskit.quantum_info as qi
|
|
16
|
-
import symengine
|
|
17
|
-
import sympy
|
|
18
16
|
from qiskit import QuantumCircuit
|
|
19
17
|
from qiskit.circuit import Parameter, ParameterExpression
|
|
20
18
|
from qiskit.circuit.exceptions import CircuitError
|
|
@@ -28,6 +26,14 @@ except ImportError:
|
|
|
28
26
|
CircuitInstruction = Any
|
|
29
27
|
QuantumCircuit = Any
|
|
30
28
|
|
|
29
|
+
try:
|
|
30
|
+
import symengine
|
|
31
|
+
import sympy
|
|
32
|
+
except ImportError:
|
|
33
|
+
logger.info(
|
|
34
|
+
"Please first ``pip install -U sympy symengine`` to enable `qiskit2tc` in translation module"
|
|
35
|
+
)
|
|
36
|
+
|
|
31
37
|
try:
|
|
32
38
|
import cirq
|
|
33
39
|
except ImportError:
|
|
@@ -45,7 +51,6 @@ Tensor = Any
|
|
|
45
51
|
|
|
46
52
|
|
|
47
53
|
def get_qiskit_qasm(qc: Any) -> str:
|
|
48
|
-
|
|
49
54
|
try:
|
|
50
55
|
qasm_str = qc.qasm() # type: ignore
|
|
51
56
|
except AttributeError: # qiskit 1.0
|
|
@@ -326,7 +331,9 @@ def qir2qiskit(
|
|
|
326
331
|
qiskit_circ.append(gate, index_reversed)
|
|
327
332
|
elif gate_name == "multicontrol":
|
|
328
333
|
unitary = backend.numpy(backend.convert_to_tensor(parameters["unitary"]))
|
|
334
|
+
k = int(np.log(unitary.shape[-1]) / np.log(2) + 1e-7)
|
|
329
335
|
ctrl_str = "".join(map(str, parameters["ctrl"]))[::-1]
|
|
336
|
+
unitary = perm_matrix(k) @ unitary @ perm_matrix(k)
|
|
330
337
|
gate = UnitaryGate(unitary, label=qis_name).control(
|
|
331
338
|
len(ctrl_str), ctrl_state=ctrl_str
|
|
332
339
|
)
|
tensorcircuit/utils.py
CHANGED
|
@@ -11,6 +11,13 @@ import time
|
|
|
11
11
|
|
|
12
12
|
|
|
13
13
|
def gpu_memory_share(flag: bool = True) -> None:
|
|
14
|
+
"""
|
|
15
|
+
Set the GPU memory growth mode
|
|
16
|
+
|
|
17
|
+
:param flag: whether to set the GPU memory growth mode, defaults to True
|
|
18
|
+
:type flag: bool
|
|
19
|
+
:return: None
|
|
20
|
+
"""
|
|
14
21
|
# TODO(@refraction-ray): the default torch behavior should be True
|
|
15
22
|
# preallocate behavior for torch to be investigated
|
|
16
23
|
if flag is True:
|
|
@@ -1,17 +1,21 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: tensorcircuit-nightly
|
|
3
|
-
Version: 1.0.
|
|
4
|
-
Summary:
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
3
|
+
Version: 1.4.0.dev20251103
|
|
4
|
+
Summary: High performance unified quantum computing framework for the NISQ era
|
|
5
|
+
Author-email: TensorCircuit Authors <znfesnpbh@gmail.com>
|
|
6
|
+
License-Expression: Apache-2.0
|
|
7
|
+
Project-URL: Homepage, https://github.com/tensorcircuit/tensorcircuit-ng
|
|
8
|
+
Project-URL: Repository, https://github.com/tensorcircuit/tensorcircuit-ng
|
|
8
9
|
Classifier: Programming Language :: Python :: 3
|
|
9
10
|
Classifier: Operating System :: OS Independent
|
|
11
|
+
Classifier: Intended Audience :: Science/Research
|
|
12
|
+
Classifier: Topic :: Scientific/Engineering :: Physics
|
|
13
|
+
Requires-Python: >=3.9
|
|
10
14
|
Description-Content-Type: text/markdown
|
|
11
15
|
License-File: LICENSE
|
|
12
16
|
Requires-Dist: numpy
|
|
13
17
|
Requires-Dist: scipy
|
|
14
|
-
Requires-Dist: tensornetwork
|
|
18
|
+
Requires-Dist: tensornetwork-ng
|
|
15
19
|
Requires-Dist: networkx
|
|
16
20
|
Provides-Extra: tensorflow
|
|
17
21
|
Requires-Dist: tensorflow; extra == "tensorflow"
|
|
@@ -22,6 +26,12 @@ Provides-Extra: torch
|
|
|
22
26
|
Requires-Dist: torch; extra == "torch"
|
|
23
27
|
Provides-Extra: qiskit
|
|
24
28
|
Requires-Dist: qiskit; extra == "qiskit"
|
|
29
|
+
Requires-Dist: sympy; extra == "qiskit"
|
|
30
|
+
Requires-Dist: symengine; extra == "qiskit"
|
|
31
|
+
Provides-Extra: cloud
|
|
32
|
+
Requires-Dist: qiskit; extra == "cloud"
|
|
33
|
+
Requires-Dist: mthree<2.8; extra == "cloud"
|
|
34
|
+
Dynamic: license-file
|
|
25
35
|
|
|
26
36
|
<p align="center">
|
|
27
37
|
<a href="https://github.com/tensorcircuit/tensorcircuit-ng">
|
|
@@ -50,19 +60,19 @@ Requires-Dist: qiskit; extra == "qiskit"
|
|
|
50
60
|
|
|
51
61
|
<p align="center"> English | <a href="README_cn.md"> 简体中文 </a></p>
|
|
52
62
|
|
|
53
|
-
TensorCircuit-NG is
|
|
63
|
+
TensorCircuit-NG is the next-generation open-source high-performance quantum software framework, built upon tensornetwork engines, supporting for automatic differentiation, just-in-time compiling, hardware acceleration, vectorized parallelism and distributed training, providing unified infrastructures and interfaces for quantum programming. It can compose quantum circuits, neural networks and tensor networks seamlessly with high simulation efficiency and flexibility.
|
|
54
64
|
|
|
55
|
-
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal, noisy, approximate
|
|
65
|
+
TensorCircuit-NG is built on top of modern machine learning frameworks: Jax, TensorFlow, and PyTorch. It is specifically suitable for large-scale simulations of quantum-classical hybrid paradigm and variational quantum algorithms in ideal (`Circuit`), noisy (`DMCircuit`), Clifford (`StabilizerCircuit`), qudit (`QuditCircuit`), approximate (`MPSCircuit`), analog (`AnalogCircuit`), and fermionic (`FGSCircuit`) cases. It also supports quantum hardware access and provides CPU/GPU/QPU hybrid deployment solutions.
|
|
56
66
|
|
|
57
|
-
TensorCircuit-NG is [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng)
|
|
67
|
+
TensorCircuit-NG is the only actively maintained official version and a [fully compatible](https://tensorcircuit-ng.readthedocs.io/en/latest/faq.html#what-is-the-relation-between-tensorcircuit-and-tensorcircuit-ng) successor to TensorCircuit with more new features (stabilizer circuit, qudit circuit, analog circuit, multi-GPU distributed simulation, etc.) and bug fixes (support latest `numpy>2` and `qiskit>1`).
|
|
58
68
|
|
|
59
69
|
## Getting Started
|
|
60
70
|
|
|
61
71
|
Please begin with [Quick Start](/docs/source/quickstart.rst) in the [full documentation](https://tensorcircuit-ng.readthedocs.io/).
|
|
62
72
|
|
|
63
|
-
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to
|
|
73
|
+
For more information on software usage, sota algorithm implementation and engineer paradigm demonstration, please refer to 90+ [example scripts](/examples) and 40+ [tutorial notebooks](https://tensorcircuit-ng.readthedocs.io/en/latest/#tutorials). API docstrings and test cases in [tests](/tests) are also informative. One can also refer to AI-native docs for tensorcircuit-ng: [Devin Deepwiki](https://deepwiki.com/tensorcircuit/tensorcircuit-ng) and [Context7 MCP](https://context7.com/tensorcircuit/tensorcircuit-ng).
|
|
64
74
|
|
|
65
|
-
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing
|
|
75
|
+
For beginners, please refer to [quantum computing lectures with TC-NG](https://github.com/sxzgroup/qc_lecture) to learn both quantum computing basics and representative usage of TensorCircuit-NG.
|
|
66
76
|
|
|
67
77
|
The following are some minimal demos.
|
|
68
78
|
|
|
@@ -160,7 +170,7 @@ The package is written in pure Python and can be obtained via pip as:
|
|
|
160
170
|
pip install tensorcircuit-ng
|
|
161
171
|
```
|
|
162
172
|
|
|
163
|
-
We recommend you install this package with tensorflow also installed as:
|
|
173
|
+
We recommend you install this package with tensorflow or jax also installed as:
|
|
164
174
|
|
|
165
175
|
```python
|
|
166
176
|
pip install "tensorcircuit-ng[tensorflow]"
|
|
@@ -182,7 +192,9 @@ We also have [Docker support](/docker).
|
|
|
182
192
|
|
|
183
193
|
- JIT, AD, vectorized parallelism compatible
|
|
184
194
|
|
|
185
|
-
- GPU support,
|
|
195
|
+
- GPU support, QPU access support, hybrid deployment support
|
|
196
|
+
|
|
197
|
+
- HPC native, distributed simulation enabled, multiple devices/hosts support
|
|
186
198
|
|
|
187
199
|
- Efficiency
|
|
188
200
|
|
|
@@ -205,13 +217,15 @@ We also have [Docker support](/docker).
|
|
|
205
217
|
|
|
206
218
|
- Support **noisy simulation** with both Monte Carlo and density matrix (tensor network powered) modes.
|
|
207
219
|
|
|
220
|
+
- Support **stabilizer circuit simulation** with stim backend
|
|
221
|
+
|
|
208
222
|
- Support **approximate simulation** with MPS-TEBD modes.
|
|
209
223
|
|
|
210
224
|
- Support **analog/digital hybrid simulation** (time dependent Hamiltonian evolution, **pulse** level simulation) with neural ode modes.
|
|
211
225
|
|
|
212
226
|
- Support **Fermion Gaussian state** simulation with expectation, entanglement, measurement, ground state, real and imaginary time evolution.
|
|
213
227
|
|
|
214
|
-
- Support **qudits simulation
|
|
228
|
+
- Support **qudits simulation** for tensor network and MPS approximation modes.
|
|
215
229
|
|
|
216
230
|
- Support **parallel** quantum circuit evaluation across **multiple GPUs**.
|
|
217
231
|
|
|
@@ -231,13 +245,15 @@ We also have [Docker support](/docker).
|
|
|
231
245
|
|
|
232
246
|
- Gradients can be obtained with both **automatic differenation** and parameter shift (vmap accelerated) modes.
|
|
233
247
|
|
|
234
|
-
- **Machine learning interface/layer/model** abstraction in both TensorFlow and
|
|
248
|
+
- **Machine learning interface/layer/model** abstraction in both TensorFlow, PyTorch and Jax for both numerical simulation and real QPU experiments.
|
|
249
|
+
|
|
250
|
+
- Support time evolution simulation with **exact, ODE, Krylov, Trotter, Chebyshev solvers**.
|
|
235
251
|
|
|
236
252
|
- Circuit sampling supports both final state sampling and perfect sampling from tensor networks.
|
|
237
253
|
|
|
238
254
|
- Light cone reduction support for local expectation calculation.
|
|
239
255
|
|
|
240
|
-
- Highly customizable tensor network contraction path finder with opteinsum interface.
|
|
256
|
+
- Highly customizable tensor network contraction path finder with opteinsum and cotengra interface.
|
|
241
257
|
|
|
242
258
|
- Observables are supported in measurement, sparse matrix, dense matrix and MPO format.
|
|
243
259
|
|
|
@@ -267,7 +283,7 @@ If this project helps in your research, please cite our software whitepaper to a
|
|
|
267
283
|
|
|
268
284
|
which is also a good introduction to the software.
|
|
269
285
|
|
|
270
|
-
Research works citing TensorCircuit can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
286
|
+
Research works citing TensorCircuit-NG can be highlighted in [Research and Applications section](https://github.com/tensorcircuit/tensorcircuit-ng#research-and-applications).
|
|
271
287
|
|
|
272
288
|
### Guidelines
|
|
273
289
|
|
|
@@ -326,6 +342,12 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
326
342
|
<td align="center" valign="top" width="16.66%"><a href="https://github.com/AbdullahKazi500"><img src="https://avatars.githubusercontent.com/u/75779966?v=4?s=100" width="100px;" alt="Chanandellar Bong"/><br /><sub><b>Chanandellar Bong</b></sub></a><br /><a href="#example-AbdullahKazi500" title="Examples">💡</a></td>
|
|
327
343
|
<td align="center" valign="top" width="16.66%"><a href="https://adeshpande.gitlab.io"><img src="https://avatars.githubusercontent.com/u/6169877?v=4?s=100" width="100px;" alt="Abhinav Deshpande"/><br /><sub><b>Abhinav Deshpande</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=abhinavd" title="Code">💻</a></td>
|
|
328
344
|
</tr>
|
|
345
|
+
<tr>
|
|
346
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Stellogic"><img src="https://avatars.githubusercontent.com/u/186928579?v=4?s=100" width="100px;" alt="Stellogic"/><br /><sub><b>Stellogic</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Code">💻</a> <a href="#example-Stellogic" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Stellogic" title="Tests">⚠️</a> <a href="#tutorial-Stellogic" title="Tutorials">✅</a></td>
|
|
347
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Charlespkuer"><img src="https://avatars.githubusercontent.com/u/112697147?v=4?s=100" width="100px;" alt="Huang"/><br /><sub><b>Huang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Code">💻</a> <a href="#example-Charlespkuer" title="Examples">💡</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Charlespkuer" title="Tests">⚠️</a></td>
|
|
348
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/Huang-Xu-Yang"><img src="https://avatars.githubusercontent.com/u/227286661?v=4?s=100" width="100px;" alt="Huang-Xu-Yang"/><br /><sub><b>Huang-Xu-Yang</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=Huang-Xu-Yang" title="Tests">⚠️</a></td>
|
|
349
|
+
<td align="center" valign="top" width="16.66%"><a href="https://github.com/WeiguoMa"><img src="https://avatars.githubusercontent.com/u/108172530?v=4?s=100" width="100px;" alt="Weiguo_M"/><br /><sub><b>Weiguo_M</b></sub></a><br /><a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Code">💻</a> <a href="https://github.com/tensorcircuit/tensorcircuit-ng/commits?author=WeiguoMa" title="Tests">⚠️</a> <a href="#example-WeiguoMa" title="Examples">💡</a> <a href="#tutorial-WeiguoMa" title="Tutorials">✅</a></td>
|
|
350
|
+
</tr>
|
|
329
351
|
</tbody>
|
|
330
352
|
</table>
|
|
331
353
|
|
|
@@ -343,6 +365,8 @@ TensorCircuit-NG is open source, released under the Apache License, Version 2.0.
|
|
|
343
365
|
|
|
344
366
|
## Research and Applications
|
|
345
367
|
|
|
368
|
+
TensorCircuit-NG is a powerful framework for driving research and applications in quantum computing. Below are examples of published academic works (100+ in total) and open-source projects that utilize TensorCircuit-NG.
|
|
369
|
+
|
|
346
370
|
### DQAS
|
|
347
371
|
|
|
348
372
|
For the application of Differentiable Quantum Architecture Search, see [applications](/tensorcircuit/applications).
|
|
@@ -391,12 +415,30 @@ For the setup and simulation code of neural network encoded variational quantum
|
|
|
391
415
|
|
|
392
416
|
Reference paper: https://arxiv.org/abs/2308.01068 (published in PRApplied).
|
|
393
417
|
|
|
394
|
-
### Effective temperature in
|
|
418
|
+
### Effective temperature in ansatzes
|
|
395
419
|
|
|
396
420
|
For the simulation implementation of quantum states based on neural networks, tensor networs and quantum circuits using TensorCircuit-NG, see the [project repo](https://github.com/sxzgroup/et).
|
|
397
421
|
|
|
398
422
|
Reference paper: https://arxiv.org/abs/2411.18921.
|
|
399
423
|
|
|
424
|
+
### A Unified Variational Framework for Quantum Excited States
|
|
425
|
+
|
|
426
|
+
For the simulation code and data for variational optimization of simutaneous excited states, see the [project repo](https://github.com/sxzgroup/quantum_excited_state).
|
|
427
|
+
|
|
428
|
+
Reference paper: https://arxiv.org/abs/2504.21459.
|
|
429
|
+
|
|
430
|
+
### Quantum Machine Unlearning
|
|
431
|
+
|
|
432
|
+
For the simulation code for the work "superior resilience to poisoning and amenability to unlearning in quantum machine learning", see the [project repo](https://github.com/yutuer21/quantum-machine-unlearning).
|
|
433
|
+
|
|
434
|
+
Reference paper: https://arxiv.org/abs/2508.02422.
|
|
435
|
+
|
|
436
|
+
### Low Weight Pauli Propagation Simulation
|
|
437
|
+
|
|
438
|
+
For the simulation code and data for the work on low weight Pauli propagation in the context of variational quantum algorithms, see the [project repo](https://github.com/ZongliangLi/lwpp_init).
|
|
439
|
+
|
|
440
|
+
Reference paper: https://arxiv.org/abs/2508.06358.
|
|
441
|
+
|
|
400
442
|
### More works
|
|
401
443
|
|
|
402
444
|
<details>
|
|
@@ -440,22 +482,30 @@ Reference paper: https://arxiv.org/abs/2411.18921.
|
|
|
440
482
|
|
|
441
483
|
- Non-Markovianity benefits quantum dynamics simulation: https://arxiv.org/abs/2311.17622.
|
|
442
484
|
|
|
443
|
-
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in
|
|
485
|
+
- Variational post-selection for ground states and thermal states simulation: https://arxiv.org/abs/2402.07605 (published in QST).
|
|
444
486
|
|
|
445
|
-
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076.
|
|
487
|
+
- Subsystem information capacity in random circuits and Hamiltonian dynamics: https://arxiv.org/abs/2405.05076 (published in Quantum). Code implementation: https://github.com/sxzgroup/subsystem_information_capacity.
|
|
446
488
|
|
|
447
489
|
- Symmetry restoration and quantum Mpemba effect in symmetric random circuits: https://arxiv.org/abs/2403.08459 (published in PRL).
|
|
448
490
|
|
|
449
491
|
- Quantum Mpemba effects in many-body localization systems: https://arxiv.org/abs/2408.07750.
|
|
450
492
|
|
|
451
|
-
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386.
|
|
493
|
+
- Supersymmetry dynamics on Rydberg atom arrays: https://arxiv.org/abs/2410.21386 (published in PRB).
|
|
452
494
|
|
|
453
495
|
- Dynamic parameterized quantum circuits: expressive and barren-plateau free: https://arxiv.org/abs/2411.05760.
|
|
454
496
|
|
|
455
|
-
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587.
|
|
497
|
+
- Holographic deep thermalization: https://arxiv.org/abs/2411.03587 (published in Nature Communications).
|
|
456
498
|
|
|
457
499
|
- Quantum deep generative prior with programmable quantum circuits: https://www.nature.com/articles/s42005-024-01765-9 (published in Communications Physics).
|
|
458
500
|
|
|
501
|
+
- Symmetry Breaking Dynamics in Quantum Many-Body Systems: https://arxiv.org/abs/2501.13459.
|
|
502
|
+
|
|
503
|
+
- Entanglement growth and information capacity in a quasiperiodic system with a single-particle mobility edge: https://arxiv.org/abs/2506.18076.
|
|
504
|
+
|
|
505
|
+
- Hilbert subspace imprint: a new mechanism for non-thermalization: https://arxiv.org/abs/2506.11922.
|
|
506
|
+
|
|
507
|
+
- A Neural-Guided Variational Quantum Algorithm for Efficient Sign Structure Learning in Hybrid Architectures: https://arxiv.org/abs/2507.07555.
|
|
508
|
+
|
|
459
509
|
</details>
|
|
460
510
|
|
|
461
511
|
If you want to highlight your research work or projects here, feel free to add by opening PR.
|
|
@@ -0,0 +1,96 @@
|
|
|
1
|
+
tensorcircuit/__init__.py,sha256=zUsxsn_5myCSfvl5cUQPBNIB9PEUcRuG-bjlk11dj1A,2160
|
|
2
|
+
tensorcircuit/about.py,sha256=DazTswU2nAwOmASTaDII3L04PVtaQ7oiWPty5YMI3Wk,5267
|
|
3
|
+
tensorcircuit/abstractcircuit.py,sha256=uDRgaDeH_Ym-6_ZEOZwvxHIDycVLHkGZv4zfaIgaEnc,44235
|
|
4
|
+
tensorcircuit/analogcircuit.py,sha256=4BzIC631MZ2m05CXuk2T6HQ8RTmHBE6NszaOLuxmlEc,15639
|
|
5
|
+
tensorcircuit/asciiart.py,sha256=neY1OWFwtoW5cHPNwkQHgRPktDniQvdlP9QKHkk52fM,8236
|
|
6
|
+
tensorcircuit/basecircuit.py,sha256=9I0Es2P5VdGisx5_t0AKSYtgSb15RB6fXCZg4eEr5es,39138
|
|
7
|
+
tensorcircuit/channels.py,sha256=CFQxWI-JmkIxexslCBdjp_RSxUbHs6eAJv4LvlXXXCY,28637
|
|
8
|
+
tensorcircuit/circuit.py,sha256=lETz1SvUh_60ZMFtvSPMWOF6zWMMyQU4TyB_VwhkVHM,40027
|
|
9
|
+
tensorcircuit/cons.py,sha256=V0wjevtDkESCIWMJaysgPVorQlPAIT0vtRWvIZkEWcE,33065
|
|
10
|
+
tensorcircuit/densitymatrix.py,sha256=C8Q2fHXZ78S9ZaPqCIKl6_v_sILqbBgqBOUYUQ1QmFI,15020
|
|
11
|
+
tensorcircuit/experimental.py,sha256=TGK4FaS6TS_ZhtjcIZgYVuAkGdRW50LN0DdXp-h4bos,29906
|
|
12
|
+
tensorcircuit/fgs.py,sha256=J1TjAiiqZk9KO1xYX_V0xsgKlYZaUQ7Enm4s5zkRM50,49514
|
|
13
|
+
tensorcircuit/gates.py,sha256=9x1VTEpZWz-FoWVM_YznoU1dbFzXnfXIEJQQVec-2Ko,30504
|
|
14
|
+
tensorcircuit/keras.py,sha256=nMSuu9uZy7haWwuen1g_6GFVwYIirtX9IvejDyoH33M,10129
|
|
15
|
+
tensorcircuit/mps_base.py,sha256=UZ-v8vsr_rAsKrfun8prVgbXJ-qsdqKy2DZIHpq3sxo,15400
|
|
16
|
+
tensorcircuit/mpscircuit.py,sha256=CPWlsb-kybZE-lh4iUkVMDn45qhHtFHUnxATP6TsaVk,38802
|
|
17
|
+
tensorcircuit/noisemodel.py,sha256=vzxpoYEZbHVC4a6g7_Jk4dxsHi4wvhpRFwud8b616Qo,11878
|
|
18
|
+
tensorcircuit/quantum.py,sha256=asuA3rCfi2Y4knWz1ObkveCdSv8EeaSsf1xfPVowvT0,110628
|
|
19
|
+
tensorcircuit/quditcircuit.py,sha256=Ll1Nb0tQYKzq7rlPJA64GjcyBqTSydvCBBKlbhEb38A,26122
|
|
20
|
+
tensorcircuit/quditgates.py,sha256=PR5n9NLNhMPyoanFYjuDioW-0U7VGUiJf_OvxR_Twq0,20925
|
|
21
|
+
tensorcircuit/shadows.py,sha256=KQM19KnXnn6d3HgaqdRs33RWC2uCIiY5cEGnH1CVdGw,17012
|
|
22
|
+
tensorcircuit/simplify.py,sha256=EuEyQenFit-hgQhEJecL7t7jJ8m8zQ4KuL_sEvPNu-I,9488
|
|
23
|
+
tensorcircuit/stabilizercircuit.py,sha256=KbrBVSo2pXnf5JHIrxwRPSPTm7bJVMIcyE4d7-dIfCM,15545
|
|
24
|
+
tensorcircuit/timeevol.py,sha256=Er3rMFEX61G1Zvt-iNVMpw1IIJ1lwD5HZURpowvCfR4,31893
|
|
25
|
+
tensorcircuit/torchnn.py,sha256=z_QpM0QC3mydGyWpyp877j-tSFCPyzynCwqrTWaw-IA,4637
|
|
26
|
+
tensorcircuit/translation.py,sha256=VnU7DnYmbk1cWjqa7N68WNLNDn3DwENrMzmbG4_CQco,28611
|
|
27
|
+
tensorcircuit/utils.py,sha256=nEDR1wTh1WF_yV6UyZYlifqOPWdKk_Krr4HjhrWHnGQ,7228
|
|
28
|
+
tensorcircuit/vis.py,sha256=O4hm050KKfOAoVyHsjpMg6NBNVoWhLSlv-xsCx4opsU,12196
|
|
29
|
+
tensorcircuit/applications/__init__.py,sha256=nAX-Am6JoL9k53iJ_CjZJ2NcjIpaz21H87nrW4Op03k,246
|
|
30
|
+
tensorcircuit/applications/dqas.py,sha256=RcIM-mHLcZ99U5oXQSBSVL36wfDoBe45kuaQageI_SQ,34463
|
|
31
|
+
tensorcircuit/applications/graphdata.py,sha256=FR28CFcZw3QenaFU74J2jlY-m3P_NtUvW6yAm-tmon8,15348
|
|
32
|
+
tensorcircuit/applications/layers.py,sha256=i7CsquQvhAxYYihK9xDgdmF_wAYPdrbq_jOcg3BbDXI,18154
|
|
33
|
+
tensorcircuit/applications/optimization.py,sha256=ycPSlKg3iOZU2ZMhH3Es8s8EOn36wakOQsDhT2SXNXs,14396
|
|
34
|
+
tensorcircuit/applications/utils.py,sha256=MQKSYeFf_y9OUw5crAOsqpulNmhGRlX6HwD-8hu1rPA,14119
|
|
35
|
+
tensorcircuit/applications/vags.py,sha256=lg4KRxIaRVjZgtA5gmsgCjDxAQPS-pkaGqA9fkJah1Q,36392
|
|
36
|
+
tensorcircuit/applications/van.py,sha256=c-vEQqWngM-GXJCMpBeonAiFvCftb2WjNK4xvu0NdrI,15177
|
|
37
|
+
tensorcircuit/applications/vqes.py,sha256=OL4_vuF3yzV_iF37JrH-DbGy-0qTeKXd5aBbWjvhDjI,23417
|
|
38
|
+
tensorcircuit/applications/ai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
39
|
+
tensorcircuit/applications/ai/ensemble.py,sha256=JmnoAq9qwCRAfdnB8fvcox6aagOQHHu68aRwJDWYi9k,5956
|
|
40
|
+
tensorcircuit/applications/finance/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
41
|
+
tensorcircuit/applications/finance/portfolio.py,sha256=IAJmjhWjFjjppPa98KifZ4Yyh2JuDdpWpu0m_bVZLh8,2934
|
|
42
|
+
tensorcircuit/applications/physics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
43
|
+
tensorcircuit/applications/physics/baseline.py,sha256=RWrzMGnC0PtmpYSFkvCE7r1llR88gncXuCakAAhFE-w,1775
|
|
44
|
+
tensorcircuit/applications/physics/fss.py,sha256=ny3U9ZDmT459PXjA1oUGfarBOlSKSy6fs04vD9s1XH4,3633
|
|
45
|
+
tensorcircuit/backends/__init__.py,sha256=WiUmbUFzM29w3hKfhuKxVUk3PpqDFiXf4za9g0ctpZA,80
|
|
46
|
+
tensorcircuit/backends/abstract_backend.py,sha256=ox8gWb1ui21DPA8bnLYEg7HOp0NwWFLAhYBjQZj8p2o,70288
|
|
47
|
+
tensorcircuit/backends/backend_factory.py,sha256=Z0aQ-RnxOnQzp-SRw8sefAH8XyBSlj2NXZwOlHinbfY,1713
|
|
48
|
+
tensorcircuit/backends/cupy_backend.py,sha256=KG5fqP29wnngkPsi-TnOk0pHsr9lyD7hx6_Y56fCQuY,15172
|
|
49
|
+
tensorcircuit/backends/jax_backend.py,sha256=luLhZ7zyj8d6ARYxzGsvhxZnbownbqgeUMpUQw6F5Yw,29080
|
|
50
|
+
tensorcircuit/backends/jax_ops.py,sha256=WyUGavch2R9uEFsI1Ap7eP1UcU4s2TItBgGsrVS3Hzs,9320
|
|
51
|
+
tensorcircuit/backends/numpy_backend.py,sha256=0N7Z6slwDsAkWBislzsy0YhKTxa2Woq_xaCCX_SFuHI,15613
|
|
52
|
+
tensorcircuit/backends/pytorch_backend.py,sha256=V4NW7RAwPgBlhMbenTJHFxSGDVdQsd5PwH8CRqcjEEc,27146
|
|
53
|
+
tensorcircuit/backends/pytorch_ops.py,sha256=lLxpK6OqfpVwifyFlgsqhpnt-oIn4R5paPMVg51WaW0,3826
|
|
54
|
+
tensorcircuit/backends/tensorflow_backend.py,sha256=9SAfcWEoKvyJG4sM0I89ozW16aa3VMxMfcOUeDljShE,39813
|
|
55
|
+
tensorcircuit/backends/tf_ops.py,sha256=FJwDU7LhZrt0VUIx12DJU0gZnWhMv7B7r9sAKG710As,3378
|
|
56
|
+
tensorcircuit/cloud/__init__.py,sha256=n0Lx07GYF6YbdIa6AJCLJk4zlAm5CqaeHszvkxxuoI4,139
|
|
57
|
+
tensorcircuit/cloud/abstraction.py,sha256=6aSxbz0MP21jBVdFbSMrvJPLQH117vGz9sSHbMFoodE,14582
|
|
58
|
+
tensorcircuit/cloud/apis.py,sha256=e4dydZk7fxGicOdQ1HFd59yql_dj0Cd_Qm2bfWs7vxg,17960
|
|
59
|
+
tensorcircuit/cloud/config.py,sha256=mk38XTQUSXCo6hhbXsAVC7EF8BuU1g9ZX5t8_jKVqcc,60
|
|
60
|
+
tensorcircuit/cloud/local.py,sha256=Qz9bC5wA_7Al_LhdVsyfYqHX0srhnpBUMEYMnncCj0w,2266
|
|
61
|
+
tensorcircuit/cloud/quafu_provider.py,sha256=wBgLFKYE2u3nfaBr92lgwHdLDkrR9I6o41UWkAYV1H0,2614
|
|
62
|
+
tensorcircuit/cloud/tencent.py,sha256=AcuOetzexzePvznAh8h_w6vtRBTY73qZQp21Fl_S0MA,14326
|
|
63
|
+
tensorcircuit/cloud/utils.py,sha256=tEB2b93eP2b9KAIhRfSg_5myX6QOoz_aUTJ3Fc1HXI4,3623
|
|
64
|
+
tensorcircuit/cloud/wrapper.py,sha256=R6HbqQulAjuHMfgcV6vE3MYWAJal9L9DIgPqkRuGttQ,11519
|
|
65
|
+
tensorcircuit/compiler/__init__.py,sha256=PR1DENcO2YuT-e_cKrOoL9By7k91RbzLs1MvhLmOeCI,242
|
|
66
|
+
tensorcircuit/compiler/composed_compiler.py,sha256=AsOGYg11rHYlZjr6olDovRkxr0B2LAm5nYiHkki5OzA,3258
|
|
67
|
+
tensorcircuit/compiler/qiskit_compiler.py,sha256=qpz7DRpQATIxsfi4pj_C6-JBtKdUVcu3BQwhoWViSVA,6219
|
|
68
|
+
tensorcircuit/compiler/simple_compiler.py,sha256=Xt1dM1bHIBAkDUftOtdz0Zo9lhCC3xHqN8VTctHc_Lc,9591
|
|
69
|
+
tensorcircuit/interfaces/__init__.py,sha256=cE2bZYRwIpxXaL0SLnIKtQS0jRZPDF3k1ep9rpesLVU,500
|
|
70
|
+
tensorcircuit/interfaces/jax.py,sha256=q_nay20gcrPRyY2itvcOtkCjqtvcC4qotbvrgm2a3cU,6014
|
|
71
|
+
tensorcircuit/interfaces/numpy.py,sha256=T7h64dG9e5xDG0KVOy9O8TXyrt5RWRnTWN9iXf3aGyY,1439
|
|
72
|
+
tensorcircuit/interfaces/scipy.py,sha256=_P2IeqvJiO7cdjTzNCIAFm8Y56Wd3j3jGmWUeeQ1Fw8,3402
|
|
73
|
+
tensorcircuit/interfaces/tensorflow.py,sha256=U4hZjm-yWxOJ5tqmffk8-tNvOkAltYBJ8Z6jYwOtTaM,3355
|
|
74
|
+
tensorcircuit/interfaces/tensortrans.py,sha256=oUxIVpXfANZVRXfPjiGJDzFPiszfBsiY40ydh0BaELE,10364
|
|
75
|
+
tensorcircuit/interfaces/torch.py,sha256=13IFGmWUFoWiSzKAzwp2EkOSxgiwN_oUFxjQb36gimo,5149
|
|
76
|
+
tensorcircuit/results/__init__.py,sha256=3kkIvmjLYQd5ff-emY8l82rpv9mwMZdM2kTLZ9sNfA4,89
|
|
77
|
+
tensorcircuit/results/counts.py,sha256=gJ9x2D09wSZ8bwLB5ZR9lyx-bg6AAoz6JDr9cDAb83w,7267
|
|
78
|
+
tensorcircuit/results/readout_mitigation.py,sha256=dVpNvtFZe7n_fDVczKcqYPEepu3fV2qK3u-SfOpTf68,31746
|
|
79
|
+
tensorcircuit/results/qem/__init__.py,sha256=Pw0hcFYNesuPE8uNDm9P8DVTIFCSBqUcIkr6smQYzuM,419
|
|
80
|
+
tensorcircuit/results/qem/benchmark_circuits.py,sha256=LlFuKCDFKihMOhiY6WUZt9QPyoPeQw0SuaczdcSA3oM,3243
|
|
81
|
+
tensorcircuit/results/qem/qem_methods.py,sha256=v8HyVsRX9vkjgGfLyB1K0Eq5UyUnh-thysqo05kXo6E,12148
|
|
82
|
+
tensorcircuit/templates/__init__.py,sha256=CzkNn6sAk9gkXYa0IemrsISXIqcaIqM2UWvGi2u2C38,237
|
|
83
|
+
tensorcircuit/templates/ansatz.py,sha256=0hmMtdSvHq9qodzpzC0TKJIWV28kTlfZqzUHjBd9aYA,3229
|
|
84
|
+
tensorcircuit/templates/blocks.py,sha256=yrfOk1xkD3z4sbOgggPdu3B0P5FEqXSv8F13pfFCZFM,6185
|
|
85
|
+
tensorcircuit/templates/chems.py,sha256=9ksMYTutfDEF3U04xrj9j0bYWb5gwTwMdMPi-SZKci0,171
|
|
86
|
+
tensorcircuit/templates/conversions.py,sha256=D3chiKDr7G1ekCJngiol91k9iqrMag1DZQGSx0j_uH4,3023
|
|
87
|
+
tensorcircuit/templates/dataset.py,sha256=ldPvCUlwjHU_S98E2ISQp34KqJzJPpPHmDIKJ4K-qYo,1933
|
|
88
|
+
tensorcircuit/templates/graphs.py,sha256=cPYrxjoem0xZ-Is9dZKAvEzWZL_FejfIRiCEOTA4qd4,3935
|
|
89
|
+
tensorcircuit/templates/hamiltonians.py,sha256=Guvqqi-V47w8xeZDmca4_mU4mW9V4c3AplsBOrRtxFo,6308
|
|
90
|
+
tensorcircuit/templates/lattice.py,sha256=IvFyNgsFMfj82g-tpJraI3lMbI-EIZ0Cghq9v7tZ6Wg,72851
|
|
91
|
+
tensorcircuit/templates/measurements.py,sha256=pzc5Aa9S416Ilg4aOY77Z6ZhUlYcXnAkQNQFTuHjFFs,10943
|
|
92
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/licenses/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
93
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/METADATA,sha256=GcMGdngxq7sA8HLP-Z_c4U_2IF_4XUK-emX8-F9wYeM,38283
|
|
94
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
95
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/top_level.txt,sha256=9dcuK5488dWpVauYz8cdvx743z_La1h7zIQCsEEgu7o,14
|
|
96
|
+
tensorcircuit_nightly-1.4.0.dev20251103.dist-info/RECORD,,
|
|
@@ -1,115 +0,0 @@
|
|
|
1
|
-
tensorcircuit/__init__.py,sha256=VrXgEl4KD4RImNQvsvgioHODVZK8IhHqIRqGpKfopzo,1792
|
|
2
|
-
tensorcircuit/about.py,sha256=3KnxZQ0YgPv6YWbqX86shuWxQ7MP-z7fCy3qeR8aN5Q,3101
|
|
3
|
-
tensorcircuit/abstractcircuit.py,sha256=0osacPqq7B1EJki-cI1aLYoVRmjFaG9q3XevWMs7SsA,44125
|
|
4
|
-
tensorcircuit/asciiart.py,sha256=neY1OWFwtoW5cHPNwkQHgRPktDniQvdlP9QKHkk52fM,8236
|
|
5
|
-
tensorcircuit/basecircuit.py,sha256=1KRytwTjjV93tCLlGM0fNoqY0vo6vvMmv4_T6cX70CI,36419
|
|
6
|
-
tensorcircuit/channels.py,sha256=CFQxWI-JmkIxexslCBdjp_RSxUbHs6eAJv4LvlXXXCY,28637
|
|
7
|
-
tensorcircuit/circuit.py,sha256=jC1Bb9A06pt6XX7muC-Q72BR9HS6n0Ft6aMjOGcz9iM,36428
|
|
8
|
-
tensorcircuit/cons.py,sha256=mauQOMianJ1QdJg1_EHOnZIrvz_Ob-Xs4JxAT6G7sUo,29583
|
|
9
|
-
tensorcircuit/densitymatrix.py,sha256=DS_3AQki7l6UMpyZxuZ9EjeQpzF-AgSlyGP7vu7N-Qk,13859
|
|
10
|
-
tensorcircuit/experimental.py,sha256=Newck14QJxOaMAQ1IfJnEg_zLNo56VHevznkgTLkgTw,18808
|
|
11
|
-
tensorcircuit/fgs.py,sha256=iPDvcpFsLpCyxLysxHXUb9LYoGm0p2QqGyqyvSYNcqI,40041
|
|
12
|
-
tensorcircuit/gates.py,sha256=x-wA7adVpP7o0AQLt_xYUScFKj8tU_wUOV2mR1GyrPc,29322
|
|
13
|
-
tensorcircuit/keras.py,sha256=5OF4dfhEeS8sRYglpqYtQsWPeqp7uK0i7-P-6RRJ7zQ,10126
|
|
14
|
-
tensorcircuit/mps_base.py,sha256=UZ-v8vsr_rAsKrfun8prVgbXJ-qsdqKy2DZIHpq3sxo,15400
|
|
15
|
-
tensorcircuit/mpscircuit.py,sha256=Jv4nsRyOhQxSHpDUJpb9OS6A5E3bTJoIHYGzwgs7NYU,34591
|
|
16
|
-
tensorcircuit/noisemodel.py,sha256=vzxpoYEZbHVC4a6g7_Jk4dxsHi4wvhpRFwud8b616Qo,11878
|
|
17
|
-
tensorcircuit/quantum.py,sha256=ayFPEwUvtfayv9nKwIK2TkQvdWoLF889DZ2g3h9GvbY,85565
|
|
18
|
-
tensorcircuit/shadows.py,sha256=6XmWNubbuaxFNvZVWu-RXd0lN9Jkk-xwong_K8o8_KE,17014
|
|
19
|
-
tensorcircuit/simplify.py,sha256=O11G3UYiVAc30GOfwXXmhLXwGZrQ8OVwLTMQMZp_XBc,9414
|
|
20
|
-
tensorcircuit/torchnn.py,sha256=z_QpM0QC3mydGyWpyp877j-tSFCPyzynCwqrTWaw-IA,4637
|
|
21
|
-
tensorcircuit/translation.py,sha256=yrOsJUOUKvB1TRbRopRzeDwqs3HbUfd-DLKV_rIsUQE,28331
|
|
22
|
-
tensorcircuit/utils.py,sha256=CH9gTV4iKIikSS8KajIu3ttyC8i_1tBPf5PAYH1fgxs,7060
|
|
23
|
-
tensorcircuit/vis.py,sha256=O4hm050KKfOAoVyHsjpMg6NBNVoWhLSlv-xsCx4opsU,12196
|
|
24
|
-
tensorcircuit/applications/__init__.py,sha256=nAX-Am6JoL9k53iJ_CjZJ2NcjIpaz21H87nrW4Op03k,246
|
|
25
|
-
tensorcircuit/applications/dqas.py,sha256=RcIM-mHLcZ99U5oXQSBSVL36wfDoBe45kuaQageI_SQ,34463
|
|
26
|
-
tensorcircuit/applications/graphdata.py,sha256=FR28CFcZw3QenaFU74J2jlY-m3P_NtUvW6yAm-tmon8,15348
|
|
27
|
-
tensorcircuit/applications/layers.py,sha256=tO5rFH1SFnSnR-MI6-ZbQUSfdlBs5aoDzLQ88OZtuus,18157
|
|
28
|
-
tensorcircuit/applications/optimization.py,sha256=ycPSlKg3iOZU2ZMhH3Es8s8EOn36wakOQsDhT2SXNXs,14396
|
|
29
|
-
tensorcircuit/applications/utils.py,sha256=MQKSYeFf_y9OUw5crAOsqpulNmhGRlX6HwD-8hu1rPA,14119
|
|
30
|
-
tensorcircuit/applications/vags.py,sha256=lg4KRxIaRVjZgtA5gmsgCjDxAQPS-pkaGqA9fkJah1Q,36392
|
|
31
|
-
tensorcircuit/applications/van.py,sha256=dfCoQd9L04yp7iEQnLfXbD6-L07VpC4YNbeumGhDrrE,15176
|
|
32
|
-
tensorcircuit/applications/vqes.py,sha256=OL4_vuF3yzV_iF37JrH-DbGy-0qTeKXd5aBbWjvhDjI,23417
|
|
33
|
-
tensorcircuit/applications/ai/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
|
-
tensorcircuit/applications/ai/ensemble.py,sha256=JmnoAq9qwCRAfdnB8fvcox6aagOQHHu68aRwJDWYi9k,5956
|
|
35
|
-
tensorcircuit/applications/finance/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
36
|
-
tensorcircuit/applications/finance/portfolio.py,sha256=IAJmjhWjFjjppPa98KifZ4Yyh2JuDdpWpu0m_bVZLh8,2934
|
|
37
|
-
tensorcircuit/applications/physics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
38
|
-
tensorcircuit/applications/physics/baseline.py,sha256=RWrzMGnC0PtmpYSFkvCE7r1llR88gncXuCakAAhFE-w,1775
|
|
39
|
-
tensorcircuit/applications/physics/fss.py,sha256=ny3U9ZDmT459PXjA1oUGfarBOlSKSy6fs04vD9s1XH4,3633
|
|
40
|
-
tensorcircuit/backends/__init__.py,sha256=WiUmbUFzM29w3hKfhuKxVUk3PpqDFiXf4za9g0ctpZA,80
|
|
41
|
-
tensorcircuit/backends/abstract_backend.py,sha256=RxChetZFa01ltOU-uzYaUNZu5tAhVa46unz_EZ8RNNA,58726
|
|
42
|
-
tensorcircuit/backends/backend_factory.py,sha256=Z0aQ-RnxOnQzp-SRw8sefAH8XyBSlj2NXZwOlHinbfY,1713
|
|
43
|
-
tensorcircuit/backends/cupy_backend.py,sha256=4vgO3lnQnsvWL5hukhskjJp37EAHqio6z6TVXTQcdjs,15077
|
|
44
|
-
tensorcircuit/backends/jax_backend.py,sha256=CDZcsGfjn-D7uvFHuM9OGgkaewzb8P4ffVwzWQbhxiM,25532
|
|
45
|
-
tensorcircuit/backends/jax_ops.py,sha256=Npg2dBDKIdlJBfNudFLVOfEfdL3k3gv8fNOjRo57N9Y,4773
|
|
46
|
-
tensorcircuit/backends/numpy_backend.py,sha256=sd1migp_E2FWjchvOeYRuyM47yexegT2_SW_ukSYSF8,14171
|
|
47
|
-
tensorcircuit/backends/pytorch_backend.py,sha256=yhfZSrm99yNW-dmijk8t6zAkbVgLRd4b_aIWKrpT7bY,24230
|
|
48
|
-
tensorcircuit/backends/pytorch_ops.py,sha256=lLxpK6OqfpVwifyFlgsqhpnt-oIn4R5paPMVg51WaW0,3826
|
|
49
|
-
tensorcircuit/backends/tensorflow_backend.py,sha256=eTGVN6OyQgxvzj4C_CRvFIHv3v8tvZyb7Tt8B-kLbOo,36250
|
|
50
|
-
tensorcircuit/backends/tf_ops.py,sha256=FJwDU7LhZrt0VUIx12DJU0gZnWhMv7B7r9sAKG710As,3378
|
|
51
|
-
tensorcircuit/cloud/__init__.py,sha256=n0Lx07GYF6YbdIa6AJCLJk4zlAm5CqaeHszvkxxuoI4,139
|
|
52
|
-
tensorcircuit/cloud/abstraction.py,sha256=6aSxbz0MP21jBVdFbSMrvJPLQH117vGz9sSHbMFoodE,14582
|
|
53
|
-
tensorcircuit/cloud/apis.py,sha256=e4dydZk7fxGicOdQ1HFd59yql_dj0Cd_Qm2bfWs7vxg,17960
|
|
54
|
-
tensorcircuit/cloud/config.py,sha256=mk38XTQUSXCo6hhbXsAVC7EF8BuU1g9ZX5t8_jKVqcc,60
|
|
55
|
-
tensorcircuit/cloud/local.py,sha256=81vM-Px5VSMwyTbOUVgNTz8JPTMdyWxJj0t-nAzAifs,2265
|
|
56
|
-
tensorcircuit/cloud/quafu_provider.py,sha256=UFHhXflWVcdE9Dkac6RWuwdY0_vjJdqW2N1DQInegqY,2613
|
|
57
|
-
tensorcircuit/cloud/tencent.py,sha256=VLvGWpesdIhxhYWuf73qRgBVeumrQsSbUSoUOIbTisE,14325
|
|
58
|
-
tensorcircuit/cloud/utils.py,sha256=tEB2b93eP2b9KAIhRfSg_5myX6QOoz_aUTJ3Fc1HXI4,3623
|
|
59
|
-
tensorcircuit/cloud/wrapper.py,sha256=R6HbqQulAjuHMfgcV6vE3MYWAJal9L9DIgPqkRuGttQ,11519
|
|
60
|
-
tensorcircuit/compiler/__init__.py,sha256=PR1DENcO2YuT-e_cKrOoL9By7k91RbzLs1MvhLmOeCI,242
|
|
61
|
-
tensorcircuit/compiler/composed_compiler.py,sha256=AsOGYg11rHYlZjr6olDovRkxr0B2LAm5nYiHkki5OzA,3258
|
|
62
|
-
tensorcircuit/compiler/qiskit_compiler.py,sha256=qpz7DRpQATIxsfi4pj_C6-JBtKdUVcu3BQwhoWViSVA,6219
|
|
63
|
-
tensorcircuit/compiler/simple_compiler.py,sha256=4OC1oYH0YqYF-UzV7ZiJ0qLitS6Z3xjvd8l02wicATM,9589
|
|
64
|
-
tensorcircuit/interfaces/__init__.py,sha256=LGgXDU7HMiD-4Zl50mWWJ2zDQDDNSCjcPqCgkZEUkOM,545
|
|
65
|
-
tensorcircuit/interfaces/numpy.py,sha256=T7h64dG9e5xDG0KVOy9O8TXyrt5RWRnTWN9iXf3aGyY,1439
|
|
66
|
-
tensorcircuit/interfaces/scipy.py,sha256=_P2IeqvJiO7cdjTzNCIAFm8Y56Wd3j3jGmWUeeQ1Fw8,3402
|
|
67
|
-
tensorcircuit/interfaces/tensorflow.py,sha256=U4hZjm-yWxOJ5tqmffk8-tNvOkAltYBJ8Z6jYwOtTaM,3355
|
|
68
|
-
tensorcircuit/interfaces/tensortrans.py,sha256=oUxIVpXfANZVRXfPjiGJDzFPiszfBsiY40ydh0BaELE,10364
|
|
69
|
-
tensorcircuit/interfaces/torch.py,sha256=13IFGmWUFoWiSzKAzwp2EkOSxgiwN_oUFxjQb36gimo,5149
|
|
70
|
-
tensorcircuit/results/__init__.py,sha256=3kkIvmjLYQd5ff-emY8l82rpv9mwMZdM2kTLZ9sNfA4,89
|
|
71
|
-
tensorcircuit/results/counts.py,sha256=8Tk5kBSt78-x5VUK1YuMI5G7-ntDi8BrYHVSPvFOSDU,3474
|
|
72
|
-
tensorcircuit/results/readout_mitigation.py,sha256=5Kxo3pmvJdJYSSQ7Sh-Bh71iKIfV1mdnA5TiFAOMLf8,31691
|
|
73
|
-
tensorcircuit/results/qem/__init__.py,sha256=Pw0hcFYNesuPE8uNDm9P8DVTIFCSBqUcIkr6smQYzuM,419
|
|
74
|
-
tensorcircuit/results/qem/benchmark_circuits.py,sha256=LlFuKCDFKihMOhiY6WUZt9QPyoPeQw0SuaczdcSA3oM,3243
|
|
75
|
-
tensorcircuit/results/qem/qem_methods.py,sha256=v8HyVsRX9vkjgGfLyB1K0Eq5UyUnh-thysqo05kXo6E,12148
|
|
76
|
-
tensorcircuit/templates/__init__.py,sha256=NJ34JS_83OxLknQxwISR_9BH71iT3qxfYCUOBeOPh9I,188
|
|
77
|
-
tensorcircuit/templates/ansatz.py,sha256=0hmMtdSvHq9qodzpzC0TKJIWV28kTlfZqzUHjBd9aYA,3229
|
|
78
|
-
tensorcircuit/templates/blocks.py,sha256=xUzL7TVL8ym_sGV9NJ40_9x2c2pBjh2CevO8aCj9WzA,6183
|
|
79
|
-
tensorcircuit/templates/chems.py,sha256=9ksMYTutfDEF3U04xrj9j0bYWb5gwTwMdMPi-SZKci0,171
|
|
80
|
-
tensorcircuit/templates/conversions.py,sha256=D3chiKDr7G1ekCJngiol91k9iqrMag1DZQGSx0j_uH4,3023
|
|
81
|
-
tensorcircuit/templates/dataset.py,sha256=ldPvCUlwjHU_S98E2ISQp34KqJzJPpPHmDIKJ4K-qYo,1933
|
|
82
|
-
tensorcircuit/templates/graphs.py,sha256=cPYrxjoem0xZ-Is9dZKAvEzWZL_FejfIRiCEOTA4qd4,3935
|
|
83
|
-
tensorcircuit/templates/measurements.py,sha256=pzc5Aa9S416Ilg4aOY77Z6ZhUlYcXnAkQNQFTuHjFFs,10943
|
|
84
|
-
tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
85
|
-
tests/conftest.py,sha256=J9nHlLE3Zspz1rMyzadEuBWhaS5I4Q9sq0lnWybcdIA,1457
|
|
86
|
-
tests/test_backends.py,sha256=Mk-Wy1AQY0ZwRhqB2qYboaKYHDtWxwlkSLlO4p8ZdD8,33748
|
|
87
|
-
tests/test_calibrating.py,sha256=D1Tlv8mucUhg3ULvB5QlYyaDfw7aEERwq69-aGSb1A4,3805
|
|
88
|
-
tests/test_channels.py,sha256=Q7lgoCZutAXvGGdndmG5R5BQVTVJ2riyFW3KxmBOa7U,11237
|
|
89
|
-
tests/test_circuit.py,sha256=DkyNJmG4-r9WHEPtRyZ1XrLeECCnjPGiMMlf3Y6yzxg,51866
|
|
90
|
-
tests/test_cloud.py,sha256=241ng6LnG_o_2PKR-BuUFfmrj3V1aeFiI-_bcWuPFyo,5606
|
|
91
|
-
tests/test_compiler.py,sha256=R1t0MDQR01uEbY2wxqzQEf-LkSehrfZWmLvPuguC2JI,3419
|
|
92
|
-
tests/test_dmcircuit.py,sha256=Th5N6TCdGQ2MBWy8O3GNnMWshGui8XR_rUSeM2QlVcs,17232
|
|
93
|
-
tests/test_ensemble.py,sha256=0RzJkv-5D8LeZxS0Q0MwtEcgnXd2zefMquPHRNYT6RY,2109
|
|
94
|
-
tests/test_fgs.py,sha256=nv3E_F_SAF4ChsoT8Ihm3FtSpOmTGJr_Jf2MoKXXceE,10162
|
|
95
|
-
tests/test_gates.py,sha256=rAIV2QFpFsA5bT1QivTSkhdarvwu5t0N3IOz4SEDrzg,4593
|
|
96
|
-
tests/test_interfaces.py,sha256=bujl4NDbFRShPL-zAJSE43PCJTnaoEQe9QWYzib73vo,13220
|
|
97
|
-
tests/test_keras.py,sha256=U453jukavmx0RMeTSDEgPzrNdHNEfK1CW0CqO3XCNKo,4841
|
|
98
|
-
tests/test_miscs.py,sha256=noEpKeY86AZgpzE2SchqepewgkmmM_LcdsvPFSy5IYo,8146
|
|
99
|
-
tests/test_mpscircuit.py,sha256=mDXX8oQeFeHr_PdZvwqyDs_tVcVAqLmCERqlTAU7590,10552
|
|
100
|
-
tests/test_noisemodel.py,sha256=UYoMtCjwDaB-CCn5kLosofz-qTMiY4KGAFBjVtqqLPE,5637
|
|
101
|
-
tests/test_qaoa.py,sha256=hEcC_XVmKBGt9XgUGtbTO8eQQK4mjorgTIrfqZCeQls,2616
|
|
102
|
-
tests/test_qem.py,sha256=jUqsfaDNqrZdSB4Jur51R0OUP-3FHyNsXtPsIRCh6L4,4304
|
|
103
|
-
tests/test_quantum.py,sha256=rLvrTIEfp4APxdCiWqxYAHQnIji0_es5U7eZhESHnw8,18482
|
|
104
|
-
tests/test_quantum_attr.py,sha256=Zl6WbkbnTWVp6FL2rR21qBGsLoheoIEZXqWZKxfpDRs,1245
|
|
105
|
-
tests/test_results.py,sha256=PsaULFzdxVaF7l1XjuaxcT6kR8OITM_TMCvu9dYha0g,11050
|
|
106
|
-
tests/test_shadows.py,sha256=1T3kJesVJ5XfZrSncL80xdq-taGCSnTDF3eL15UlavY,5160
|
|
107
|
-
tests/test_simplify.py,sha256=35tbOu1QANsPvY1buLwNhqPnMkBOsnBtHn82qaukmgI,1175
|
|
108
|
-
tests/test_templates.py,sha256=Xm9otFFaaBWG9TZpgJ-nNh9MBfRipTzFWL8fBOnie2k,7192
|
|
109
|
-
tests/test_torchnn.py,sha256=CHLTfWkF7Ses5_XnGFN_uv_JddfgenFEFzaDtSH8XYU,2848
|
|
110
|
-
tests/test_van.py,sha256=kAWz860ivlb5zAJuYpzuBe27qccT-Yf0jatf5uXtTo4,3163
|
|
111
|
-
tensorcircuit_nightly-1.0.2.dev20250108.dist-info/LICENSE,sha256=z8d0m5b2O9McPEK1xHG_dWgUBT6EfBDz6wA0F7xSPTA,11358
|
|
112
|
-
tensorcircuit_nightly-1.0.2.dev20250108.dist-info/METADATA,sha256=-Jj1GiDFbcQ5lkEf36k6k-95cdlNZ5euj2QXZJxEnBk,33041
|
|
113
|
-
tensorcircuit_nightly-1.0.2.dev20250108.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
|
114
|
-
tensorcircuit_nightly-1.0.2.dev20250108.dist-info/top_level.txt,sha256=O_Iqeh2x02lasEYMI9iyPNNNtMzcpg5qvwMOkZQ7n4A,20
|
|
115
|
-
tensorcircuit_nightly-1.0.2.dev20250108.dist-info/RECORD,,
|
tests/__init__.py
DELETED
|
File without changes
|
tests/conftest.py
DELETED
|
@@ -1,67 +0,0 @@
|
|
|
1
|
-
import sys
|
|
2
|
-
import os
|
|
3
|
-
import pytest
|
|
4
|
-
|
|
5
|
-
thisfile = os.path.abspath(__file__)
|
|
6
|
-
modulepath = os.path.dirname(os.path.dirname(thisfile))
|
|
7
|
-
|
|
8
|
-
sys.path.insert(0, modulepath)
|
|
9
|
-
import tensorcircuit as tc
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
@pytest.fixture(scope="function")
|
|
13
|
-
def npb():
|
|
14
|
-
tc.set_backend("numpy")
|
|
15
|
-
yield
|
|
16
|
-
tc.set_backend("numpy") # default backend
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
@pytest.fixture(scope="function")
|
|
20
|
-
def tfb():
|
|
21
|
-
tc.set_backend("tensorflow")
|
|
22
|
-
yield
|
|
23
|
-
tc.set_backend("numpy") # default backend
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
@pytest.fixture(scope="function")
|
|
27
|
-
def jaxb():
|
|
28
|
-
try:
|
|
29
|
-
tc.set_backend("jax")
|
|
30
|
-
yield
|
|
31
|
-
tc.set_backend("numpy")
|
|
32
|
-
|
|
33
|
-
except ImportError as e:
|
|
34
|
-
print(e)
|
|
35
|
-
tc.set_backend("numpy")
|
|
36
|
-
pytest.skip("****** No jax backend found, skipping test suit *******")
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
@pytest.fixture(scope="function")
|
|
40
|
-
def torchb():
|
|
41
|
-
try:
|
|
42
|
-
tc.set_backend("pytorch")
|
|
43
|
-
yield
|
|
44
|
-
tc.set_backend("numpy")
|
|
45
|
-
except ImportError as e:
|
|
46
|
-
print(e)
|
|
47
|
-
tc.set_backend("numpy")
|
|
48
|
-
pytest.skip("****** No torch backend found, skipping test suit *******")
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
@pytest.fixture(scope="function")
|
|
52
|
-
def cpb():
|
|
53
|
-
try:
|
|
54
|
-
tc.set_backend("cupy")
|
|
55
|
-
yield
|
|
56
|
-
tc.set_backend("numpy")
|
|
57
|
-
except ImportError as e:
|
|
58
|
-
print(e)
|
|
59
|
-
tc.set_backend("numpy")
|
|
60
|
-
pytest.skip("****** No cupy backend found, skipping test suit *******")
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
@pytest.fixture(scope="function")
|
|
64
|
-
def highp():
|
|
65
|
-
tc.set_dtype("complex128")
|
|
66
|
-
yield
|
|
67
|
-
tc.set_dtype("complex64")
|