tencent-wedata-feature-engineering-dev 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tencent-wedata-feature-engineering-dev might be problematic. Click here for more details.
- tencent_wedata_feature_engineering_dev-0.1.0.dist-info/METADATA +19 -0
- tencent_wedata_feature_engineering_dev-0.1.0.dist-info/RECORD +64 -0
- tencent_wedata_feature_engineering_dev-0.1.0.dist-info/WHEEL +5 -0
- tencent_wedata_feature_engineering_dev-0.1.0.dist-info/top_level.txt +1 -0
- wedata/__init__.py +9 -0
- wedata/feature_store/__init__.py +0 -0
- wedata/feature_store/client.py +462 -0
- wedata/feature_store/cloud_sdk_client/__init__.py +0 -0
- wedata/feature_store/cloud_sdk_client/client.py +86 -0
- wedata/feature_store/cloud_sdk_client/models.py +686 -0
- wedata/feature_store/cloud_sdk_client/utils.py +32 -0
- wedata/feature_store/common/__init__.py +0 -0
- wedata/feature_store/common/protos/__init__.py +0 -0
- wedata/feature_store/common/protos/feature_store_pb2.py +49 -0
- wedata/feature_store/common/store_config/__init__.py +0 -0
- wedata/feature_store/common/store_config/redis.py +48 -0
- wedata/feature_store/constants/__init__.py +0 -0
- wedata/feature_store/constants/constants.py +59 -0
- wedata/feature_store/constants/engine_types.py +34 -0
- wedata/feature_store/entities/__init__.py +0 -0
- wedata/feature_store/entities/column_info.py +138 -0
- wedata/feature_store/entities/environment_variables.py +55 -0
- wedata/feature_store/entities/feature.py +53 -0
- wedata/feature_store/entities/feature_column_info.py +72 -0
- wedata/feature_store/entities/feature_function.py +55 -0
- wedata/feature_store/entities/feature_lookup.py +200 -0
- wedata/feature_store/entities/feature_spec.py +489 -0
- wedata/feature_store/entities/feature_spec_constants.py +25 -0
- wedata/feature_store/entities/feature_table.py +111 -0
- wedata/feature_store/entities/feature_table_info.py +49 -0
- wedata/feature_store/entities/function_info.py +90 -0
- wedata/feature_store/entities/on_demand_column_info.py +57 -0
- wedata/feature_store/entities/source_data_column_info.py +24 -0
- wedata/feature_store/entities/training_set.py +135 -0
- wedata/feature_store/feast_client/__init__.py +0 -0
- wedata/feature_store/feast_client/feast_client.py +482 -0
- wedata/feature_store/feature_table_client/__init__.py +0 -0
- wedata/feature_store/feature_table_client/feature_table_client.py +969 -0
- wedata/feature_store/mlflow_model.py +17 -0
- wedata/feature_store/spark_client/__init__.py +0 -0
- wedata/feature_store/spark_client/spark_client.py +289 -0
- wedata/feature_store/training_set_client/__init__.py +0 -0
- wedata/feature_store/training_set_client/training_set_client.py +572 -0
- wedata/feature_store/utils/__init__.py +0 -0
- wedata/feature_store/utils/common_utils.py +352 -0
- wedata/feature_store/utils/env_utils.py +86 -0
- wedata/feature_store/utils/feature_lookup_utils.py +564 -0
- wedata/feature_store/utils/feature_spec_utils.py +286 -0
- wedata/feature_store/utils/feature_utils.py +73 -0
- wedata/feature_store/utils/on_demand_utils.py +107 -0
- wedata/feature_store/utils/schema_utils.py +117 -0
- wedata/feature_store/utils/signature_utils.py +202 -0
- wedata/feature_store/utils/topological_sort.py +158 -0
- wedata/feature_store/utils/training_set_utils.py +579 -0
- wedata/feature_store/utils/uc_utils.py +296 -0
- wedata/feature_store/utils/validation_utils.py +79 -0
- wedata/tempo/__init__.py +0 -0
- wedata/tempo/interpol.py +448 -0
- wedata/tempo/intervals.py +1331 -0
- wedata/tempo/io.py +61 -0
- wedata/tempo/ml.py +129 -0
- wedata/tempo/resample.py +318 -0
- wedata/tempo/tsdf.py +1720 -0
- wedata/tempo/utils.py +254 -0
|
@@ -0,0 +1,25 @@
|
|
|
1
|
+
# Field names from feature_spec.proto.
|
|
2
|
+
SOURCE_DATA_COLUMN_INFO = "source_data_column_info"
|
|
3
|
+
FEATURE_COLUMN_INFO = "feature_column_info"
|
|
4
|
+
ON_DEMAND_COLUMN_INFO = "on_demand_column_info"
|
|
5
|
+
INPUT_COLUMNS = "input_columns"
|
|
6
|
+
NAME = "name"
|
|
7
|
+
OUTPUT_NAME = "output_name"
|
|
8
|
+
INPUT_TABLES = "input_tables"
|
|
9
|
+
TABLE_NAME = "table_name"
|
|
10
|
+
TABLE_ID = "table_id"
|
|
11
|
+
SERIALIZATION_VERSION = "serialization_version"
|
|
12
|
+
INPUT_FUNCTIONS = "input_functions"
|
|
13
|
+
INCLUDE = "include"
|
|
14
|
+
DATA_TYPE = "data_type"
|
|
15
|
+
TOPOLOGICAL_ORDERING = "topological_ordering"
|
|
16
|
+
UDF_NAME = "udf_name"
|
|
17
|
+
INPUT_BINDINGS = "input_bindings"
|
|
18
|
+
PARAMETER = "parameter"
|
|
19
|
+
BOUND_TO = "bound_to"
|
|
20
|
+
|
|
21
|
+
# FeatureSpec YAML source field and allowed values
|
|
22
|
+
SOURCE = "source"
|
|
23
|
+
TRAINING_DATA = "training_data"
|
|
24
|
+
FEATURE_STORE = "feature_store"
|
|
25
|
+
ON_DEMAND_FEATURE = "on_demand_feature"
|
|
@@ -0,0 +1,111 @@
|
|
|
1
|
+
from typing import Dict
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class FeatureTable:
|
|
5
|
+
"""
|
|
6
|
+
特征表实体类
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
def __init__(
|
|
10
|
+
self,
|
|
11
|
+
name,
|
|
12
|
+
table_id,
|
|
13
|
+
description,
|
|
14
|
+
primary_keys,
|
|
15
|
+
partition_columns,
|
|
16
|
+
features,
|
|
17
|
+
creation_timestamp=None,
|
|
18
|
+
online_stores=None,
|
|
19
|
+
notebook_producers=None,
|
|
20
|
+
job_producers=None,
|
|
21
|
+
table_data_sources=None,
|
|
22
|
+
path_data_sources=None,
|
|
23
|
+
custom_data_sources=None,
|
|
24
|
+
timestamp_keys=None,
|
|
25
|
+
tags=None,
|
|
26
|
+
):
|
|
27
|
+
"""Initialize a FeatureTable object."""
|
|
28
|
+
"""初始化特征表对象
|
|
29
|
+
|
|
30
|
+
:param name: 表名
|
|
31
|
+
:param table_id: 表ID
|
|
32
|
+
:param description: 描述
|
|
33
|
+
:param primary_keys: 主键列表
|
|
34
|
+
:param partition_columns: 分区列列表
|
|
35
|
+
:param features: 特征列列表
|
|
36
|
+
:param creation_timestamp: 创建时间戳(可选)
|
|
37
|
+
:param online_stores: 在线存储配置(可选)
|
|
38
|
+
:param notebook_producers: Notebook生产者列表(可选)
|
|
39
|
+
:param job_producers: 作业生产者列表(可选)
|
|
40
|
+
:param table_data_sources: 表数据源列表(可选)
|
|
41
|
+
:param path_data_sources: 路径数据源列表(可选)
|
|
42
|
+
:param custom_data_sources: 自定义数据源列表(可选)
|
|
43
|
+
:param timestamp_keys: 时间戳键列表(可选)
|
|
44
|
+
:param tags: 标签字典(可选)
|
|
45
|
+
"""
|
|
46
|
+
self.name = name
|
|
47
|
+
self.table_id = table_id
|
|
48
|
+
self.description = description
|
|
49
|
+
self.primary_keys = primary_keys
|
|
50
|
+
self.partition_columns = partition_columns
|
|
51
|
+
self.features = features
|
|
52
|
+
self.creation_timestamp = creation_timestamp
|
|
53
|
+
self.online_stores = online_stores if online_stores is not None else []
|
|
54
|
+
self.notebook_producers = (
|
|
55
|
+
notebook_producers if notebook_producers is not None else []
|
|
56
|
+
)
|
|
57
|
+
self.job_producers = job_producers if job_producers is not None else []
|
|
58
|
+
self.table_data_sources = (
|
|
59
|
+
table_data_sources if table_data_sources is not None else []
|
|
60
|
+
)
|
|
61
|
+
self.path_data_sources = (
|
|
62
|
+
path_data_sources if path_data_sources is not None else []
|
|
63
|
+
)
|
|
64
|
+
self.custom_data_sources = (
|
|
65
|
+
custom_data_sources if custom_data_sources is not None else []
|
|
66
|
+
)
|
|
67
|
+
self.timestamp_keys = timestamp_keys if timestamp_keys is not None else []
|
|
68
|
+
self._tags = tags
|
|
69
|
+
|
|
70
|
+
def __str__(self):
|
|
71
|
+
"""
|
|
72
|
+
返回特征表实例的字符串表示,包含所有关键属性信息
|
|
73
|
+
|
|
74
|
+
返回:
|
|
75
|
+
格式化的字符串,包含表名、ID、描述、主键、分区列、特征数量、
|
|
76
|
+
时间戳键、创建时间、数据源数量和标签数量等信息
|
|
77
|
+
"""
|
|
78
|
+
if self.description and len(self.description) > 50:
|
|
79
|
+
desc = self.description[:50] + "..."
|
|
80
|
+
else:
|
|
81
|
+
desc = self.description
|
|
82
|
+
return (
|
|
83
|
+
f"FeatureTable(\n"
|
|
84
|
+
f" name='{self.name}',\n"
|
|
85
|
+
f" table_id='{self.table_id}',\n"
|
|
86
|
+
f" description='{desc}',\n"
|
|
87
|
+
f" primary_keys={self.primary_keys},\n"
|
|
88
|
+
f" partition_columns={self.partition_columns},\n"
|
|
89
|
+
f" features={len(self.features)},\n"
|
|
90
|
+
f" timestamp_keys={self.timestamp_keys},\n"
|
|
91
|
+
f" creation_timestamp={self.creation_timestamp},\n"
|
|
92
|
+
f" data_sources=[table:{len(self.table_data_sources)} "
|
|
93
|
+
f"path:{len(self.path_data_sources)} custom:{len(self.custom_data_sources)}],\n"
|
|
94
|
+
f" tags={len(self.tags) if self._tags else 0}\n"
|
|
95
|
+
f")"
|
|
96
|
+
)
|
|
97
|
+
|
|
98
|
+
@property
|
|
99
|
+
def tags(self) -> Dict[str, str]:
|
|
100
|
+
"""
|
|
101
|
+
Get the tags associated with the feature table.
|
|
102
|
+
|
|
103
|
+
:return a Dictionary of all tags associated with the feature table as key/value pairs
|
|
104
|
+
"""
|
|
105
|
+
if self._tags is None:
|
|
106
|
+
# If no tags are set, self._tags is expected an empty dictionary.
|
|
107
|
+
raise ValueError(
|
|
108
|
+
"Internal error: tags have not been fetched for this FeatureTable instance"
|
|
109
|
+
)
|
|
110
|
+
return self._tags
|
|
111
|
+
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
from typing import Optional
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
from wedata.feature_store.common.protos import feature_store_pb2
|
|
5
|
+
|
|
6
|
+
class FeatureTableInfo:
|
|
7
|
+
def __init__(
|
|
8
|
+
self, table_name: str, table_id: str, lookback_window: Optional[float] = None
|
|
9
|
+
):
|
|
10
|
+
if not table_name:
|
|
11
|
+
raise ValueError("table_name must be non-empty.")
|
|
12
|
+
if not table_id:
|
|
13
|
+
raise ValueError("table_id must be non-empty.")
|
|
14
|
+
self._table_name = table_name
|
|
15
|
+
self._table_id = table_id
|
|
16
|
+
self._lookback_window = lookback_window
|
|
17
|
+
|
|
18
|
+
@property
|
|
19
|
+
def table_name(self):
|
|
20
|
+
return self._table_name
|
|
21
|
+
|
|
22
|
+
@property
|
|
23
|
+
def table_id(self):
|
|
24
|
+
return self._table_id
|
|
25
|
+
|
|
26
|
+
@property
|
|
27
|
+
def lookback_window(self):
|
|
28
|
+
return self._lookback_window
|
|
29
|
+
|
|
30
|
+
@classmethod
|
|
31
|
+
def from_proto(cls, feature_table_info_proto):
|
|
32
|
+
lookback_window = feature_table_info_proto.lookback_window or None
|
|
33
|
+
# lookback_window = (
|
|
34
|
+
# feature_table_info_proto.lookback_window
|
|
35
|
+
# if feature_table_info_proto.lookback_window != 0
|
|
36
|
+
# else None
|
|
37
|
+
# )
|
|
38
|
+
return cls(
|
|
39
|
+
table_name=feature_table_info_proto.table_name,
|
|
40
|
+
table_id=feature_table_info_proto.table_id,
|
|
41
|
+
lookback_window=lookback_window,
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
def to_proto(self):
|
|
45
|
+
return feature_store_pb2.FeatureTableInfo(
|
|
46
|
+
table_name=self.table_name,
|
|
47
|
+
table_id=self.table_id,
|
|
48
|
+
lookback_window=self.lookback_window,
|
|
49
|
+
)
|
|
@@ -0,0 +1,90 @@
|
|
|
1
|
+
|
|
2
|
+
from typing import List, Optional
|
|
3
|
+
|
|
4
|
+
from wedata.feature_store.common.protos import feature_store_pb2
|
|
5
|
+
|
|
6
|
+
class FunctionParameterInfo():
|
|
7
|
+
def __init__(self, name: str, type_text: str):
|
|
8
|
+
self._name = name
|
|
9
|
+
self._type_text = type_text
|
|
10
|
+
|
|
11
|
+
@property
|
|
12
|
+
def name(self) -> str:
|
|
13
|
+
return self._name
|
|
14
|
+
|
|
15
|
+
@property
|
|
16
|
+
def type_text(self) -> str:
|
|
17
|
+
return self._type_text
|
|
18
|
+
|
|
19
|
+
@classmethod
|
|
20
|
+
def from_dict(cls, function_parameter_info_json):
|
|
21
|
+
return FunctionParameterInfo(
|
|
22
|
+
function_parameter_info_json["name"],
|
|
23
|
+
function_parameter_info_json["type_text"],
|
|
24
|
+
)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class FunctionInfo():
|
|
28
|
+
"""
|
|
29
|
+
Helper entity class that exposes properties in GetFunction's response JSON as attributes.
|
|
30
|
+
https://docs.databricks.com/api-explorer/workspace/functions/get
|
|
31
|
+
|
|
32
|
+
Note: empty fields (e.g. when 0 input parameters) are not included in the response JSON.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
# Python UDFs have external_language = "Python"
|
|
36
|
+
PYTHON = "Python"
|
|
37
|
+
|
|
38
|
+
def __init__(
|
|
39
|
+
self,
|
|
40
|
+
full_name: str,
|
|
41
|
+
input_params: List[FunctionParameterInfo],
|
|
42
|
+
routine_definition: Optional[str],
|
|
43
|
+
external_language: Optional[str],
|
|
44
|
+
):
|
|
45
|
+
self._full_name = full_name
|
|
46
|
+
self._input_params = input_params
|
|
47
|
+
self._routine_definition = routine_definition
|
|
48
|
+
self._external_language = external_language
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
@property
|
|
52
|
+
def full_name(self) -> str:
|
|
53
|
+
return self._full_name
|
|
54
|
+
|
|
55
|
+
@property
|
|
56
|
+
def input_params(self) -> List[FunctionParameterInfo]:
|
|
57
|
+
return self._input_params
|
|
58
|
+
|
|
59
|
+
@property
|
|
60
|
+
def routine_definition(self) -> Optional[str]:
|
|
61
|
+
return self._routine_definition
|
|
62
|
+
|
|
63
|
+
@property
|
|
64
|
+
def external_language(self) -> Optional[str]:
|
|
65
|
+
"""
|
|
66
|
+
Field is None if language is SQL (not an external language).
|
|
67
|
+
"""
|
|
68
|
+
return self._external_language
|
|
69
|
+
|
|
70
|
+
@classmethod
|
|
71
|
+
def from_dict(cls, function_info_json):
|
|
72
|
+
input_params = function_info_json.get("input_params", {}).get("parameters", [])
|
|
73
|
+
return FunctionInfo(
|
|
74
|
+
full_name=function_info_json["full_name"],
|
|
75
|
+
input_params=[FunctionParameterInfo.from_dict(p) for p in input_params],
|
|
76
|
+
routine_definition=function_info_json.get("routine_definition", None),
|
|
77
|
+
external_language=function_info_json.get("external_language", None),
|
|
78
|
+
)
|
|
79
|
+
|
|
80
|
+
@classmethod
|
|
81
|
+
def from_proto(cls, function_info_proto):
|
|
82
|
+
return cls(full_name=function_info_proto.udf_name)
|
|
83
|
+
|
|
84
|
+
def to_proto(self):
|
|
85
|
+
return feature_store_pb2.FunctionInfo(
|
|
86
|
+
full_name=self.full_name,
|
|
87
|
+
input_params=self.input_params,
|
|
88
|
+
routine_definition=self.routine_definition,
|
|
89
|
+
external_language=self.external_language
|
|
90
|
+
)
|
|
@@ -0,0 +1,57 @@
|
|
|
1
|
+
from typing import Dict
|
|
2
|
+
|
|
3
|
+
from wedata.feature_store.common.protos import feature_store_pb2
|
|
4
|
+
|
|
5
|
+
class OnDemandColumnInfo:
|
|
6
|
+
def __init__(
|
|
7
|
+
self,
|
|
8
|
+
udf_name: str,
|
|
9
|
+
input_bindings: Dict[str, str],
|
|
10
|
+
output_name: str,
|
|
11
|
+
):
|
|
12
|
+
if not udf_name:
|
|
13
|
+
raise ValueError("udf_name must be non-empty.")
|
|
14
|
+
if not output_name:
|
|
15
|
+
raise ValueError("output_name must be non-empty.")
|
|
16
|
+
|
|
17
|
+
self._udf_name = udf_name
|
|
18
|
+
self._input_bindings = input_bindings
|
|
19
|
+
self._output_name = output_name
|
|
20
|
+
|
|
21
|
+
@property
|
|
22
|
+
def udf_name(self) -> str:
|
|
23
|
+
return self._udf_name
|
|
24
|
+
|
|
25
|
+
@property
|
|
26
|
+
def input_bindings(self) -> Dict[str, str]:
|
|
27
|
+
"""
|
|
28
|
+
input_bindings is serialized as the InputBindings proto message.
|
|
29
|
+
"""
|
|
30
|
+
return self._input_bindings
|
|
31
|
+
|
|
32
|
+
@property
|
|
33
|
+
def output_name(self) -> str:
|
|
34
|
+
return self._output_name
|
|
35
|
+
|
|
36
|
+
@classmethod
|
|
37
|
+
def from_proto(cls, on_demand_column_info_proto):
|
|
38
|
+
input_bindings_dict = {
|
|
39
|
+
input_binding.parameter: input_binding.bound_to
|
|
40
|
+
for input_binding in on_demand_column_info_proto.input_bindings
|
|
41
|
+
}
|
|
42
|
+
return OnDemandColumnInfo(
|
|
43
|
+
udf_name=on_demand_column_info_proto.udf_name,
|
|
44
|
+
input_bindings=input_bindings_dict,
|
|
45
|
+
output_name=on_demand_column_info_proto.output_name,
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
def to_proto(self):
|
|
49
|
+
input_bindings_list = [
|
|
50
|
+
feature_store_pb2.InputBinding(parameter=k, bound_to=v)
|
|
51
|
+
for k, v in self.input_bindings.items()
|
|
52
|
+
]
|
|
53
|
+
return feature_store_pb2.OnDemandColumnInfo(
|
|
54
|
+
udf_name=self.udf_name,
|
|
55
|
+
input_bindings=input_bindings_list,
|
|
56
|
+
output_name=self.output_name,
|
|
57
|
+
)
|
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
from wedata.feature_store.common.protos import feature_store_pb2
|
|
2
|
+
class SourceDataColumnInfo:
|
|
3
|
+
def __init__(self, name: str):
|
|
4
|
+
if not name:
|
|
5
|
+
raise ValueError("name must be non-empty.")
|
|
6
|
+
self._name = name
|
|
7
|
+
|
|
8
|
+
@property
|
|
9
|
+
def name(self):
|
|
10
|
+
return self._name
|
|
11
|
+
|
|
12
|
+
@property
|
|
13
|
+
def output_name(self) -> str:
|
|
14
|
+
"""
|
|
15
|
+
This field does not exist in the proto, and is provided for convenience.
|
|
16
|
+
"""
|
|
17
|
+
return self._name
|
|
18
|
+
|
|
19
|
+
@classmethod
|
|
20
|
+
def from_proto(cls, source_data_column_info_proto):
|
|
21
|
+
return cls(name=source_data_column_info_proto.name)
|
|
22
|
+
|
|
23
|
+
def to_proto(self):
|
|
24
|
+
return feature_store_pb2.SourceDataColumnInfo(name=self._name)
|
|
@@ -0,0 +1,135 @@
|
|
|
1
|
+
from typing import Dict, List, Optional
|
|
2
|
+
|
|
3
|
+
from pyspark.sql import DataFrame
|
|
4
|
+
|
|
5
|
+
from wedata.feature_store.entities.feature_table import FeatureTable
|
|
6
|
+
from wedata.feature_store.entities.function_info import FunctionInfo
|
|
7
|
+
from wedata.feature_store.utils.feature_lookup_utils import (
|
|
8
|
+
join_feature_data_if_not_overridden,
|
|
9
|
+
)
|
|
10
|
+
|
|
11
|
+
from wedata.feature_store.entities.feature_spec import FeatureSpec
|
|
12
|
+
from wedata.feature_store.utils.feature_spec_utils import (
|
|
13
|
+
COLUMN_INFO_TYPE_FEATURE,
|
|
14
|
+
COLUMN_INFO_TYPE_ON_DEMAND,
|
|
15
|
+
COLUMN_INFO_TYPE_SOURCE,
|
|
16
|
+
get_feature_execution_groups,
|
|
17
|
+
)
|
|
18
|
+
from wedata.feature_store.utils.on_demand_utils import apply_functions_if_not_overridden
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class TrainingSet:
|
|
22
|
+
"""
|
|
23
|
+
.. note::
|
|
24
|
+
|
|
25
|
+
Aliases: `!databricks.feature_engineering.training_set.TrainingSet`, `!databricks.feature_store.training_set.TrainingSet`
|
|
26
|
+
|
|
27
|
+
Class that defines :obj:`TrainingSet` objects.
|
|
28
|
+
|
|
29
|
+
.. note::
|
|
30
|
+
|
|
31
|
+
The :class:`TrainingSet` constructor should not be called directly. Instead,
|
|
32
|
+
call :meth:`create_training_set() <databricks.feature_engineering.client.FeatureEngineeringClient.create_training_set>`.
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
def __init__(
|
|
36
|
+
self,
|
|
37
|
+
feature_spec: FeatureSpec,
|
|
38
|
+
df: DataFrame,
|
|
39
|
+
labels: List[str],
|
|
40
|
+
feature_table_metadata_map: Dict[str, FeatureTable],
|
|
41
|
+
feature_table_data_map: Dict[str, DataFrame],
|
|
42
|
+
uc_function_infos: Dict[str, FunctionInfo],
|
|
43
|
+
use_spark_native_join: Optional[bool] = False,
|
|
44
|
+
):
|
|
45
|
+
"""Initialize a :obj:`TrainingSet` object."""
|
|
46
|
+
assert isinstance(
|
|
47
|
+
labels, list
|
|
48
|
+
), f"Expected type `list` for argument `labels`. Got '{labels}' with type '{type(labels)}'."
|
|
49
|
+
|
|
50
|
+
self._feature_spec = feature_spec
|
|
51
|
+
self._df = df
|
|
52
|
+
self._labels = labels
|
|
53
|
+
self._feature_table_metadata_map = feature_table_metadata_map
|
|
54
|
+
self._feature_table_data_map = feature_table_data_map
|
|
55
|
+
self._uc_function_infos = uc_function_infos
|
|
56
|
+
self._use_spark_native_join = use_spark_native_join
|
|
57
|
+
# Perform basic validations and resolve FeatureSpec and label column data types.
|
|
58
|
+
self._validate_and_inject_dtypes()
|
|
59
|
+
self._label_data_types = {
|
|
60
|
+
name: data_type for name, data_type in df.dtypes if name in labels
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
@property
|
|
64
|
+
def feature_spec(self) -> FeatureSpec:
|
|
65
|
+
"""Define a feature spec."""
|
|
66
|
+
return self._feature_spec
|
|
67
|
+
|
|
68
|
+
def _augment_df(self) -> DataFrame:
|
|
69
|
+
"""
|
|
70
|
+
Internal helper to augment DataFrame with feature lookups and on-demand features specified in the FeatureSpec.
|
|
71
|
+
Does not drop excluded columns, and does not overwrite columns that already exist.
|
|
72
|
+
Return column order is df.columns + feature lookups + on-demand features.
|
|
73
|
+
"""
|
|
74
|
+
execution_groups = get_feature_execution_groups(
|
|
75
|
+
self.feature_spec, self._df.columns
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
result_df = self._df
|
|
79
|
+
# Iterate over all levels and type of DAG nodes in FeatureSpec and execute them.
|
|
80
|
+
for execution_group in execution_groups:
|
|
81
|
+
if execution_group.type == COLUMN_INFO_TYPE_SOURCE:
|
|
82
|
+
continue
|
|
83
|
+
if execution_group.type == COLUMN_INFO_TYPE_FEATURE:
|
|
84
|
+
# Apply FeatureLookups
|
|
85
|
+
result_df = join_feature_data_if_not_overridden(
|
|
86
|
+
feature_spec=self.feature_spec,
|
|
87
|
+
df=result_df,
|
|
88
|
+
features_to_join=execution_group.features,
|
|
89
|
+
feature_table_metadata_map=self._feature_table_metadata_map,
|
|
90
|
+
feature_table_data_map=self._feature_table_data_map,
|
|
91
|
+
use_spark_native_join=self._use_spark_native_join,
|
|
92
|
+
)
|
|
93
|
+
elif execution_group.type == COLUMN_INFO_TYPE_ON_DEMAND:
|
|
94
|
+
# Apply all on-demand UDFs
|
|
95
|
+
result_df = apply_functions_if_not_overridden(
|
|
96
|
+
df=result_df,
|
|
97
|
+
functions_to_apply=execution_group.features,
|
|
98
|
+
uc_function_infos=self._uc_function_infos,
|
|
99
|
+
)
|
|
100
|
+
else:
|
|
101
|
+
# This should never be reached.
|
|
102
|
+
raise Exception("Unknown feature execution type:", execution_group.type)
|
|
103
|
+
return result_df
|
|
104
|
+
|
|
105
|
+
def _validate_and_inject_dtypes(self):
|
|
106
|
+
"""
|
|
107
|
+
Performs validations through _augment_df (e.g. Delta table exists, Delta and feature table dtypes match),
|
|
108
|
+
then inject the result DataFrame dtypes into the FeatureSpec.
|
|
109
|
+
"""
|
|
110
|
+
augmented_df = self._augment_df()
|
|
111
|
+
augmented_df_dtypes = {column: dtype for column, dtype in augmented_df.dtypes}
|
|
112
|
+
|
|
113
|
+
# Inject the result DataFrame column types into the respective ColumnInfo
|
|
114
|
+
for ci in self.feature_spec.column_infos:
|
|
115
|
+
ci._data_type = augmented_df_dtypes[ci.output_name]
|
|
116
|
+
|
|
117
|
+
def load_df(self) -> DataFrame:
|
|
118
|
+
"""
|
|
119
|
+
Load a :class:`DataFrame <pyspark.sql.DataFrame>`.
|
|
120
|
+
|
|
121
|
+
Return a :class:`DataFrame <pyspark.sql.DataFrame>` for training.
|
|
122
|
+
|
|
123
|
+
The returned :class:`DataFrame <pyspark.sql.DataFrame>` has columns specified
|
|
124
|
+
in the ``feature_spec`` and ``labels`` parameters provided
|
|
125
|
+
in :meth:`create_training_set() <databricks.feature_engineering.client.FeatureEngineeringClient.create_training_set>`.
|
|
126
|
+
|
|
127
|
+
:return:
|
|
128
|
+
A :class:`DataFrame <pyspark.sql.DataFrame>` for training
|
|
129
|
+
"""
|
|
130
|
+
augmented_df = self._augment_df()
|
|
131
|
+
# Return only included columns in order defined by FeatureSpec + labels
|
|
132
|
+
included_columns = [
|
|
133
|
+
ci.output_name for ci in self.feature_spec.column_infos if ci.include
|
|
134
|
+
] + self._labels
|
|
135
|
+
return augmented_df.select(included_columns)
|
|
File without changes
|