teklia-layout-reader 0.2.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- layout_reader/__init__.py +9 -0
- layout_reader/cli.py +27 -0
- layout_reader/datasets/__init__.py +99 -0
- layout_reader/datasets/analyze.py +161 -0
- layout_reader/datasets/extract.py +289 -0
- layout_reader/datasets/lsd.py +133 -0
- layout_reader/datasets/utils.py +128 -0
- layout_reader/helpers.py +358 -0
- layout_reader/inference.py +215 -0
- layout_reader/train/sft.py +69 -0
- teklia_layout_reader-0.2.1.dist-info/METADATA +62 -0
- teklia_layout_reader-0.2.1.dist-info/RECORD +22 -0
- teklia_layout_reader-0.2.1.dist-info/WHEEL +5 -0
- teklia_layout_reader-0.2.1.dist-info/entry_points.txt +2 -0
- teklia_layout_reader-0.2.1.dist-info/top_level.txt +2 -0
- tests/__init__.py +3 -0
- tests/conftest.py +19 -0
- tests/test_analyze.py +14 -0
- tests/test_cli.py +11 -0
- tests/test_extract.py +130 -0
- tests/test_helpers.py +438 -0
- tests/test_predict.py +64 -0
tests/test_helpers.py
ADDED
|
@@ -0,0 +1,438 @@
|
|
|
1
|
+
import pytest
|
|
2
|
+
import torch
|
|
3
|
+
|
|
4
|
+
from layout_reader.helpers import (
|
|
5
|
+
CLS_TOKEN_ID,
|
|
6
|
+
EOS_TOKEN_ID,
|
|
7
|
+
IGNORE_LABEL_ID,
|
|
8
|
+
PAD_TOKEN_ID,
|
|
9
|
+
DataCollator,
|
|
10
|
+
boxes_to_inputs,
|
|
11
|
+
load_dataset_split,
|
|
12
|
+
parse_logits,
|
|
13
|
+
sort_sample,
|
|
14
|
+
)
|
|
15
|
+
from tests import FIXTURES
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@pytest.fixture
|
|
19
|
+
def dataset() -> str:
|
|
20
|
+
return FIXTURES / "lr_dataset"
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
@pytest.mark.parametrize(
|
|
24
|
+
(
|
|
25
|
+
"features",
|
|
26
|
+
"with_classes",
|
|
27
|
+
"with_separators",
|
|
28
|
+
"expected_boxes",
|
|
29
|
+
"expected_input_ids",
|
|
30
|
+
"expected_attention_masks",
|
|
31
|
+
"expected_labels",
|
|
32
|
+
),
|
|
33
|
+
[
|
|
34
|
+
(
|
|
35
|
+
[
|
|
36
|
+
{
|
|
37
|
+
"source_boxes": [[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
38
|
+
"separators": [[1, 1, 1, 6]],
|
|
39
|
+
"target_index": [1, 2],
|
|
40
|
+
"source_classes": [10, 11],
|
|
41
|
+
}
|
|
42
|
+
],
|
|
43
|
+
True,
|
|
44
|
+
True,
|
|
45
|
+
torch.tensor(
|
|
46
|
+
[[[0, 0, 0, 0], [1, 1, 2, 2], [2, 2, 3, 3], [1, 1, 1, 6], [0, 0, 0, 0]]]
|
|
47
|
+
),
|
|
48
|
+
torch.tensor([[CLS_TOKEN_ID, 10, 11, PAD_TOKEN_ID, EOS_TOKEN_ID]]),
|
|
49
|
+
torch.tensor([[1, 1, 1, 1, 1]]),
|
|
50
|
+
torch.tensor([[IGNORE_LABEL_ID, 0, 1, IGNORE_LABEL_ID, IGNORE_LABEL_ID]]),
|
|
51
|
+
),
|
|
52
|
+
(
|
|
53
|
+
[
|
|
54
|
+
{
|
|
55
|
+
"source_boxes": [[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
56
|
+
"separators": [[1, 1, 1, 6]],
|
|
57
|
+
"target_index": [1, 2],
|
|
58
|
+
"source_classes": [10, 11],
|
|
59
|
+
}
|
|
60
|
+
],
|
|
61
|
+
False,
|
|
62
|
+
True,
|
|
63
|
+
torch.tensor(
|
|
64
|
+
[[[0, 0, 0, 0], [1, 1, 2, 2], [2, 2, 3, 3], [1, 1, 1, 6], [0, 0, 0, 0]]]
|
|
65
|
+
),
|
|
66
|
+
torch.tensor(
|
|
67
|
+
[[CLS_TOKEN_ID, PAD_TOKEN_ID, PAD_TOKEN_ID, PAD_TOKEN_ID, EOS_TOKEN_ID]]
|
|
68
|
+
),
|
|
69
|
+
torch.tensor([[1, 1, 1, 1, 1]]),
|
|
70
|
+
torch.tensor([[IGNORE_LABEL_ID, 0, 1, IGNORE_LABEL_ID, IGNORE_LABEL_ID]]),
|
|
71
|
+
),
|
|
72
|
+
(
|
|
73
|
+
[
|
|
74
|
+
{
|
|
75
|
+
"source_boxes": [[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
76
|
+
"separators": [[1, 1, 1, 6]],
|
|
77
|
+
"target_index": [1, 2],
|
|
78
|
+
"source_classes": [10, 11],
|
|
79
|
+
}
|
|
80
|
+
],
|
|
81
|
+
False,
|
|
82
|
+
False,
|
|
83
|
+
torch.tensor([[[0, 0, 0, 0], [1, 1, 2, 2], [2, 2, 3, 3], [0, 0, 0, 0]]]),
|
|
84
|
+
torch.tensor([[CLS_TOKEN_ID, PAD_TOKEN_ID, PAD_TOKEN_ID, EOS_TOKEN_ID]]),
|
|
85
|
+
torch.tensor([[1, 1, 1, 1]]),
|
|
86
|
+
torch.tensor([[IGNORE_LABEL_ID, 0, 1, IGNORE_LABEL_ID]]),
|
|
87
|
+
),
|
|
88
|
+
(
|
|
89
|
+
[
|
|
90
|
+
{
|
|
91
|
+
"source_boxes": [[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
92
|
+
"separators": [[1, 1, 1, 6]],
|
|
93
|
+
"target_index": [1, 2],
|
|
94
|
+
"source_classes": [10, 11],
|
|
95
|
+
}
|
|
96
|
+
],
|
|
97
|
+
True,
|
|
98
|
+
False,
|
|
99
|
+
torch.tensor([[[0, 0, 0, 0], [1, 1, 2, 2], [2, 2, 3, 3], [0, 0, 0, 0]]]),
|
|
100
|
+
torch.tensor([[CLS_TOKEN_ID, 10, 11, EOS_TOKEN_ID]]),
|
|
101
|
+
torch.tensor([[1, 1, 1, 1]]),
|
|
102
|
+
torch.tensor([[IGNORE_LABEL_ID, 0, 1, IGNORE_LABEL_ID]]),
|
|
103
|
+
),
|
|
104
|
+
],
|
|
105
|
+
)
|
|
106
|
+
def test_data_collator(
|
|
107
|
+
features,
|
|
108
|
+
with_classes,
|
|
109
|
+
with_separators,
|
|
110
|
+
expected_labels,
|
|
111
|
+
expected_boxes,
|
|
112
|
+
expected_input_ids,
|
|
113
|
+
expected_attention_masks,
|
|
114
|
+
):
|
|
115
|
+
collator = DataCollator(with_classes=with_classes, with_separators=with_separators)
|
|
116
|
+
output = collator(features)
|
|
117
|
+
|
|
118
|
+
assert set(output.keys()) == {
|
|
119
|
+
"bbox",
|
|
120
|
+
"attention_mask",
|
|
121
|
+
"labels",
|
|
122
|
+
"input_ids",
|
|
123
|
+
}
|
|
124
|
+
|
|
125
|
+
assert torch.equal(output["labels"], expected_labels)
|
|
126
|
+
assert torch.equal(output["bbox"], expected_boxes)
|
|
127
|
+
assert torch.equal(output["input_ids"], expected_input_ids)
|
|
128
|
+
assert torch.equal(output["attention_mask"], expected_attention_masks)
|
|
129
|
+
|
|
130
|
+
|
|
131
|
+
@pytest.mark.parametrize(
|
|
132
|
+
("boxes", "classes", "separators", "expected_output"),
|
|
133
|
+
[
|
|
134
|
+
(
|
|
135
|
+
[[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
136
|
+
[10, 11],
|
|
137
|
+
[[1, 1, 1, 6]],
|
|
138
|
+
{
|
|
139
|
+
"bbox": torch.tensor(
|
|
140
|
+
[
|
|
141
|
+
[
|
|
142
|
+
[0, 0, 0, 0],
|
|
143
|
+
[1, 1, 2, 2],
|
|
144
|
+
[2, 2, 3, 3],
|
|
145
|
+
[1, 1, 1, 6],
|
|
146
|
+
[0, 0, 0, 0],
|
|
147
|
+
]
|
|
148
|
+
]
|
|
149
|
+
),
|
|
150
|
+
"attention_mask": torch.tensor([[1, 1, 1, 1, 1]]),
|
|
151
|
+
"input_ids": torch.tensor(
|
|
152
|
+
[[CLS_TOKEN_ID, 10, 11, PAD_TOKEN_ID, EOS_TOKEN_ID]]
|
|
153
|
+
),
|
|
154
|
+
},
|
|
155
|
+
),
|
|
156
|
+
(
|
|
157
|
+
[[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
158
|
+
[],
|
|
159
|
+
[[1, 1, 1, 6]],
|
|
160
|
+
{
|
|
161
|
+
"bbox": torch.tensor(
|
|
162
|
+
[
|
|
163
|
+
[
|
|
164
|
+
[0, 0, 0, 0],
|
|
165
|
+
[1, 1, 2, 2],
|
|
166
|
+
[2, 2, 3, 3],
|
|
167
|
+
[1, 1, 1, 6],
|
|
168
|
+
[0, 0, 0, 0],
|
|
169
|
+
]
|
|
170
|
+
]
|
|
171
|
+
),
|
|
172
|
+
"attention_mask": torch.tensor([[1, 1, 1, 1, 1]]),
|
|
173
|
+
"input_ids": torch.tensor(
|
|
174
|
+
[
|
|
175
|
+
[
|
|
176
|
+
CLS_TOKEN_ID,
|
|
177
|
+
PAD_TOKEN_ID,
|
|
178
|
+
PAD_TOKEN_ID,
|
|
179
|
+
PAD_TOKEN_ID,
|
|
180
|
+
EOS_TOKEN_ID,
|
|
181
|
+
]
|
|
182
|
+
]
|
|
183
|
+
),
|
|
184
|
+
},
|
|
185
|
+
),
|
|
186
|
+
(
|
|
187
|
+
[[1, 1, 2, 2], [2, 2, 3, 3]],
|
|
188
|
+
[],
|
|
189
|
+
[],
|
|
190
|
+
{
|
|
191
|
+
"bbox": torch.tensor(
|
|
192
|
+
[[[0, 0, 0, 0], [1, 1, 2, 2], [2, 2, 3, 3], [0, 0, 0, 0]]]
|
|
193
|
+
),
|
|
194
|
+
"attention_mask": torch.tensor([[1, 1, 1, 1]]),
|
|
195
|
+
"input_ids": torch.tensor(
|
|
196
|
+
[[CLS_TOKEN_ID, PAD_TOKEN_ID, PAD_TOKEN_ID, EOS_TOKEN_ID]]
|
|
197
|
+
),
|
|
198
|
+
},
|
|
199
|
+
),
|
|
200
|
+
],
|
|
201
|
+
)
|
|
202
|
+
def test_boxes_to_input(boxes, classes, separators, expected_output):
|
|
203
|
+
output = boxes_to_inputs(boxes, classes, separators)
|
|
204
|
+
|
|
205
|
+
assert set(output.keys()) == {
|
|
206
|
+
"bbox",
|
|
207
|
+
"attention_mask",
|
|
208
|
+
"input_ids",
|
|
209
|
+
}
|
|
210
|
+
assert torch.equal(output["attention_mask"], expected_output["attention_mask"])
|
|
211
|
+
assert torch.equal(output["bbox"], expected_output["bbox"])
|
|
212
|
+
assert torch.equal(output["input_ids"], expected_output["input_ids"])
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
@pytest.mark.parametrize(
|
|
216
|
+
("logits", "length", "expected_order"),
|
|
217
|
+
[
|
|
218
|
+
(
|
|
219
|
+
torch.tensor(
|
|
220
|
+
[
|
|
221
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # CLS token
|
|
222
|
+
[0.1, 0.8, 0.05, 0.05, 0.0], # Element 0 - position 0
|
|
223
|
+
[0.7, 0.1, 0.05, 0.1, 0.05], # Element 1 - ignored
|
|
224
|
+
[0.05, 0.25, 0.1, 0.55, 0.05], # Element 2 - ignored
|
|
225
|
+
[0.05, 0.15, 0.7, 0.05, 0.05], # Element 3 - ignored
|
|
226
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # EOS token
|
|
227
|
+
]
|
|
228
|
+
),
|
|
229
|
+
1,
|
|
230
|
+
[0],
|
|
231
|
+
),
|
|
232
|
+
(
|
|
233
|
+
torch.tensor(
|
|
234
|
+
[
|
|
235
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # CLS token
|
|
236
|
+
[0.1, 0.8, 0.05, 0.05, 0.0], # Element 0 - position 1
|
|
237
|
+
[0.7, 0.1, 0.05, 0.1, 0.05], # Element 1 - position 0
|
|
238
|
+
[0.05, 0.25, 0.1, 0.55, 0.05], # Element 2 - position 2
|
|
239
|
+
[0.05, 0.15, 0.7, 0.05, 0.05], # Element 3 - ignored
|
|
240
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # EOS token
|
|
241
|
+
]
|
|
242
|
+
),
|
|
243
|
+
3,
|
|
244
|
+
[1, 0, 2],
|
|
245
|
+
),
|
|
246
|
+
(
|
|
247
|
+
torch.tensor(
|
|
248
|
+
[
|
|
249
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # CLS token
|
|
250
|
+
[0.1, 0.8, 0.05, 0.05, 0.0], # Element 0 - position 1
|
|
251
|
+
[0.7, 0.1, 0.05, 0.1, 0.05], # Element 1 - position 0
|
|
252
|
+
[0.05, 0.25, 0.1, 0.55, 0.05], # Element 2 - position 3
|
|
253
|
+
[0.05, 0.15, 0.7, 0.05, 0.05], # Element 3 - position 2
|
|
254
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # EOS token
|
|
255
|
+
]
|
|
256
|
+
),
|
|
257
|
+
4,
|
|
258
|
+
[1, 0, 3, 2],
|
|
259
|
+
),
|
|
260
|
+
(
|
|
261
|
+
torch.tensor(
|
|
262
|
+
[ # Conflict element 0 and 1 (not equal)
|
|
263
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # CLS token
|
|
264
|
+
[
|
|
265
|
+
0.6,
|
|
266
|
+
0.2,
|
|
267
|
+
0.05,
|
|
268
|
+
0.1,
|
|
269
|
+
0.05,
|
|
270
|
+
], # Element 0 - position 0 preferred (conflict -> position 1)
|
|
271
|
+
[
|
|
272
|
+
0.7,
|
|
273
|
+
0.1,
|
|
274
|
+
0.05,
|
|
275
|
+
0.1,
|
|
276
|
+
0.05,
|
|
277
|
+
], # Element 1 - position 0 preferred (conflict -> position 0)
|
|
278
|
+
[0.05, 0.25, 0.1, 0.55, 0.05], # Element 2 - position 3 preferred
|
|
279
|
+
[0.05, 0.15, 0.7, 0.05, 0.05], # Element 3 - position 2 preferred
|
|
280
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # EOS token
|
|
281
|
+
]
|
|
282
|
+
),
|
|
283
|
+
4,
|
|
284
|
+
[1, 0, 3, 2],
|
|
285
|
+
),
|
|
286
|
+
(
|
|
287
|
+
torch.tensor(
|
|
288
|
+
[ # Conflict element 0 and 1 (equal)
|
|
289
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # CLS token
|
|
290
|
+
[
|
|
291
|
+
0.7,
|
|
292
|
+
0.1,
|
|
293
|
+
0.05,
|
|
294
|
+
0.1,
|
|
295
|
+
0.05,
|
|
296
|
+
], # Element 0 - position 0 preferred (conflict -> position 1)
|
|
297
|
+
[
|
|
298
|
+
0.7,
|
|
299
|
+
0.1,
|
|
300
|
+
0.05,
|
|
301
|
+
0.1,
|
|
302
|
+
0.05,
|
|
303
|
+
], # Element 1 - position 0 preferred (conflict -> position 0)
|
|
304
|
+
[0.05, 0.25, 0.1, 0.55, 0.05], # Element 2 - position 3 preferred
|
|
305
|
+
[0.05, 0.15, 0.7, 0.05, 0.05], # Element 3 - position 2 preferred
|
|
306
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # EOS token
|
|
307
|
+
]
|
|
308
|
+
),
|
|
309
|
+
4,
|
|
310
|
+
[0, 1, 3, 2],
|
|
311
|
+
),
|
|
312
|
+
(
|
|
313
|
+
torch.tensor(
|
|
314
|
+
[ # Cascade conflicts
|
|
315
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # CLS token
|
|
316
|
+
[
|
|
317
|
+
0.6,
|
|
318
|
+
0.1,
|
|
319
|
+
0.05,
|
|
320
|
+
0.1,
|
|
321
|
+
0.05,
|
|
322
|
+
], # Element 0 - position 0 preferred (conflict elements #1 #2 #3 -> position 3)
|
|
323
|
+
[
|
|
324
|
+
0.7,
|
|
325
|
+
0.1,
|
|
326
|
+
0.05,
|
|
327
|
+
0.1,
|
|
328
|
+
0.05,
|
|
329
|
+
], # Element 1 - position 0 preferred (conflict element #0 -> position 0)
|
|
330
|
+
[
|
|
331
|
+
0.05,
|
|
332
|
+
0.25,
|
|
333
|
+
0.55,
|
|
334
|
+
0.1,
|
|
335
|
+
0.05,
|
|
336
|
+
], # Element 2 - position 2 preferred (conflict element #0 -> position 2)
|
|
337
|
+
[
|
|
338
|
+
0.0,
|
|
339
|
+
0.7,
|
|
340
|
+
0.3,
|
|
341
|
+
0.05,
|
|
342
|
+
0.05,
|
|
343
|
+
], # Element 3 - position 1 preferred (conflict element #0 -> position 1)
|
|
344
|
+
[0.2, 0.2, 0.2, 0.2, 0.2], # EOS token
|
|
345
|
+
]
|
|
346
|
+
),
|
|
347
|
+
4,
|
|
348
|
+
[3, 0, 2, 1],
|
|
349
|
+
),
|
|
350
|
+
],
|
|
351
|
+
)
|
|
352
|
+
def test_parse_logits(logits, length, expected_order):
|
|
353
|
+
output = parse_logits(logits, length=length)
|
|
354
|
+
assert output == expected_order
|
|
355
|
+
|
|
356
|
+
|
|
357
|
+
def test_load_sort_dataset(dataset):
|
|
358
|
+
train_dataset = load_dataset_split(dataset, "train")
|
|
359
|
+
print(train_dataset)
|
|
360
|
+
|
|
361
|
+
assert len(train_dataset) == 2
|
|
362
|
+
assert sorted(train_dataset.column_names) == [
|
|
363
|
+
"sample_id",
|
|
364
|
+
"separators",
|
|
365
|
+
"source_boxes",
|
|
366
|
+
"source_classes",
|
|
367
|
+
"target_boxes",
|
|
368
|
+
"target_classes",
|
|
369
|
+
"target_index",
|
|
370
|
+
]
|
|
371
|
+
|
|
372
|
+
sample = train_dataset[0]
|
|
373
|
+
assert sample["sample_id"] == "84b4fb2c-d62a-4e50-96f8-b0bb04410182"
|
|
374
|
+
assert sample["separators"][0] == [674, 619, 877, 620]
|
|
375
|
+
assert sample["source_boxes"][0] == [30, 141, 182, 175]
|
|
376
|
+
assert sample["target_boxes"][0] == [178, 59, 803, 87]
|
|
377
|
+
assert sample["source_classes"][0] == 11
|
|
378
|
+
assert sample["target_classes"][0] == 10
|
|
379
|
+
assert sample["target_index"][0] == 42
|
|
380
|
+
|
|
381
|
+
|
|
382
|
+
@pytest.mark.parametrize(
|
|
383
|
+
("sort_ratio", "sort_method", "expected_sorted_boxes"),
|
|
384
|
+
[
|
|
385
|
+
(
|
|
386
|
+
1,
|
|
387
|
+
"sortxy",
|
|
388
|
+
[
|
|
389
|
+
[0, 150, 100, 300],
|
|
390
|
+
[1, 0, 100, 100],
|
|
391
|
+
[200, 255, 400, 400],
|
|
392
|
+
[202, 0, 400, 250],
|
|
393
|
+
],
|
|
394
|
+
),
|
|
395
|
+
(
|
|
396
|
+
1,
|
|
397
|
+
"sortyx",
|
|
398
|
+
[
|
|
399
|
+
[1, 0, 100, 100],
|
|
400
|
+
[202, 0, 400, 250],
|
|
401
|
+
[0, 150, 100, 300],
|
|
402
|
+
[200, 255, 400, 400],
|
|
403
|
+
],
|
|
404
|
+
),
|
|
405
|
+
(
|
|
406
|
+
1,
|
|
407
|
+
"sortxy_by_column",
|
|
408
|
+
[
|
|
409
|
+
[1, 0, 100, 100],
|
|
410
|
+
[0, 150, 100, 300],
|
|
411
|
+
[202, 0, 400, 250],
|
|
412
|
+
[200, 255, 400, 400],
|
|
413
|
+
],
|
|
414
|
+
),
|
|
415
|
+
],
|
|
416
|
+
)
|
|
417
|
+
def test_sort_dataset(sort_ratio, sort_method, expected_sorted_boxes):
|
|
418
|
+
sample = {
|
|
419
|
+
"target_classes": [
|
|
420
|
+
0,
|
|
421
|
+
0,
|
|
422
|
+
0,
|
|
423
|
+
0,
|
|
424
|
+
],
|
|
425
|
+
"target_boxes": [
|
|
426
|
+
[1, 0, 100, 100],
|
|
427
|
+
[0, 150, 100, 300],
|
|
428
|
+
[202, 0, 400, 250],
|
|
429
|
+
[200, 255, 400, 400],
|
|
430
|
+
],
|
|
431
|
+
"target_index": [1, 2, 3, 4],
|
|
432
|
+
}
|
|
433
|
+
sorted_boxes = sort_sample(
|
|
434
|
+
sample,
|
|
435
|
+
sort_ratio=sort_ratio,
|
|
436
|
+
sort_method=sort_method,
|
|
437
|
+
)["source_boxes"]
|
|
438
|
+
assert sorted_boxes == expected_sorted_boxes
|
tests/test_predict.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
1
|
+
import json
|
|
2
|
+
|
|
3
|
+
import pytest
|
|
4
|
+
|
|
5
|
+
from layout_reader.helpers import load_model
|
|
6
|
+
from layout_reader.inference import predict, run
|
|
7
|
+
from tests import FIXTURES
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
@pytest.fixture
|
|
11
|
+
def model() -> str:
|
|
12
|
+
return str(FIXTURES / "model")
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
@pytest.fixture
|
|
16
|
+
def lr_dataset() -> str:
|
|
17
|
+
return str(FIXTURES / "lr_dataset")
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
@pytest.fixture
|
|
21
|
+
def split() -> str:
|
|
22
|
+
return "train"
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
@pytest.fixture
|
|
26
|
+
def images() -> str:
|
|
27
|
+
return str(FIXTURES / "lr_dataset")
|
|
28
|
+
|
|
29
|
+
|
|
30
|
+
@pytest.fixture
|
|
31
|
+
def expected_predictions() -> dict:
|
|
32
|
+
return json.loads((FIXTURES / "predictions.json").read_text())
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
@pytest.mark.parametrize(
|
|
36
|
+
("boxes", "classes", "separators", "expected_order"),
|
|
37
|
+
[
|
|
38
|
+
([], [], [], []),
|
|
39
|
+
([[1, 1, 2, 2]], [], [], [0]),
|
|
40
|
+
([[1, 1, 2, 2], [2, 2, 3, 3]], [10, 11], [[1, 1, 1, 6]], [0, 1]),
|
|
41
|
+
([[1, 1, 2, 2], [2, 2, 3, 3]], [], [[1, 1, 1, 6]], [0, 1]),
|
|
42
|
+
([[1, 1, 2, 2], [2, 2, 3, 3]], [10, 11], [], [0, 1]),
|
|
43
|
+
([[1, 1, 2, 2], [2, 2, 3, 3]], [], [], [0, 1]),
|
|
44
|
+
],
|
|
45
|
+
)
|
|
46
|
+
def test_predict(model, boxes, classes, separators, expected_order):
|
|
47
|
+
model = load_model(model)
|
|
48
|
+
predicted_order = predict(model, boxes, classes, separators)
|
|
49
|
+
assert predicted_order == expected_order
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def test_run_inference(lr_dataset, split, model, tmp_path, expected_predictions):
|
|
53
|
+
output_dir = tmp_path / "output"
|
|
54
|
+
|
|
55
|
+
run(
|
|
56
|
+
dataset=lr_dataset,
|
|
57
|
+
split=split,
|
|
58
|
+
model=model,
|
|
59
|
+
output_dir=output_dir,
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
assert (output_dir / "predictions.json").exists()
|
|
63
|
+
predictions = json.loads((output_dir / "predictions.json").read_text())
|
|
64
|
+
assert predictions == expected_predictions
|