tea-bond 0.3.10__cp38-abi3-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tea-bond might be problematic. Click here for more details.

pybond/pd.py ADDED
@@ -0,0 +1,458 @@
1
+ from __future__ import annotations
2
+
3
+ import pandas as pd
4
+ import polars as pl
5
+
6
+ from .pl import Bonds as PlBonds
7
+ from .pl import Futures as PlFutures
8
+ from .pl import TfEvaluators as PlTfEvaluators
9
+
10
+
11
+ class TfEvaluators:
12
+ """
13
+ Treasury Futures Evaluators for pandas DataFrames.
14
+
15
+ A pandas-compatible wrapper around the Polars-based TfEvaluators that provides
16
+ various financial calculations for treasury futures and bonds analysis.
17
+
18
+ This class converts pandas inputs to Polars for computation and returns
19
+ pandas Series results for seamless integration with pandas workflows.
20
+ """
21
+
22
+ def __init__(
23
+ self,
24
+ future: str | pd.Series,
25
+ bond: str | pd.Series,
26
+ date: str | pd.Series,
27
+ future_price: pd.Series | None = None,
28
+ bond_ytm: pd.Series | None = None,
29
+ capital_rate: float | pd.Series | None = None,
30
+ reinvest_rate: float | None = None,
31
+ ):
32
+ """
33
+ Initialize TfEvaluators with market data.
34
+
35
+ Args:
36
+ future: Future contract code(s)
37
+ bond: Bond code(s)
38
+ date: Evaluation date(s)
39
+ future_price: Future price(s)
40
+ bond_ytm: Bond yield to maturity
41
+ capital_rate: Capital cost rate for carry calculations
42
+ reinvest_rate: Reinvestment rate for coupon payments (optional)
43
+ """
44
+ self.pl_df = pl.DataFrame(
45
+ {
46
+ "future": future,
47
+ "bond": bond,
48
+ "date": date,
49
+ "future_price": future_price,
50
+ "bond_ytm": bond_ytm,
51
+ "capital_rate": capital_rate,
52
+ }
53
+ )
54
+ self._evaluators = PlTfEvaluators(
55
+ future_price="future_price",
56
+ bond_ytm="bond_ytm",
57
+ capital_rate="capital_rate",
58
+ reinvest_rate=reinvest_rate,
59
+ )
60
+
61
+ @property
62
+ def net_basis_spread(self):
63
+ """
64
+ Calculate net basis spread (净基差).
65
+
66
+ Net basis spread = basis spread - carry return
67
+
68
+ Returns:
69
+ pd.Series: Net basis spread values
70
+ """
71
+ return self.pl_df.select(net_basis_spread=self._evaluators.net_basis_spread)[
72
+ "net_basis_spread"
73
+ ].to_pandas()
74
+
75
+ @property
76
+ def accrued_interest(self):
77
+ """
78
+ Calculate accrued interest (应计利息).
79
+
80
+ Returns:
81
+ pd.Series: Accrued interest values
82
+ """
83
+ return self.pl_df.select(accrued_interest=self._evaluators.accrued_interest)[
84
+ "accrued_interest"
85
+ ].to_pandas()
86
+
87
+ @property
88
+ def deliver_accrued_interest(self):
89
+ """
90
+ Calculate delivery accrued interest (国债期货交割应计利息).
91
+
92
+ Returns:
93
+ pd.Series: Delivery accrued interest values
94
+ """
95
+ return self.pl_df.select(
96
+ deliver_accrued_interest=self._evaluators.deliver_accrued_interest
97
+ )["deliver_accrued_interest"].to_pandas()
98
+
99
+ @property
100
+ def cf(self):
101
+ """
102
+ Calculate conversion factor (转换因子).
103
+
104
+ Returns:
105
+ pd.Series: Conversion factor values
106
+ """
107
+ return self.pl_df.select(cf=self._evaluators.cf)["cf"].to_pandas()
108
+
109
+ @property
110
+ def dirty_price(self):
111
+ """
112
+ Calculate bond dirty price (债券全价).
113
+
114
+ Returns:
115
+ pd.Series: Bond dirty price values
116
+ """
117
+ return self.pl_df.select(dirty_price=self._evaluators.dirty_price)[
118
+ "dirty_price"
119
+ ].to_pandas()
120
+
121
+ @property
122
+ def clean_price(self):
123
+ """
124
+ Calculate bond clean price (债券净价).
125
+
126
+ Returns:
127
+ pd.Series: Bond clean price values
128
+ """
129
+ return self.pl_df.select(clean_price=self._evaluators.clean_price)[
130
+ "clean_price"
131
+ ].to_pandas()
132
+
133
+ @property
134
+ def future_dirty_price(self):
135
+ """
136
+ Calculate future dirty price (期货全价/发票价格).
137
+
138
+ Returns:
139
+ pd.Series: Future dirty price values
140
+ """
141
+ return self.pl_df.select(
142
+ future_dirty_price=self._evaluators.future_dirty_price
143
+ )["future_dirty_price"].to_pandas()
144
+
145
+ @property
146
+ def deliver_cost(self):
147
+ """
148
+ Calculate delivery cost (交割成本).
149
+
150
+ Delivery cost = bond dirty price - interim coupon payments
151
+
152
+ Returns:
153
+ pd.Series: Delivery cost values
154
+ """
155
+ return self.pl_df.select(deliver_cost=self._evaluators.deliver_cost)[
156
+ "deliver_cost"
157
+ ].to_pandas()
158
+
159
+ @property
160
+ def basis_spread(self):
161
+ """
162
+ Calculate basis spread (基差).
163
+
164
+ Returns:
165
+ pd.Series: Basis spread values
166
+ """
167
+ return self.pl_df.select(basis_spread=self._evaluators.basis_spread)[
168
+ "basis_spread"
169
+ ].to_pandas()
170
+
171
+ @property
172
+ def f_b_spread(self):
173
+ """
174
+ Calculate futures-bond spread (期现价差).
175
+
176
+ Returns:
177
+ pd.Series: Futures-bond spread values
178
+ """
179
+ return self.pl_df.select(f_b_spread=self._evaluators.f_b_spread)[
180
+ "f_b_spread"
181
+ ].to_pandas()
182
+
183
+ @property
184
+ def carry(self):
185
+ """
186
+ Calculate carry return (持有收益).
187
+
188
+ Carry return = (delivery accrued - trading accrued + interim coupons) +
189
+ capital cost rate * (weighted average interim coupons - bond dirty price * remaining days / 365)
190
+
191
+ Returns:
192
+ pd.Series: Carry return values
193
+ """
194
+ return self.pl_df.select(carry=self._evaluators.carry)["carry"].to_pandas()
195
+
196
+ @property
197
+ def duration(self):
198
+ """
199
+ Calculate modified duration (修正久期).
200
+
201
+ Returns:
202
+ pd.Series: Modified duration values
203
+ """
204
+ return self.pl_df.select(duration=self._evaluators.duration)[
205
+ "duration"
206
+ ].to_pandas()
207
+
208
+ @property
209
+ def irr(self):
210
+ """
211
+ Calculate internal rate of return (内部收益率).
212
+
213
+ Returns:
214
+ pd.Series: Internal rate of return values
215
+ """
216
+ return self.pl_df.select(irr=self._evaluators.irr)["irr"].to_pandas()
217
+
218
+ @property
219
+ def future_ytm(self):
220
+ """
221
+ Calculate futures implied yield to maturity (期货隐含收益率).
222
+
223
+ Returns:
224
+ pd.Series: Futures implied yield to maturity values
225
+ """
226
+ return self.pl_df.select(future_ytm=self._evaluators.future_ytm)[
227
+ "future_ytm"
228
+ ].to_pandas()
229
+
230
+ @property
231
+ def remain_cp_to_deliver(self):
232
+ """
233
+ Calculate remaining coupon payments to delivery (到交割的期间付息).
234
+
235
+ Returns:
236
+ pd.Series: Remaining coupon payments to delivery values
237
+ """
238
+ return self.pl_df.select(
239
+ remain_cp_to_deliver=self._evaluators.remain_cp_to_deliver
240
+ )["remain_cp_to_deliver"].to_pandas()
241
+
242
+ @property
243
+ def remain_cp_to_deliver_wm(self):
244
+ """
245
+ Calculate weighted average remaining coupon payments to delivery (加权平均到交割的期间付息).
246
+
247
+ Returns:
248
+ pd.Series: Weighted average remaining coupon payments to delivery values
249
+ """
250
+ return self.pl_df.select(
251
+ remain_cp_to_deliver_wm=self._evaluators.remain_cp_to_deliver_wm
252
+ )["remain_cp_to_deliver_wm"].to_pandas()
253
+
254
+ @property
255
+ def remain_cp_num(self):
256
+ """
257
+ Calculate remaining number of coupon payments (债券剩余付息次数).
258
+
259
+ Returns:
260
+ pd.Series: Remaining number of coupon payments values
261
+ """
262
+ return self.pl_df.select(remain_cp_num=self._evaluators.remain_cp_num)[
263
+ "remain_cp_num"
264
+ ].to_pandas()
265
+
266
+ @property
267
+ def deliver_date(self):
268
+ """
269
+ Calculate delivery date (交割日).
270
+
271
+ Returns:
272
+ pd.Series: Delivery date values
273
+ """
274
+ return self.pl_df.select(deliver_date=self._evaluators.deliver_date)[
275
+ "deliver_date"
276
+ ].to_pandas()
277
+
278
+ @property
279
+ def last_trading_date(self):
280
+ """
281
+ Calculate last trading date (最后交易日).
282
+
283
+ Returns:
284
+ pd.Series: Last trading date values
285
+ """
286
+ return self.pl_df.select(last_trading_date=self._evaluators.last_trading_date)[
287
+ "last_trading_date"
288
+ ].to_pandas()
289
+
290
+
291
+ class Bonds:
292
+ """
293
+ Bond calculations for pandas DataFrames.
294
+
295
+ A pandas-compatible wrapper around the Polars-based Bonds class that provides
296
+ bond-specific financial calculations without requiring futures contract information.
297
+ """
298
+
299
+ def __init__(self, bond: str | pd.Series):
300
+ """
301
+ Initialize Bonds with bond identifier.
302
+
303
+ Args:
304
+ bond: Bond code(s)
305
+ """
306
+ self.bond = bond
307
+
308
+ def accrued_interest(self, date: str | pd.Series):
309
+ """
310
+ Calculate accrued interest for the bond (应计利息).
311
+
312
+ Args:
313
+ date: Evaluation date(s)
314
+
315
+ Returns:
316
+ pd.Series: Accrued interest values
317
+ """
318
+ df = pl.DataFrame({"bond": self.bond, "date": date})
319
+ return df.select(accrued_interest=PlBonds("bond").accrued_interest("date"))[
320
+ "accrued_interest"
321
+ ].to_pandas()
322
+
323
+ def clean_price(self, ytm: float | pd.Series, date: str | pd.Series):
324
+ """
325
+ Calculate bond clean price (债券净价).
326
+
327
+ Args:
328
+ ytm: Yield to maturity
329
+ date: Evaluation date(s)
330
+
331
+ Returns:
332
+ pd.Series: Bond clean price values
333
+ """
334
+ df = pl.DataFrame({"bond": self.bond, "ytm": ytm, "date": date})
335
+ return df.select(clean_price=PlBonds("bond").clean_price("ytm", "date"))[
336
+ "clean_price"
337
+ ].to_pandas()
338
+
339
+ def dirty_price(self, ytm: float | pd.Series, date: str | pd.Series):
340
+ """
341
+ Calculate bond dirty price (债券全价).
342
+
343
+ Args:
344
+ ytm: Yield to maturity
345
+ date: Evaluation date(s)
346
+
347
+ Returns:
348
+ pd.Series: Bond dirty price values
349
+ """
350
+ df = pl.DataFrame({"bond": self.bond, "ytm": ytm, "date": date})
351
+ return df.select(dirty_price=PlBonds("bond").dirty_price("ytm", "date"))[
352
+ "dirty_price"
353
+ ].to_pandas()
354
+
355
+ def duration(self, ytm: float | pd.Series, date: str | pd.Series):
356
+ """
357
+ Calculate modified duration (修正久期).
358
+
359
+ Args:
360
+ ytm: Yield to maturity
361
+ date: Evaluation date(s)
362
+
363
+ Returns:
364
+ pd.Series: Modified duration values
365
+ """
366
+ df = pl.DataFrame({"bond": self.bond, "ytm": ytm, "date": date})
367
+ return df.select(duration=PlBonds("bond").duration("ytm", "date"))[
368
+ "duration"
369
+ ].to_pandas()
370
+
371
+ def remain_cp_num(self, date: str | pd.Series):
372
+ """
373
+ Calculate remaining number of coupon payments (债券剩余付息次数).
374
+
375
+ Args:
376
+ date: Evaluation date(s)
377
+
378
+ Returns:
379
+ pd.Series: Remaining number of coupon payments values
380
+ """
381
+ df = pl.DataFrame({"bond": self.bond, "date": date})
382
+ return df.select(remain_cp_num=PlBonds("bond").remain_cp_num("date"))[
383
+ "remain_cp_num"
384
+ ].to_pandas()
385
+
386
+
387
+ class Futures:
388
+ def __init__(self, future: str | pd.Series):
389
+ self.future = future
390
+
391
+ def deliver_date(self):
392
+ """
393
+ Calculate delivery date (交割日).
394
+
395
+ Args:
396
+ date: Evaluation date(s)
397
+
398
+ Returns:
399
+ pd.Series: Delivery date values
400
+ """
401
+ df = pl.DataFrame({"future": self.future})
402
+ return df.select(deliver_date=PlFutures("future").deliver_date())[
403
+ "deliver_date"
404
+ ].to_pandas()
405
+
406
+ def last_trading_date(self):
407
+ """
408
+ Calculate last trading date (最后交易日).
409
+
410
+ Args:
411
+ date: Evaluation date(s)
412
+
413
+ Returns:
414
+ pd.Series: Last trading date values
415
+ """
416
+ df = pl.DataFrame({"future": self.future})
417
+ return df.select(last_trading_date=PlFutures("future").last_trading_date())[
418
+ "last_trading_date"
419
+ ].to_pandas()
420
+
421
+
422
+ def find_workday(date: str | pd.Series, market: str, offset: int = 0):
423
+ """
424
+ Find the workday based on the given date and market calendar.
425
+
426
+ Args:
427
+ date: Input date(s)
428
+ market: Market identifier ("IB" or "SSE")
429
+ offset: Number of workdays to offset (default: 0)
430
+
431
+ Returns:
432
+ pd.Series: Adjusted workday values
433
+ """
434
+ from .pl import find_workday as pl_find_workday
435
+
436
+ df = pl.DataFrame({"date": date}).select(pl.col("date").dt.date())
437
+ return df.select(workday=pl_find_workday("date", market, offset))[
438
+ "workday"
439
+ ].to_pandas()
440
+
441
+
442
+ def is_business_day(date: str | pd.Series, market: str):
443
+ """
444
+ Check if the given date is a business day for the specified market.
445
+
446
+ Args:
447
+ date: Input date(s)
448
+ market: Market identifier ("IB" or "SSE")
449
+
450
+ Returns:
451
+ pd.Series: Boolean values indicating if dates are business days
452
+ """
453
+ from .pl import is_business_day as pl_is_business_day
454
+
455
+ df = pl.DataFrame({"date": date}).select(pl.col("date").dt.date())
456
+ return df.select(is_business=pl_is_business_day("date", market))[
457
+ "is_business"
458
+ ].to_pandas()