tccli 3.0.1308.1__py2.py3-none-any.whl → 3.0.1310.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (60) hide show
  1. tccli/__init__.py +1 -1
  2. tccli/services/apm/v20210622/api.json +18 -0
  3. tccli/services/asr/v20190614/api.json +9 -0
  4. tccli/services/bh/v20230418/api.json +193 -2
  5. tccli/services/bh/v20230418/examples.json +2 -2
  6. tccli/services/cat/cat_client.py +53 -0
  7. tccli/services/cat/v20180409/api.json +80 -0
  8. tccli/services/cat/v20180409/examples.json +8 -0
  9. tccli/services/cdb/cdb_client.py +0 -53
  10. tccli/services/cdb/v20170320/api.json +0 -64
  11. tccli/services/cdb/v20170320/examples.json +0 -8
  12. tccli/services/cdwch/v20200915/examples.json +1 -1
  13. tccli/services/cfs/v20190719/api.json +9 -0
  14. tccli/services/cfw/v20190904/api.json +11 -1
  15. tccli/services/cfw/v20190904/examples.json +2 -2
  16. tccli/services/dsgc/v20190723/api.json +28 -18
  17. tccli/services/dsgc/v20190723/examples.json +1 -1
  18. tccli/services/ess/ess_client.py +53 -0
  19. tccli/services/ess/v20201111/api.json +103 -4
  20. tccli/services/ess/v20201111/examples.json +14 -0
  21. tccli/services/essbasic/essbasic_client.py +53 -0
  22. tccli/services/essbasic/v20210526/api.json +110 -2
  23. tccli/services/essbasic/v20210526/examples.json +14 -0
  24. tccli/services/gaap/gaap_client.py +12 -171
  25. tccli/services/gaap/v20180529/api.json +0 -325
  26. tccli/services/gaap/v20180529/examples.json +0 -24
  27. tccli/services/hunyuan/hunyuan_client.py +53 -0
  28. tccli/services/hunyuan/v20230901/api.json +162 -7
  29. tccli/services/hunyuan/v20230901/examples.json +8 -0
  30. tccli/services/iai/v20180301/api.json +12 -12
  31. tccli/services/iai/v20180301/examples.json +8 -2
  32. tccli/services/iss/v20230517/examples.json +1 -1
  33. tccli/services/keewidb/v20220308/api.json +1 -1
  34. tccli/services/keewidb/v20220308/examples.json +1 -1
  35. tccli/services/lighthouse/v20200324/api.json +2 -2
  36. tccli/services/mongodb/v20190725/api.json +1 -1
  37. tccli/services/partners/partners_client.py +57 -4
  38. tccli/services/partners/v20180321/api.json +151 -0
  39. tccli/services/partners/v20180321/examples.json +14 -0
  40. tccli/services/postgres/v20170312/api.json +7 -7
  41. tccli/services/redis/v20180412/api.json +12 -12
  42. tccli/services/redis/v20180412/examples.json +4 -4
  43. tccli/services/tcbr/v20220217/api.json +94 -0
  44. tccli/services/tdmq/v20200217/api.json +4 -4
  45. tccli/services/teo/v20220901/api.json +9 -9
  46. tccli/services/teo/v20220901/examples.json +1 -1
  47. tccli/services/thpc/v20230321/api.json +2 -2
  48. tccli/services/tmt/v20180321/api.json +1 -1
  49. tccli/services/vpc/v20170312/api.json +11 -11
  50. tccli/services/vpc/v20170312/examples.json +1 -1
  51. tccli/services/waf/v20180125/api.json +183 -29
  52. tccli/services/waf/v20180125/examples.json +7 -1
  53. tccli/services/wedata/v20210820/api.json +1519 -0
  54. tccli/services/wedata/v20210820/examples.json +65 -1
  55. tccli/services/wedata/wedata_client.py +424 -0
  56. {tccli-3.0.1308.1.dist-info → tccli-3.0.1310.1.dist-info}/METADATA +2 -2
  57. {tccli-3.0.1308.1.dist-info → tccli-3.0.1310.1.dist-info}/RECORD +60 -60
  58. {tccli-3.0.1308.1.dist-info → tccli-3.0.1310.1.dist-info}/WHEEL +0 -0
  59. {tccli-3.0.1308.1.dist-info → tccli-3.0.1310.1.dist-info}/entry_points.txt +0 -0
  60. {tccli-3.0.1308.1.dist-info → tccli-3.0.1310.1.dist-info}/license_files/LICENSE +0 -0
@@ -91,6 +91,13 @@
91
91
  "output": "GroupChatCompletionsResponse",
92
92
  "status": "online"
93
93
  },
94
+ "ImageQuestion": {
95
+ "document": "如需使用OpenAI兼容接口, 请参考文档:[OpenAI 兼容接口](https://cloud.tencent.com/document/product/1729/111007)\n\n腾讯混元大模型是由腾讯研发的大语言模型,具备强大的中文创作能力,复杂语境下的逻辑推理能力,以及可靠的任务执行能力。本接口支持流式或非流式调用,当使用流式调用时为 SSE 协议。\n\n 1. 本接口暂不支持返回图片内容。\n 2. 默认该接口下单账号限制并发数为 5 路,如您有提高并发限制的需求请 [购买](https://buy.cloud.tencent.com/hunyuan) 。\n 3. 请使用 SDK 调用本接口,每种开发语言的 SDK Git 仓库 examples/hunyuan/v20230901/ 目录下有提供示例供参考。SDK 链接在文档下方 “**开发者资源 - SDK**” 部分提供。\n 4. 我们推荐您使用 API Explorer,方便快速地在线调试接口和下载各语言的示例代码,[点击打开](https://console.cloud.tencent.com/api/explorer?Product=hunyuan&Version=2023-09-01&Action=ChatCompletions)。",
96
+ "input": "ImageQuestionRequest",
97
+ "name": "拍照解题",
98
+ "output": "ImageQuestionResponse",
99
+ "status": "online"
100
+ },
94
101
  "QueryHunyuanImageChatJob": {
95
102
  "document": "混元生图(多轮对话)接口基于混元大模型,将根据输入的文本描述生成图像,支持通过多轮对话的方式不断调整图像内容。分为提交任务和查询任务2个接口。\n提交任务:输入文本和前置对话 ID 等,提交一个混元生图多轮对话异步任务,获得任务 ID。\n查询任务:根据任务 ID 查询任务的处理状态、处理结果,任务处理完成后可获得在上一轮对话基础上继续生成的图像结果。\n混元生图(多轮对话)默认提供1个并发任务数,代表最多能同时处理1个已提交的任务,上一个任务处理完毕后才能开始处理下一个任务。",
96
103
  "input": "QueryHunyuanImageChatJobRequest",
@@ -840,6 +847,16 @@
840
847
  "output_required": false,
841
848
  "type": "list",
842
849
  "value_allowed_null": true
850
+ },
851
+ {
852
+ "disabled": false,
853
+ "document": "思维链内容。用于展示模型思考过程,仅 Hunyuan-T1 系列模型可用。注意:在进行多轮对话时,请不要将此字段拼接到 messages 中。请求 messages 的请求参数中包含 reasoning_content,接口将报错。",
854
+ "example": "你好!",
855
+ "member": "string",
856
+ "name": "ReasoningContent",
857
+ "output_required": false,
858
+ "type": "string",
859
+ "value_allowed_null": false
843
860
  }
844
861
  ],
845
862
  "usage": "out"
@@ -948,7 +965,7 @@
948
965
  },
949
966
  {
950
967
  "disabled": false,
951
- "document": "文件的Url",
968
+ "document": "文件的Url(有效期24小时)",
952
969
  "example": "https://xxx.gif",
953
970
  "member": "string",
954
971
  "name": "Url",
@@ -2052,6 +2069,144 @@
2052
2069
  ],
2053
2070
  "usage": "in"
2054
2071
  },
2072
+ "ImageMessage": {
2073
+ "document": "拍照解题内容",
2074
+ "members": [
2075
+ {
2076
+ "disabled": false,
2077
+ "document": "角色,可选值包括 system、user、assistant。",
2078
+ "example": "user",
2079
+ "member": "string",
2080
+ "name": "Role",
2081
+ "required": true,
2082
+ "type": "string"
2083
+ },
2084
+ {
2085
+ "disabled": false,
2086
+ "document": "文本内容",
2087
+ "example": "你好!",
2088
+ "member": "string",
2089
+ "name": "Content",
2090
+ "required": false,
2091
+ "type": "string"
2092
+ },
2093
+ {
2094
+ "disabled": false,
2095
+ "document": "多种类型内容(目前支持图片和文本),仅 hunyuan-vision 和 hunyuan-turbo-vision 模型支持",
2096
+ "example": "无",
2097
+ "member": "Content",
2098
+ "name": "Contents",
2099
+ "required": false,
2100
+ "type": "list"
2101
+ }
2102
+ ],
2103
+ "usage": "in"
2104
+ },
2105
+ "ImageQuestionRequest": {
2106
+ "document": "ImageQuestion请求参数结构体",
2107
+ "members": [
2108
+ {
2109
+ "disabled": false,
2110
+ "document": "模型名称,可选值包括 hunyuan-vision-image-question。各模型介绍请阅读 [产品概述](https://cloud.tencent.com/document/product/1729/104753) 中的说明。注意:不同的模型计费不同,请根据 [购买指南](https://cloud.tencent.com/document/product/1729/97731) 按需调用。",
2111
+ "example": "hunyuan-vision-image-question",
2112
+ "member": "string",
2113
+ "name": "Model",
2114
+ "required": true,
2115
+ "type": "string"
2116
+ },
2117
+ {
2118
+ "disabled": false,
2119
+ "document": "聊天上下文信息。说明:1. 长度最多为 40,按对话时间从旧到新在数组中排列。2. Message.Role 可选值:system、user、assistant。其中,system 角色可选,如存在则必须位于列表的最开始。user 和 assistant 需交替出现(一问一答),以 user 提问开始,user提问结束,且 Content 不能为空。Role 的顺序示例:[system(可选) user assistant user assistant user ...]。3. Messages 中 Content 总长度不能超过模型输入长度上限(可参考 [产品概述](https://cloud.tencent.com/document/product/1729/104753) 文档),超过则会截断最前面的内容,只保留尾部内容。",
2120
+ "example": "无",
2121
+ "member": "ImageMessage",
2122
+ "name": "Messages",
2123
+ "required": true,
2124
+ "type": "list"
2125
+ },
2126
+ {
2127
+ "disabled": false,
2128
+ "document": "流式调用开关。\n说明:\n1. 未传值时默认为非流式调用(false)。\n2. 流式调用时以 SSE 协议增量返回结果(返回值取 Choices[n].Delta 中的值,需要拼接增量数据才能获得完整结果)。\n3. 非流式调用时:\n调用方式与普通 HTTP 请求无异。\n接口响应耗时较长,**如需更低时延建议设置为 true**。\n只返回一次最终结果(返回值取 Choices[n].Message 中的值)。\n\n注意:\n通过 SDK 调用时,流式和非流式调用需用**不同的方式**获取返回值,具体参考 SDK 中的注释或示例(在各语言 SDK 代码仓库的 examples/hunyuan/v20230901/ 目录中)。",
2129
+ "example": "false",
2130
+ "member": "bool",
2131
+ "name": "Stream",
2132
+ "required": false,
2133
+ "type": "bool"
2134
+ }
2135
+ ],
2136
+ "type": "object"
2137
+ },
2138
+ "ImageQuestionResponse": {
2139
+ "document": "ImageQuestion返回参数结构体",
2140
+ "members": [
2141
+ {
2142
+ "disabled": false,
2143
+ "document": "Unix 时间戳,单位为秒。",
2144
+ "example": "1705634032",
2145
+ "member": "int64",
2146
+ "name": "Created",
2147
+ "output_required": false,
2148
+ "type": "int",
2149
+ "value_allowed_null": false
2150
+ },
2151
+ {
2152
+ "disabled": false,
2153
+ "document": "Token 统计信息。\n按照总 Token 数量计费。",
2154
+ "example": "无",
2155
+ "member": "Usage",
2156
+ "name": "Usage",
2157
+ "output_required": false,
2158
+ "type": "object",
2159
+ "value_allowed_null": false
2160
+ },
2161
+ {
2162
+ "disabled": false,
2163
+ "document": "免责声明。",
2164
+ "example": "以上内容为AI生成,不代表开发者立场,请勿删除或修改本标记",
2165
+ "member": "string",
2166
+ "name": "Note",
2167
+ "output_required": false,
2168
+ "type": "string",
2169
+ "value_allowed_null": false
2170
+ },
2171
+ {
2172
+ "disabled": false,
2173
+ "document": "本次请求的 RequestId。",
2174
+ "example": "9c772634-8824-43e8-bc24-8bc4c19b9151",
2175
+ "member": "string",
2176
+ "name": "Id",
2177
+ "output_required": false,
2178
+ "type": "string",
2179
+ "value_allowed_null": false
2180
+ },
2181
+ {
2182
+ "disabled": false,
2183
+ "document": "回复内容。",
2184
+ "example": "无",
2185
+ "member": "Choice",
2186
+ "name": "Choices",
2187
+ "output_required": false,
2188
+ "type": "list",
2189
+ "value_allowed_null": false
2190
+ },
2191
+ {
2192
+ "disabled": false,
2193
+ "document": "错误信息。\n如果流式返回中服务处理异常,返回该错误信息。\n注意:此字段可能返回 null,表示取不到有效值。",
2194
+ "example": "无",
2195
+ "member": "ErrorMsg",
2196
+ "name": "ErrorMsg",
2197
+ "output_required": false,
2198
+ "type": "object",
2199
+ "value_allowed_null": true
2200
+ },
2201
+ {
2202
+ "document": "唯一请求 ID,由服务端生成,每次请求都会返回(若请求因其他原因未能抵达服务端,则该次请求不会获得 RequestId)。定位问题时需要提供该次请求的 RequestId。本接口为流式响应接口,当请求成功时,RequestId 会被放在 HTTP 响应的 Header \"X-TC-RequestId\" 中。",
2203
+ "member": "string",
2204
+ "name": "RequestId",
2205
+ "type": "string"
2206
+ }
2207
+ ],
2208
+ "type": "object"
2209
+ },
2055
2210
  "ImageUrl": {
2056
2211
  "document": "具体的图片内容",
2057
2212
  "members": [
@@ -3279,8 +3434,8 @@
3279
3434
  },
3280
3435
  {
3281
3436
  "disabled": false,
3282
- "document": "输入图 Base64 数据。最多支持200个 utf-8 字符,ImageBase64、ImageUrl和 Prompt必填其一,且Prompt和ImageBase64/ImageUrl不能同时存在。",
3283
- "example": "",
3437
+ "document": "输入图 Base64 数据。\n大小:单边分辨率要求不小于50,不大于5000。大小不超过8m(base64编码后会大30%左右,建议实际输入图片不超过6m)\n格式:jpg,png,jpeg,webp。\nImageBase64、ImageUrl和 Prompt必填其一,且Prompt和ImageBase64/ImageUrl不能同时存在。",
3438
+ "example": "/9j/4QlQaHR0c...N6a2M5ZCI",
3284
3439
  "member": "string",
3285
3440
  "name": "ImageBase64",
3286
3441
  "required": false,
@@ -3288,8 +3443,8 @@
3288
3443
  },
3289
3444
  {
3290
3445
  "disabled": false,
3291
- "document": "输入图Url。最多支持200个 utf-8 字符,ImageBase64、ImageUrl和 Prompt必填其一,且Prompt和ImageBase64/ImageUrl不能同时存在。",
3292
- "example": "",
3446
+ "document": "输入图Url。\n大小:单边分辨率要求不小于50,不大于5000。大小不超过8m(base64编码后会大30%左右,建议实际输入图片不超过6m)\n格式:jpg,png,jpeg,webp。\nImageBase64/ImageUrl和 Prompt必填其一,且Prompt和ImageBase64/ImageUrl不能同时存在。",
3447
+ "example": "https://****/imageurl.jpg",
3293
3448
  "member": "string",
3294
3449
  "name": "ImageUrl",
3295
3450
  "required": false,
@@ -3312,8 +3467,8 @@
3312
3467
  "members": [
3313
3468
  {
3314
3469
  "disabled": false,
3315
- "document": "任务id",
3316
- "example": "",
3470
+ "document": "任务id(有效期24小时)",
3471
+ "example": "1172498703139831808",
3317
3472
  "member": "string",
3318
3473
  "name": "JobId",
3319
3474
  "output_required": false,
@@ -158,6 +158,14 @@
158
158
  "title": "调用示例"
159
159
  }
160
160
  ],
161
+ "ImageQuestion": [
162
+ {
163
+ "document": "",
164
+ "input": "POST / HTTP/1.1\nHost: hunyuan.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: ImageQuestion\n<公共请求参数>\n\n{\n \"Model\": \"hunyuan-vision-image-question\",\n \"Messages\": [\n {\n \"Role\": \"user\",\n \"Contents\": [\n {\n \"Type\": \"text\",\n \"Text\": \"解答图片中的问题\"\n },\n {\n \"Type\": \"image_url\",\n \"ImageUrl\": {\n \"Url\": \"https://qidian-qbot-1251316161.cos.ap-guangzhou.tencentcos.cn/public/0/0/image/hy/2c4dda9e032a477a6572866de2419ecd9e59076a-6145-46a0-9f47-1048f65cf4f8.png\"\n }\n }\n ]\n }\n ],\n \"Stream\": false\n}",
165
+ "output": "{\n \"Response\": {\n \"RequestId\": \"b7c3e6e3-a000-4cf1-9201-cdf3dd6352b7\",\n \"Id\": \"b7c3e6e3-a000-4cf1-9201-cdf3dd6352b7\",\n \"Created\": 1746614615,\n \"Choices\": [\n {\n \"Index\": 0,\n \"Message\": {\n \"Role\": \"assistant\",\n \"Content\": \"本题可根据分数、百分数、比的相关性质和运算法则来逐一求解。\\n\\n### 1. 求解$\\\\frac{3}{4}\\\\div(\\\\space)=\\\\ 9:(\\\\space)=\\\\frac{(\\\\space)}{20}=(\\\\space)\\\\%$\\n设$\\\\frac{3}{4}\\\\div x = \\\\frac{3}{20}$,根据“除数$=$被除数$\\\\div$商”可得$x = \\\\frac{3}{4}\\\\div\\\\frac{3}{20}=\\\\frac{3}{4}\\\\times\\\\frac{20}{3}= 5$;\\n设$9:y = \\\\frac{3}{20}$,根据“后项$=$前项$\\\\div$比值”可得$y = 9\\\\div\\\\frac{3}{20}=9\\\\times\\\\frac{20}{3}= 60$;\\n将$\\\\frac{3}{20}$化为百分数,$\\\\frac{3}{20}=3\\\\div20 = 0.15 = 15\\\\%$。\\n所以括号内应依次填入$5$、$60$、$15$。\\n\\n### 2. 求甲数是乙数的百分之几以及乙数比甲数少百分之几\\n- 甲、乙两数的比是$5:4$,把甲数看成$5$份,乙数看成$4$份。\\n甲数是乙数的:$5\\\\div4\\\\times100\\\\% = 125\\\\%$;\\n乙数比甲数少:$(5 - 4)\\\\div5\\\\times100\\\\% = 1\\\\div5\\\\times100\\\\% = 20\\\\%$。\\n\\n### 3. 求括号里的数使等式成立\\n根据“一个加数$=$和$-$另一个加数”,可得$\\\\frac{1}{4}+x = 1$,则$x = 1 - \\\\frac{1}{4}=\\\\frac{3}{4}$;\\n根据“一个因数$=$积$\\\\div$另一个因数”,可得$\\\\frac{2}{5}\\\\times x = 1$,则$x = 1\\\\div\\\\frac{2}{5}=1\\\\times\\\\frac{5}{2}=\\\\frac{5}{2}$;\\n根据“除数$=$被除数$\\\\div$商”,可得$\\\\frac{6}{11}\\\\div x = 1$,则$x = \\\\frac{6}{11}\\\\div1=\\\\frac{6}{11}$。\\n所以括号内应依次填入$\\\\frac{3}{4}$、$\\\\frac{5}{2}$、$\\\\frac{6}{11}$。\\n\\n### 4. 求比$50$米少$20\\\\%$的长度以及$35$米比多少米多$40\\\\%$\\n- 比$50$米少$20\\\\%$,即$50$米的$(1 - 20\\\\%)$,$50\\\\times(1 - 20\\\\%) = 50\\\\times0.8 = 40$(米);\\n- 设$35$米比$x$米多$40\\\\%$,则可列方程$(1 + 40\\\\%)x = 35$,即$1.4x = 35$,解得$x = 35\\\\div1.4 = 25$(米)。\\n所以括号内应依次填入$40$、$25$。\\n\\n### 5. 比较大小\\n- 计算$\\\\frac{5}{8}\\\\div\\\\frac{4}{5}=\\\\frac{5}{8}\\\\times\\\\frac{5}{4}$,因为$\\\\frac{5}{4}\\\\gt\\\\frac{4}{5}$,所以$\\\\frac{5}{8}\\\\times\\\\frac{5}{4}\\\\gt\\\\frac{5}{8}\\\\times\\\\frac{4}{5}$,即$\\\\frac{5}{8}\\\\div\\\\frac{4}{5}\\\\gt\\\\frac{5}{8}\\\\times\\\\frac{4}{5}$;\\n- 根据乘法结合律$(a\\\\times b)\\\\times c = a\\\\times(b\\\\times c)$,可得$(\\\\frac{1}{2}\\\\times\\\\frac{1}{3})\\\\times\\\\frac{1}{5}=\\\\frac{1}{2}\\\\times\\\\frac{1}{3}\\\\times\\\\frac{1}{5}$;\\n- 计算$\\\\frac{6}{7}\\\\div\\\\frac{4}{3}=\\\\frac{6}{7}\\\\times\\\\frac{3}{4}$,因为$\\\\frac{4}{3}\\\\gt\\\\frac{3}{4}$,所以$\\\\frac{6}{7}\\\\times\\\\frac{4}{3}\\\\gt\\\\frac{6}{7}\\\\times\\\\frac{3}{4}$,即$\\\\frac{6}{7}\\\\times\\\\frac{4}{3}\\\\gt\\\\frac{6}{7}\\\\div\\\\frac{4}{3}$。\\n所以括号内应依次填入$\\\\gt$、$=$、$\\\\gt$。\\n\\n### 6. 求没成活的棵数\\n已知果园今年栽果树$200$棵,成活率是$98\\\\%$,则没成活的占$(1 - 98\\\\%)$,没成活的棵数为$200\\\\times(1 - 98\\\\%) = 200\\\\times0.02 = 4$(棵)。\\n\\n综上,答案依次为:\\n1. $5$、$60$、$15$;\\n2. $125$、$20$;\\n3. $\\\\frac{3}{4}$、$\\\\frac{5}{2}$、$\\\\frac{6}{11}$;\\n4. $40$、$25$;\\n5. $\\\\gt$、$=$、$\\\\gt$;\\n6. $4$。\"\n },\n \"FinishReason\": \"stop\"\n }\n ],\n \"Usage\": {\n \"PromptTokens\": 1010,\n \"CompletionTokens\": 836705,\n \"TotalTokens\": 837715\n },\n \"Note\": \"以上内容为AI生成,不代表开发者立场,请勿删除或修改本标记\"\n }\n}",
166
+ "title": "拍照解题请求"
167
+ }
168
+ ],
161
169
  "QueryHunyuanImageChatJob": [
162
170
  {
163
171
  "document": "成功查询",
@@ -347,7 +347,7 @@
347
347
  "members": [
348
348
  {
349
349
  "disabled": false,
350
- "document": "检测模式。0 为检测所有出现的人脸, 1 为检测面积最大的人脸。默认为 0。最多返回 10 张人脸的五官定位(人脸关键点)具体信息。",
350
+ "document": "检测模式。\n- 取值范围:0 为检测所有出现的人脸, 1 为检测面积最大的人脸。\n- 默认为 0。\n- 最多返回 10 张人脸的五官定位(人脸关键点)具体信息。",
351
351
  "example": "0",
352
352
  "member": "uint64",
353
353
  "name": "Mode",
@@ -356,8 +356,8 @@
356
356
  },
357
357
  {
358
358
  "disabled": false,
359
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
360
- "example": "",
359
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
360
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
361
361
  "member": "string",
362
362
  "name": "Image",
363
363
  "required": false,
@@ -365,7 +365,7 @@
365
365
  },
366
366
  {
367
367
  "disabled": false,
368
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
368
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
369
369
  "example": "http://test.image.myqcloud.com/testA.jpg",
370
370
  "member": "string",
371
371
  "name": "Url",
@@ -374,7 +374,7 @@
374
374
  },
375
375
  {
376
376
  "disabled": false,
377
- "document": "人脸识别服务所用的算法模型版本。\n\n目前入参支持 “2.0”和“3.0“ 两个输入。\n\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
377
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
378
378
  "example": "3.0",
379
379
  "member": "string",
380
380
  "name": "FaceModelVersion",
@@ -383,7 +383,7 @@
383
383
  },
384
384
  {
385
385
  "disabled": false,
386
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
386
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
387
387
  "example": "0",
388
388
  "member": "uint64",
389
389
  "name": "NeedRotateDetection",
@@ -402,7 +402,7 @@
402
402
  "example": "550",
403
403
  "member": "uint64",
404
404
  "name": "ImageWidth",
405
- "required": true,
405
+ "output_required": true,
406
406
  "type": "int",
407
407
  "value_allowed_null": false
408
408
  },
@@ -412,7 +412,7 @@
412
412
  "example": "366",
413
413
  "member": "uint64",
414
414
  "name": "ImageHeight",
415
- "required": true,
415
+ "output_required": true,
416
416
  "type": "int",
417
417
  "value_allowed_null": false
418
418
  },
@@ -422,7 +422,7 @@
422
422
  "example": "无",
423
423
  "member": "FaceShape",
424
424
  "name": "FaceShapeSet",
425
- "required": true,
425
+ "output_required": true,
426
426
  "type": "list",
427
427
  "value_allowed_null": false
428
428
  },
@@ -432,7 +432,7 @@
432
432
  "example": "3.0",
433
433
  "member": "string",
434
434
  "name": "FaceModelVersion",
435
- "required": true,
435
+ "output_required": true,
436
436
  "type": "string",
437
437
  "value_allowed_null": false
438
438
  },
@@ -543,7 +543,7 @@
543
543
  {
544
544
  "disabled": false,
545
545
  "document": "A 图片 base64 数据,base64 编码后大小不可超过5M。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
546
- "example": "",
546
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
547
547
  "member": "string",
548
548
  "name": "ImageA",
549
549
  "required": false,
@@ -552,7 +552,7 @@
552
552
  {
553
553
  "disabled": false,
554
554
  "document": "B 图片 base64 数据,base64 编码后大小不可超过5M。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
555
- "example": "",
555
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
556
556
  "member": "string",
557
557
  "name": "ImageB",
558
558
  "required": false,
@@ -10,10 +10,16 @@
10
10
  ],
11
11
  "AnalyzeFace": [
12
12
  {
13
- "document": "",
13
+ "document": "对请求图片进行五官定位。",
14
14
  "input": "POST / HTTP/1.1\nHost: iai.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: AnalyzeFace\n<公共请求参数>\n\n{\n \"Url\": \"http://test.image.myqcloud.com/testA.jpg\",\n \"Mode\": \"0\"\n}",
15
15
  "output": "{\n \"Response\": {\n \"ImageWidth\": 550,\n \"ImageHeight\": 366,\n \"FaceShapeSet\": [\n {\n \"FaceProfile\": [\n {\n \"X\": 63,\n \"Y\": 335\n },\n {\n \"X\": 63,\n \"Y\": 374\n },\n {\n \"X\": 66,\n \"Y\": 412\n },\n {\n \"X\": 74,\n \"Y\": 450\n },\n {\n \"X\": 85,\n \"Y\": 487\n },\n {\n \"X\": 100,\n \"Y\": 522\n },\n {\n \"X\": 121,\n \"Y\": 554\n },\n {\n \"X\": 147,\n \"Y\": 582\n },\n {\n \"X\": 176,\n \"Y\": 608\n },\n {\n \"X\": 208,\n \"Y\": 627\n },\n {\n \"X\": 245,\n \"Y\": 634\n },\n {\n \"X\": 282,\n \"Y\": 627\n },\n {\n \"X\": 315,\n \"Y\": 607\n },\n {\n \"X\": 344,\n \"Y\": 582\n },\n {\n \"X\": 370,\n \"Y\": 554\n },\n {\n \"X\": 391,\n \"Y\": 522\n },\n {\n \"X\": 405,\n \"Y\": 487\n },\n {\n \"X\": 416,\n \"Y\": 449\n },\n {\n \"X\": 423,\n \"Y\": 411\n },\n {\n \"X\": 427,\n \"Y\": 372\n },\n {\n \"X\": 426,\n \"Y\": 334\n }\n ],\n \"LeftEye\": [\n {\n \"X\": 114,\n \"Y\": 333\n },\n {\n \"X\": 128,\n \"Y\": 345\n },\n {\n \"X\": 146,\n \"Y\": 349\n },\n {\n \"X\": 165,\n \"Y\": 347\n },\n {\n \"X\": 183,\n \"Y\": 341\n },\n {\n \"X\": 169,\n \"Y\": 325\n },\n {\n \"X\": 150,\n \"Y\": 318\n },\n {\n \"X\": 130,\n \"Y\": 321\n }\n ],\n \"RightEye\": [\n {\n \"X\": 378,\n \"Y\": 331\n },\n {\n \"X\": 364,\n \"Y\": 343\n },\n {\n \"X\": 345,\n \"Y\": 348\n },\n {\n \"X\": 327,\n \"Y\": 346\n },\n {\n \"X\": 309,\n \"Y\": 340\n },\n {\n \"X\": 322,\n \"Y\": 323\n },\n {\n \"X\": 341,\n \"Y\": 316\n },\n {\n \"X\": 361,\n \"Y\": 319\n }\n ],\n \"LeftEyeBrow\": [\n {\n \"X\": 79,\n \"Y\": 280\n },\n {\n \"X\": 108,\n \"Y\": 275\n },\n {\n \"X\": 138,\n \"Y\": 274\n },\n {\n \"X\": 168,\n \"Y\": 277\n },\n {\n \"X\": 198,\n \"Y\": 279\n },\n {\n \"X\": 173,\n \"Y\": 256\n },\n {\n \"X\": 139,\n \"Y\": 251\n },\n {\n \"X\": 105,\n \"Y\": 256\n }\n ],\n \"RightEyeBrow\": [\n {\n \"X\": 410,\n \"Y\": 277\n },\n {\n \"X\": 380,\n \"Y\": 273\n },\n {\n \"X\": 350,\n \"Y\": 272\n },\n {\n \"X\": 320,\n \"Y\": 275\n },\n {\n \"X\": 290,\n \"Y\": 277\n },\n {\n \"X\": 315,\n \"Y\": 255\n },\n {\n \"X\": 349,\n \"Y\": 249\n },\n {\n \"X\": 384,\n \"Y\": 254\n }\n ],\n \"Mouth\": [\n {\n \"X\": 173,\n \"Y\": 522\n },\n {\n \"X\": 193,\n \"Y\": 541\n },\n {\n \"X\": 217,\n \"Y\": 554\n },\n {\n \"X\": 244,\n \"Y\": 558\n },\n {\n \"X\": 272,\n \"Y\": 554\n },\n {\n \"X\": 297,\n \"Y\": 541\n },\n {\n \"X\": 317,\n \"Y\": 522\n },\n {\n \"X\": 291,\n \"Y\": 517\n },\n {\n \"X\": 264,\n \"Y\": 512\n },\n {\n \"X\": 245,\n \"Y\": 517\n },\n {\n \"X\": 225,\n \"Y\": 512\n },\n {\n \"X\": 199,\n \"Y\": 517\n },\n {\n \"X\": 196,\n \"Y\": 528\n },\n {\n \"X\": 220,\n \"Y\": 532\n },\n {\n \"X\": 244,\n \"Y\": 535\n },\n {\n \"X\": 269,\n \"Y\": 532\n },\n {\n \"X\": 293,\n \"Y\": 528\n },\n {\n \"X\": 293,\n \"Y\": 525\n },\n {\n \"X\": 269,\n \"Y\": 527\n },\n {\n \"X\": 245,\n \"Y\": 530\n },\n {\n \"X\": 221,\n \"Y\": 528\n },\n {\n \"X\": 197,\n \"Y\": 525\n }\n ],\n \"Nose\": [\n {\n \"X\": 244,\n \"Y\": 428\n },\n {\n \"X\": 245,\n \"Y\": 341\n },\n {\n \"X\": 231,\n \"Y\": 367\n },\n {\n \"X\": 217,\n \"Y\": 392\n },\n {\n \"X\": 203,\n \"Y\": 418\n },\n {\n \"X\": 187,\n \"Y\": 448\n },\n {\n \"X\": 217,\n \"Y\": 464\n },\n {\n \"X\": 245,\n \"Y\": 468\n },\n {\n \"X\": 272,\n \"Y\": 464\n },\n {\n \"X\": 302,\n \"Y\": 448\n },\n {\n \"X\": 287,\n \"Y\": 417\n },\n {\n \"X\": 273,\n \"Y\": 392\n },\n {\n \"X\": 259,\n \"Y\": 366\n }\n ],\n \"LeftPupil\": [\n {\n \"X\": 188,\n \"Y\": 303\n }\n ],\n \"RightPupil\": [\n {\n \"X\": 201,\n \"Y\": 304\n }\n ]\n }\n ],\n \"FaceModelVersion\": \"3.0\",\n \"RequestId\": \"a8eb4545-a154-4f86-9510-57a8be9cae0c\"\n }\n}",
16
- "title": "五官定位接口"
16
+ "title": "五官定位接口成功示例"
17
+ },
18
+ {
19
+ "document": "对请求图片进行五官定位,图片中无人脸。",
20
+ "input": "POST / HTTP/1.1\nHost: iai.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: AnalyzeFace\n<公共请求参数>\n\n{\n \"Url\": \"http://test.image.myqcloud.com/testB.jpg\",\n \"Mode\": \"0\"\n}",
21
+ "output": "{\n \"Response\": {\n \"RequestId\": \"c964ad35-5476-486e-a03f-311faa6652e6\",\n \"Error\": {\n \"Code\": \"InvalidParameterValue.NoFaceInPhoto\",\n \"Message\": \"图片中没有人脸。\"\n }\n }\n}",
22
+ "title": "五官定位接口异常示例"
17
23
  }
18
24
  ],
19
25
  "CompareFace": [
@@ -103,7 +103,7 @@
103
103
  },
104
104
  {
105
105
  "document": "成功",
106
- "input": "POST / HTTP/1.1\nHost: iss.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: AddUserDevice\n<公共请求参数>\n\n{\n \"Name\": \"testrtmp\",\n \"AccessProtocol\": 1,\n \"Type\": 1,\n \"OrganizationId\": \"189\",\n \"ClusterId\": \"4169d92e-****-****-****-************\",\n \"TransportProtocol\": 0,\n \"Password\": \"37********10\",\n \"ProtocolType\": 0,\n \"AppName\": \"testapp\",\n \"StreamName\": \"teststream\"\n}",
106
+ "input": "POST / HTTP/1.1\nHost: iss.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: AddUserDevice\n<公共请求参数>\n\n{\n \"Name\": \"testrtmp\",\n \"AccessProtocol\": 1,\n \"Type\": 1,\n \"OrganizationId\": \"189\",\n \"ClusterId\": \"4169d92e-****-****-****-************\",\n \"AppName\": \"testapp\",\n \"StreamName\": \"teststream\"\n}",
107
107
  "output": "{\n \"Response\": {\n \"Data\": {\n \"AccessProtocol\": 1,\n \"AppId\": 1300056079,\n \"ClusterId\": \"4169d92e-****-****-****-************\",\n \"ClusterName\": \"上海一区\",\n \"Code\": \"0HQq******\",\n \"Description\": \"\",\n \"DeviceId\": \"f1f9baae-****-****-****-************\",\n \"GatewayId\": \"\",\n \"Ip\": \"\",\n \"Name\": \"testrtmp\",\n \"OrganizationId\": 189,\n \"Password\": \"37********10\",\n \"Port\": 0,\n \"ProtocolType\": 0,\n \"Status\": 0,\n \"TransportProtocol\": 0,\n \"Type\": 1,\n \"Username\": \"\"\n },\n \"RequestId\": \"56d8591d-85cb-498d-a5b6-52133305e69c\"\n }\n}",
108
108
  "title": "success"
109
109
  }
@@ -1152,7 +1152,7 @@
1152
1152
  "value_allowed_null": false
1153
1153
  },
1154
1154
  {
1155
- "disabled": false,
1155
+ "disabled": true,
1156
1156
  "document": "废弃字段。",
1157
1157
  "example": "无",
1158
1158
  "member": "BinlogInfo",
@@ -76,7 +76,7 @@
76
76
  {
77
77
  "document": "",
78
78
  "input": "POST / HTTP/1.1\nHost: keewidb.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: DescribeInstanceBackups\n<公共请求参数>\n\n{\n \"InstanceId\": \"kee-i0krexg9\",\n \"Limit\": \"10\",\n \"Offset\": \"0\"\n}",
79
- "output": "{\n \"Response\": {\n \"BackupRecord\": [\n {\n \"BackupId\": \"\",\n \"BackupType\": \"1\",\n \"Locked\": 0,\n \"Remark\": \"\",\n \"StartTime\": \"2022-08-28 16:00:07\",\n \"Status\": 2\n },\n {\n \"BackupId\": \"\",\n \"BackupType\": \"1\",\n \"Locked\": 0,\n \"Remark\": \"\",\n \"StartTime\": \"2022-08-27 16:00:57\",\n \"Status\": 2\n },\n {\n \"BackupId\": \"\",\n \"BackupType\": \"1\",\n \"Locked\": 0,\n \"Remark\": \"\",\n \"StartTime\": \"2022-08-26 16:00:43\",\n \"Status\": 2\n }\n ],\n \"BackupSet\": [],\n \"RequestId\": \"1bb3c529-3db5-4bca-9f2b-4c04f919adf5\",\n \"TotalCount\": 3\n }\n}",
79
+ "output": "{\n \"Response\": {\n \"BackupRecord\": [\n {\n \"BackupId\": \"\",\n \"BackupType\": \"1\",\n \"Locked\": 0,\n \"Remark\": \"\",\n \"StartTime\": \"2022-08-28 16:00:07\",\n \"Status\": 2\n },\n {\n \"BackupId\": \"\",\n \"BackupType\": \"1\",\n \"Locked\": 0,\n \"Remark\": \"\",\n \"StartTime\": \"2022-08-27 16:00:57\",\n \"Status\": 2\n },\n {\n \"BackupId\": \"\",\n \"BackupType\": \"1\",\n \"Locked\": 0,\n \"Remark\": \"\",\n \"StartTime\": \"2022-08-26 16:00:43\",\n \"Status\": 2\n }\n ],\n \"RequestId\": \"1bb3c529-3db5-4bca-9f2b-4c04f919adf5\",\n \"TotalCount\": 3\n }\n}",
80
80
  "title": "示例1"
81
81
  }
82
82
  ],
@@ -3947,7 +3947,7 @@
3947
3947
  },
3948
3948
  {
3949
3949
  "disabled": false,
3950
- "document": "过滤器列表。\n<li>template-id</li>按照【防火墙模板所属的ID】进行过滤。\n类型:String\n必选:否\n<li>template-name</li>按照【防火墙模板所属的名称】进行过滤。\n类型:String\n必选:否\n<li>template-type</li>按照【防火墙模板的类型】进行过滤。\n类型:String\n必选:否\n取值: \"PRIVATE\"(个人模版)\n每次请求的 Filters 的上限为 10,Filter.Values 的上限为 100。参数不支持同时指定 TemplateIds 和 Filters。",
3950
+ "document": "过滤器列表。\n<li>template-id</li>按照【防火墙模板所属的ID】进行过滤。\n类型:String\n必选:否\n<li>template-name</li>按照【防火墙模板所属的名称】进行过滤。\n类型:String\n必选:否\n<li>template-type</li>按照【防火墙模板的类型】进行过滤。\n类型:String\n必选:否\n取值: \"PRIVATE\"(个人模板)\n每次请求的 Filters 的上限为 10,Filter.Values 的上限为 100。参数不支持同时指定 TemplateIds 和 Filters。",
3951
3951
  "example": "无",
3952
3952
  "member": "Filter",
3953
3953
  "name": "Filters",
@@ -6195,7 +6195,7 @@
6195
6195
  },
6196
6196
  {
6197
6197
  "disabled": false,
6198
- "document": "模板类型。取值: \"PRIVATE\"(个人模版)",
6198
+ "document": "模板类型。取值: \"PRIVATE\"(个人模板)",
6199
6199
  "example": "PRIVATE",
6200
6200
  "member": "string",
6201
6201
  "name": "TemplateType",
@@ -5204,7 +5204,7 @@
5204
5204
  "type": "int"
5205
5205
  },
5206
5206
  {
5207
- "disabled": false,
5207
+ "disabled": true,
5208
5208
  "document": "(已废弃) 请使用ResizeOplog独立接口完成。\n\n实例配置变更后 Oplog 的大小。\n- 单位:GB。\n- 默认 Oplog 占用容量为磁盘空间的10%。系统允许设置的 Oplog 容量范围为磁盘空间的[10%,90%]。",
5209
5209
  "example": "25",
5210
5210
  "member": "uint64",
@@ -173,7 +173,7 @@ def doAgentTransferMoney(args, parsed_globals):
173
173
  FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
174
174
 
175
175
 
176
- def doDescribeRebateInfos(args, parsed_globals):
176
+ def doDescribeAgentDealsPriceDetailByDealName(args, parsed_globals):
177
177
  g_param = parse_global_arg(parsed_globals)
178
178
 
179
179
  if g_param[OptionsDefine.UseCVMRole.replace('-', '_')]:
@@ -202,11 +202,11 @@ def doDescribeRebateInfos(args, parsed_globals):
202
202
  client = mod.PartnersClient(cred, g_param[OptionsDefine.Region], profile)
203
203
  client._sdkVersion += ("_CLI_" + __version__)
204
204
  models = MODELS_MAP[g_param[OptionsDefine.Version]]
205
- model = models.DescribeRebateInfosRequest()
205
+ model = models.DescribeAgentDealsPriceDetailByDealNameRequest()
206
206
  model.from_json_string(json.dumps(args))
207
207
  start_time = time.time()
208
208
  while True:
209
- rsp = client.DescribeRebateInfos(model)
209
+ rsp = client.DescribeAgentDealsPriceDetailByDealName(model)
210
210
  result = rsp.to_json_string()
211
211
  try:
212
212
  json_obj = json.loads(result)
@@ -745,6 +745,58 @@ def doDescribeAgentAuditedClients(args, parsed_globals):
745
745
  FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
746
746
 
747
747
 
748
+ def doDescribeRebateInfos(args, parsed_globals):
749
+ g_param = parse_global_arg(parsed_globals)
750
+
751
+ if g_param[OptionsDefine.UseCVMRole.replace('-', '_')]:
752
+ cred = credential.CVMRoleCredential()
753
+ elif g_param[OptionsDefine.RoleArn.replace('-', '_')] and g_param[OptionsDefine.RoleSessionName.replace('-', '_')]:
754
+ cred = credential.STSAssumeRoleCredential(
755
+ g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.RoleArn.replace('-', '_')],
756
+ g_param[OptionsDefine.RoleSessionName.replace('-', '_')], endpoint=g_param["sts_cred_endpoint"]
757
+ )
758
+ elif os.getenv(OptionsDefine.ENV_TKE_REGION) and os.getenv(OptionsDefine.ENV_TKE_PROVIDER_ID) and os.getenv(OptionsDefine.ENV_TKE_WEB_IDENTITY_TOKEN_FILE) and os.getenv(OptionsDefine.ENV_TKE_ROLE_ARN):
759
+ cred = credential.DefaultTkeOIDCRoleArnProvider().get_credentials()
760
+ else:
761
+ cred = credential.Credential(
762
+ g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token]
763
+ )
764
+ http_profile = HttpProfile(
765
+ reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]),
766
+ reqMethod="POST",
767
+ endpoint=g_param[OptionsDefine.Endpoint],
768
+ proxy=g_param[OptionsDefine.HttpsProxy.replace('-', '_')]
769
+ )
770
+ profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256")
771
+ if g_param[OptionsDefine.Language]:
772
+ profile.language = g_param[OptionsDefine.Language]
773
+ mod = CLIENT_MAP[g_param[OptionsDefine.Version]]
774
+ client = mod.PartnersClient(cred, g_param[OptionsDefine.Region], profile)
775
+ client._sdkVersion += ("_CLI_" + __version__)
776
+ models = MODELS_MAP[g_param[OptionsDefine.Version]]
777
+ model = models.DescribeRebateInfosRequest()
778
+ model.from_json_string(json.dumps(args))
779
+ start_time = time.time()
780
+ while True:
781
+ rsp = client.DescribeRebateInfos(model)
782
+ result = rsp.to_json_string()
783
+ try:
784
+ json_obj = json.loads(result)
785
+ except TypeError as e:
786
+ json_obj = json.loads(result.decode('utf-8')) # python3.3
787
+ if not g_param[OptionsDefine.Waiter] or search(g_param['OptionsDefine.WaiterInfo']['expr'], json_obj) == g_param['OptionsDefine.WaiterInfo']['to']:
788
+ break
789
+ cur_time = time.time()
790
+ if cur_time - start_time >= g_param['OptionsDefine.WaiterInfo']['timeout']:
791
+ raise ClientError('Request timeout, wait `%s` to `%s` timeout, last request is %s' %
792
+ (g_param['OptionsDefine.WaiterInfo']['expr'], g_param['OptionsDefine.WaiterInfo']['to'],
793
+ search(g_param['OptionsDefine.WaiterInfo']['expr'], json_obj)))
794
+ else:
795
+ print('Inquiry result is %s.' % search(g_param['OptionsDefine.WaiterInfo']['expr'], json_obj))
796
+ time.sleep(g_param['OptionsDefine.WaiterInfo']['interval'])
797
+ FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
798
+
799
+
748
800
  def doDescribeClientJoinIncreaseList(args, parsed_globals):
749
801
  g_param = parse_global_arg(parsed_globals)
750
802
 
@@ -1175,7 +1227,7 @@ ACTION_MAP = {
1175
1227
  "AssignClientsToSales": doAssignClientsToSales,
1176
1228
  "DescribeAgentBills": doDescribeAgentBills,
1177
1229
  "AgentTransferMoney": doAgentTransferMoney,
1178
- "DescribeRebateInfos": doDescribeRebateInfos,
1230
+ "DescribeAgentDealsPriceDetailByDealName": doDescribeAgentDealsPriceDetailByDealName,
1179
1231
  "RemovePayRelationForClient": doRemovePayRelationForClient,
1180
1232
  "ModifyClientRemark": doModifyClientRemark,
1181
1233
  "DescribeAgentClientGrade": doDescribeAgentClientGrade,
@@ -1186,6 +1238,7 @@ ACTION_MAP = {
1186
1238
  "DescribeClientSwitchTraTaskInfo": doDescribeClientSwitchTraTaskInfo,
1187
1239
  "DescribeAgentPayDealsV2": doDescribeAgentPayDealsV2,
1188
1240
  "DescribeAgentAuditedClients": doDescribeAgentAuditedClients,
1241
+ "DescribeRebateInfos": doDescribeRebateInfos,
1189
1242
  "DescribeClientJoinIncreaseList": doDescribeClientJoinIncreaseList,
1190
1243
  "DescribeAgentSelfPayDealsV2": doDescribeAgentSelfPayDealsV2,
1191
1244
  "DescribeAgentRelateBigDealIds": doDescribeAgentRelateBigDealIds,