tccli 3.0.1215.1__py2.py3-none-any.whl → 3.0.1217.1__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (282) hide show
  1. tccli/__init__.py +1 -1
  2. tccli/argparser.py +1 -1
  3. tccli/command.py +2 -2
  4. tccli/configure.py +46 -1
  5. tccli/credentials.py +25 -0
  6. tccli/main.py +6 -2
  7. tccli/plugins/sso/__init__.py +61 -0
  8. tccli/plugins/sso/configs.py +4 -0
  9. tccli/plugins/sso/configure.py +45 -0
  10. tccli/plugins/sso/login.py +144 -0
  11. tccli/plugins/sso/logout.py +21 -0
  12. tccli/plugins/sso/terminal.py +161 -0
  13. tccli/plugins/sso/texts.py +40 -0
  14. tccli/services/__init__.py +6 -3
  15. tccli/services/acp/v20220105/api.json +7 -7
  16. tccli/services/acp/v20220105/examples.json +2 -2
  17. tccli/services/aiart/v20221229/api.json +29 -29
  18. tccli/services/aiart/v20221229/examples.json +8 -8
  19. tccli/services/apigateway/v20180808/api.json +18 -17
  20. tccli/services/apigateway/v20180808/examples.json +12 -12
  21. tccli/services/apm/v20210622/api.json +118 -4
  22. tccli/services/asr/v20190614/api.json +21 -20
  23. tccli/services/asr/v20190614/examples.json +13 -13
  24. tccli/services/autoscaling/v20180419/api.json +371 -309
  25. tccli/services/autoscaling/v20180419/examples.json +17 -17
  26. tccli/services/batch/v20170312/api.json +7 -7
  27. tccli/services/bda/v20200324/api.json +39 -31
  28. tccli/services/bda/v20200324/examples.json +9 -9
  29. tccli/services/bh/__init__.py +4 -0
  30. tccli/services/bh/bh_client.py +3428 -0
  31. tccli/services/bh/v20230418/api.json +8180 -0
  32. tccli/services/bh/v20230418/examples.json +519 -0
  33. tccli/services/bi/v20220105/api.json +80 -4
  34. tccli/services/bi/v20220105/examples.json +1 -1
  35. tccli/services/billing/billing_client.py +53 -0
  36. tccli/services/billing/v20180709/api.json +330 -24
  37. tccli/services/billing/v20180709/examples.json +8 -0
  38. tccli/services/bsca/v20210811/api.json +223 -18
  39. tccli/services/bsca/v20210811/examples.json +4 -4
  40. tccli/services/btoe/v20210514/api.json +4 -4
  41. tccli/services/btoe/v20210514/examples.json +2 -2
  42. tccli/services/ca/v20230228/api.json +60 -0
  43. tccli/services/cam/v20190116/api.json +11 -11
  44. tccli/services/cat/v20180409/api.json +9 -0
  45. tccli/services/cbs/v20170312/api.json +200 -188
  46. tccli/services/cbs/v20170312/examples.json +4 -4
  47. tccli/services/ccc/ccc_client.py +53 -0
  48. tccli/services/ccc/v20200210/api.json +541 -325
  49. tccli/services/ccc/v20200210/examples.json +26 -18
  50. tccli/services/cdb/cdb_client.py +13 -13
  51. tccli/services/cdb/v20170320/api.json +308 -274
  52. tccli/services/cdb/v20170320/examples.json +38 -38
  53. tccli/services/cdc/v20201214/api.json +283 -270
  54. tccli/services/cdc/v20201214/examples.json +26 -26
  55. tccli/services/cdn/v20180606/api.json +5 -3
  56. tccli/services/cds/v20180420/api.json +82 -76
  57. tccli/services/cds/v20180420/examples.json +1 -1
  58. tccli/services/cdwch/v20200915/api.json +1 -1
  59. tccli/services/cdwdoris/v20211228/api.json +54 -4
  60. tccli/services/cdz/v20221123/api.json +41 -5
  61. tccli/services/cfg/v20210820/api.json +31 -0
  62. tccli/services/cfs/v20190719/api.json +89 -1
  63. tccli/services/cfs/v20190719/examples.json +1 -1
  64. tccli/services/cfw/cfw_client.py +0 -53
  65. tccli/services/cfw/v20190904/api.json +1895 -2011
  66. tccli/services/cfw/v20190904/examples.json +175 -171
  67. tccli/services/ciam/v20220331/api.json +316 -315
  68. tccli/services/ciam/v20220331/examples.json +49 -49
  69. tccli/services/ckafka/v20190819/api.json +104 -75
  70. tccli/services/clb/v20180317/api.json +48 -26
  71. tccli/services/clb/v20180317/examples.json +1 -1
  72. tccli/services/cloudapp/v20220530/api.json +5 -1
  73. tccli/services/cloudaudit/cloudaudit_client.py +30 -30
  74. tccli/services/cloudaudit/v20190319/api.json +254 -211
  75. tccli/services/cloudaudit/v20190319/examples.json +19 -19
  76. tccli/services/cloudstudio/v20230508/api.json +38 -37
  77. tccli/services/cloudstudio/v20230508/examples.json +4 -4
  78. tccli/services/cls/cls_client.py +216 -4
  79. tccli/services/cls/v20201016/api.json +935 -147
  80. tccli/services/cls/v20201016/examples.json +43 -5
  81. tccli/services/csip/v20221121/api.json +2566 -2386
  82. tccli/services/csip/v20221121/examples.json +108 -108
  83. tccli/services/cvm/v20170312/api.json +191 -112
  84. tccli/services/cvm/v20170312/examples.json +2 -2
  85. tccli/services/cwp/cwp_client.py +4 -110
  86. tccli/services/cwp/v20180228/api.json +6498 -6252
  87. tccli/services/cwp/v20180228/examples.json +372 -412
  88. tccli/services/cynosdb/v20190107/api.json +170 -110
  89. tccli/services/cynosdb/v20190107/examples.json +91 -91
  90. tccli/services/dasb/v20191018/api.json +859 -637
  91. tccli/services/dasb/v20191018/examples.json +101 -101
  92. tccli/services/dcdb/dcdb_client.py +114 -61
  93. tccli/services/dcdb/v20180411/api.json +141 -7
  94. tccli/services/dcdb/v20180411/examples.json +32 -0
  95. tccli/services/dlc/v20210125/api.json +21 -11
  96. tccli/services/dnspod/dnspod_client.py +417 -46
  97. tccli/services/dnspod/v20210323/api.json +751 -30
  98. tccli/services/dnspod/v20210323/examples.json +62 -0
  99. tccli/services/domain/v20180808/api.json +3 -3
  100. tccli/services/domain/v20180808/examples.json +3 -3
  101. tccli/services/dts/v20211206/api.json +4 -4
  102. tccli/services/eb/v20210416/api.json +15 -15
  103. tccli/services/eb/v20210416/examples.json +1 -1
  104. tccli/services/ecm/v20190719/api.json +2 -2
  105. tccli/services/emr/v20190103/api.json +339 -114
  106. tccli/services/emr/v20190103/examples.json +64 -82
  107. tccli/services/es/es_client.py +249 -37
  108. tccli/services/es/v20180416/api.json +550 -0
  109. tccli/services/es/v20180416/examples.json +33 -1
  110. tccli/services/ess/ess_client.py +53 -0
  111. tccli/services/ess/v20201111/api.json +192 -38
  112. tccli/services/ess/v20201111/examples.json +35 -9
  113. tccli/services/essbasic/essbasic_client.py +106 -0
  114. tccli/services/essbasic/v20210526/api.json +287 -60
  115. tccli/services/essbasic/v20210526/examples.json +58 -18
  116. tccli/services/facefusion/v20181201/api.json +47 -45
  117. tccli/services/facefusion/v20181201/examples.json +2 -2
  118. tccli/services/facefusion/v20220927/api.json +54 -48
  119. tccli/services/facefusion/v20220927/examples.json +5 -5
  120. tccli/services/faceid/v20180301/api.json +497 -496
  121. tccli/services/faceid/v20180301/examples.json +219 -101
  122. tccli/services/fmu/v20191213/api.json +59 -67
  123. tccli/services/fmu/v20191213/examples.json +22 -22
  124. tccli/services/ft/v20200304/api.json +53 -57
  125. tccli/services/ft/v20200304/examples.json +14 -14
  126. tccli/services/gaap/v20180529/api.json +44 -26
  127. tccli/services/gaap/v20180529/examples.json +24 -30
  128. tccli/services/gme/v20180711/api.json +21 -11
  129. tccli/services/gme/v20180711/examples.json +1 -1
  130. tccli/services/hai/v20230812/api.json +116 -9
  131. tccli/services/hai/v20230812/examples.json +4 -4
  132. tccli/services/hunyuan/hunyuan_client.py +436 -12
  133. tccli/services/hunyuan/v20230901/api.json +1482 -118
  134. tccli/services/hunyuan/v20230901/examples.json +82 -18
  135. tccli/services/iai/v20180301/api.json +23 -19
  136. tccli/services/iai/v20180301/examples.json +2 -2
  137. tccli/services/iai/v20200303/api.json +530 -511
  138. tccli/services/iai/v20200303/examples.json +116 -86
  139. tccli/services/ig/__init__.py +4 -0
  140. tccli/services/ig/ig_client.py +195 -0
  141. tccli/services/ig/v20210518/api.json +83 -0
  142. tccli/services/ig/v20210518/examples.json +13 -0
  143. tccli/services/ioa/ioa_client.py +53 -0
  144. tccli/services/ioa/v20220601/api.json +662 -413
  145. tccli/services/ioa/v20220601/examples.json +24 -10
  146. tccli/services/iotexplorer/v20190423/api.json +73 -13
  147. tccli/services/iotexplorer/v20190423/examples.json +3 -3
  148. tccli/services/iotvideo/iotvideo_client.py +106 -0
  149. tccli/services/iotvideo/v20191126/api.json +256 -24
  150. tccli/services/iotvideo/v20191126/examples.json +19 -3
  151. tccli/services/iotvideo/v20201215/api.json +1 -1
  152. tccli/services/iotvideo/v20201215/examples.json +1 -1
  153. tccli/services/iotvideo/v20211125/api.json +1 -1
  154. tccli/services/iotvideo/v20211125/examples.json +2 -2
  155. tccli/services/iss/iss_client.py +69 -122
  156. tccli/services/iss/v20230517/api.json +10 -54
  157. tccli/services/iss/v20230517/examples.json +0 -14
  158. tccli/services/kms/v20190118/api.json +301 -268
  159. tccli/services/kms/v20190118/examples.json +45 -51
  160. tccli/services/lcic/lcic_client.py +159 -0
  161. tccli/services/lcic/v20220817/api.json +273 -1
  162. tccli/services/lcic/v20220817/examples.json +24 -0
  163. tccli/services/lighthouse/v20200324/api.json +56 -0
  164. tccli/services/live/live_client.py +159 -0
  165. tccli/services/live/v20180801/api.json +279 -9
  166. tccli/services/live/v20180801/examples.json +24 -0
  167. tccli/services/lke/v20231130/api.json +17 -17
  168. tccli/services/lke/v20231130/examples.json +19 -25
  169. tccli/services/mariadb/v20170312/api.json +7 -7
  170. tccli/services/market/v20191010/api.json +3 -3
  171. tccli/services/market/v20191010/examples.json +2 -2
  172. tccli/services/mmps/v20200710/api.json +47 -47
  173. tccli/services/mmps/v20200710/examples.json +3 -3
  174. tccli/services/mongodb/v20190725/api.json +10 -12
  175. tccli/services/monitor/v20180724/api.json +46 -19
  176. tccli/services/mps/v20190612/api.json +282 -5
  177. tccli/services/mps/v20190612/examples.json +25 -1
  178. tccli/services/mqtt/v20240516/api.json +2 -2
  179. tccli/services/mrs/v20200910/api.json +72 -34
  180. tccli/services/mrs/v20200910/examples.json +2 -2
  181. tccli/services/ms/v20180408/api.json +535 -506
  182. tccli/services/ms/v20180408/examples.json +25 -25
  183. tccli/services/oceanus/v20190422/api.json +130 -0
  184. tccli/services/ocr/ocr_client.py +232 -20
  185. tccli/services/ocr/v20181119/api.json +2263 -758
  186. tccli/services/ocr/v20181119/examples.json +200 -180
  187. tccli/services/omics/v20221128/api.json +614 -553
  188. tccli/services/omics/v20221128/examples.json +9 -9
  189. tccli/services/organization/organization_client.py +352 -34
  190. tccli/services/organization/v20210331/api.json +464 -4
  191. tccli/services/organization/v20210331/examples.json +49 -1
  192. tccli/services/partners/v20180321/api.json +244 -234
  193. tccli/services/partners/v20180321/examples.json +19 -19
  194. tccli/services/privatedns/privatedns_client.py +428 -4
  195. tccli/services/privatedns/v20201028/api.json +815 -11
  196. tccli/services/privatedns/v20201028/examples.json +64 -0
  197. tccli/services/pts/v20210728/api.json +18 -0
  198. tccli/services/pts/v20210728/examples.json +1 -1
  199. tccli/services/rce/rce_client.py +53 -0
  200. tccli/services/rce/v20201103/api.json +146 -0
  201. tccli/services/rce/v20201103/examples.json +8 -0
  202. tccli/services/redis/v20180412/api.json +42 -42
  203. tccli/services/redis/v20180412/examples.json +19 -19
  204. tccli/services/region/v20220627/api.json +1 -1
  205. tccli/services/rum/v20210622/api.json +9 -0
  206. tccli/services/scf/scf_client.py +269 -4
  207. tccli/services/scf/v20180416/api.json +569 -15
  208. tccli/services/scf/v20180416/examples.json +47 -1
  209. tccli/services/smop/v20201203/api.json +46 -42
  210. tccli/services/smop/v20201203/examples.json +2 -2
  211. tccli/services/soe/v20180724/api.json +10 -10
  212. tccli/services/sqlserver/v20180328/api.json +21 -8
  213. tccli/services/sqlserver/v20180328/examples.json +5 -5
  214. tccli/services/ssl/v20191205/api.json +98 -5
  215. tccli/services/ssm/v20190923/api.json +292 -231
  216. tccli/services/ssm/v20190923/examples.json +42 -42
  217. tccli/services/tat/v20201028/api.json +124 -122
  218. tccli/services/tat/v20201028/examples.json +24 -30
  219. tccli/services/tchd/v20230306/api.json +5 -5
  220. tccli/services/tchd/v20230306/examples.json +3 -3
  221. tccli/services/tcr/v20190924/api.json +1 -1
  222. tccli/services/tcr/v20190924/examples.json +1 -1
  223. tccli/services/tcss/v20201101/api.json +1984 -1437
  224. tccli/services/tcss/v20201101/examples.json +350 -368
  225. tccli/services/tdmq/v20200217/api.json +603 -464
  226. tccli/services/tdmq/v20200217/examples.json +105 -105
  227. tccli/services/tds/v20220801/api.json +4 -4
  228. tccli/services/tem/v20210701/api.json +429 -372
  229. tccli/services/tem/v20210701/examples.json +85 -85
  230. tccli/services/teo/teo_client.py +277 -12
  231. tccli/services/teo/v20220901/api.json +1029 -124
  232. tccli/services/teo/v20220901/examples.json +84 -8
  233. tccli/services/thpc/v20230321/api.json +5 -5
  234. tccli/services/tke/tke_client.py +270 -58
  235. tccli/services/tke/v20180525/api.json +79 -27
  236. tccli/services/tke/v20180525/examples.json +9 -1
  237. tccli/services/tke/v20220501/api.json +176 -0
  238. tccli/services/tke/v20220501/examples.json +24 -0
  239. tccli/services/tms/tms_client.py +4 -57
  240. tccli/services/tms/v20201229/api.json +0 -354
  241. tccli/services/tms/v20201229/examples.json +0 -8
  242. tccli/services/tmt/v20180321/api.json +38 -8
  243. tccli/services/trp/v20210515/api.json +86 -74
  244. tccli/services/trp/v20210515/examples.json +65 -65
  245. tccli/services/trro/v20220325/api.json +72 -71
  246. tccli/services/trro/v20220325/examples.json +8 -8
  247. tccli/services/trtc/trtc_client.py +8 -61
  248. tccli/services/trtc/v20190722/api.json +293 -52
  249. tccli/services/trtc/v20190722/examples.json +3 -11
  250. tccli/services/tse/tse_client.py +110 -4
  251. tccli/services/tse/v20201207/api.json +122 -7
  252. tccli/services/tse/v20201207/examples.json +25 -9
  253. tccli/services/vclm/v20240523/api.json +225 -82
  254. tccli/services/vclm/v20240523/examples.json +13 -19
  255. tccli/services/vod/v20180717/api.json +431 -4
  256. tccli/services/vod/v20180717/examples.json +25 -5
  257. tccli/services/vod/v20240718/api.json +11 -11
  258. tccli/services/vod/v20240718/examples.json +4 -4
  259. tccli/services/vod/vod_client.py +53 -0
  260. tccli/services/vpc/v20170312/api.json +1195 -892
  261. tccli/services/vpc/v20170312/examples.json +84 -68
  262. tccli/services/vpc/vpc_client.py +168 -62
  263. tccli/services/waf/v20180125/api.json +2611 -2187
  264. tccli/services/waf/v20180125/examples.json +224 -284
  265. tccli/services/waf/waf_client.py +225 -119
  266. tccli/services/wav/v20210129/api.json +48 -48
  267. tccli/services/wav/v20210129/examples.json +4 -4
  268. tccli/services/wedata/v20210820/api.json +1595 -25
  269. tccli/services/wedata/v20210820/examples.json +44 -4
  270. tccli/services/wedata/wedata_client.py +265 -0
  271. tccli/services/weilingwith/v20230427/api.json +6 -6
  272. tccli/services/weilingwith/v20230427/examples.json +3 -3
  273. tccli/sso.py +229 -0
  274. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/METADATA +6 -2
  275. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/RECORD +278 -265
  276. tccli/services/cr/__init__.py +0 -4
  277. tccli/services/cr/cr_client.py +0 -1626
  278. tccli/services/cr/v20180321/api.json +0 -2829
  279. tccli/services/cr/v20180321/examples.json +0 -235
  280. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/WHEEL +0 -0
  281. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/entry_points.txt +0 -0
  282. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/license_files/LICENSE +0 -0
@@ -64,7 +64,7 @@
64
64
  "status": "online"
65
65
  },
66
66
  "DeleteGroup": {
67
- "document": "删除该人员库及包含的所有的人员。同时,人员对应的所有人脸信息将被删除。若某人员同时存在多个人员库中,该人员不会被删除,但属于该人员库中的自定义描述字段信息会被删除,属于其他人员库的自定义描述字段信息不受影响。\n",
67
+ "document": "删除该人员库及包含的所有的人员。同时,人员对应的所有人脸信息将被删除。若某人员同时存在多个人员库中,该人员不会被删除,但属于该人员库中的自定义描述字段信息会被删除,属于其他人员库的自定义描述字段信息不受影响。",
68
68
  "input": "DeleteGroupRequest",
69
69
  "name": "删除人员库",
70
70
  "output": "DeleteGroupResponse",
@@ -143,7 +143,7 @@
143
143
  "GetPersonList": {
144
144
  "document": "获取指定人员库中的人员列表。",
145
145
  "input": "GetPersonListRequest",
146
- "name": "获取人员列表",
146
+ "name": "获取指定人员列表",
147
147
  "output": "GetPersonListResponse",
148
148
  "status": "online"
149
149
  },
@@ -258,7 +258,7 @@
258
258
  "members": [
259
259
  {
260
260
  "disabled": false,
261
- "document": "检测模式。0 为检测所有出现的人脸, 1 为检测面积最大的人脸。 \n默认为 0。 \n最多返回 5 张人脸的五官定位(人脸关键点)具体信息。",
261
+ "document": "检测模式。\n- 取值范围:0 为检测所有出现的人脸, 1 为检测面积最大的人脸。 \n- 默认为 0。 \n- 最多返回 5 张人脸的五官定位(人脸关键点)具体信息。",
262
262
  "example": "0",
263
263
  "member": "uint64",
264
264
  "name": "Mode",
@@ -267,8 +267,8 @@
267
267
  },
268
268
  {
269
269
  "disabled": false,
270
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。 \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
271
- "example": "",
270
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。 \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
271
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
272
272
  "member": "string",
273
273
  "name": "Image",
274
274
  "required": false,
@@ -276,7 +276,7 @@
276
276
  },
277
277
  {
278
278
  "disabled": false,
279
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。 \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。 \n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
279
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。 \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。 \n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
280
280
  "example": "http://test.image.myqcloud.com/testA.jpg",
281
281
  "member": "string",
282
282
  "name": "Url",
@@ -294,7 +294,7 @@
294
294
  },
295
295
  {
296
296
  "disabled": false,
297
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
297
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
298
298
  "example": "0",
299
299
  "member": "int64",
300
300
  "name": "NeedRotateDetection",
@@ -361,7 +361,7 @@
361
361
  "members": [
362
362
  {
363
363
  "disabled": false,
364
- "document": "检测模式。0 为检测所有出现的人脸, 1 为检测面积最大的人脸。默认为 0。最多返回 10 张人脸的五官定位(人脸关键点)具体信息。",
364
+ "document": "检测模式。\n- 取值范围:\n0 为检测所有出现的人脸。\n1 为检测面积最大的人脸。\n- 默认为 0。\n- 最多返回 10 张人脸的五官定位(人脸关键点)具体信息。",
365
365
  "example": "0",
366
366
  "member": "uint64",
367
367
  "name": "Mode",
@@ -370,8 +370,8 @@
370
370
  },
371
371
  {
372
372
  "disabled": false,
373
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
374
- "example": "",
373
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
374
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
375
375
  "member": "string",
376
376
  "name": "Image",
377
377
  "required": false,
@@ -379,7 +379,7 @@
379
379
  },
380
380
  {
381
381
  "disabled": false,
382
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
382
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
383
383
  "example": "http://test.image.myqcloud.com/testA.jpg",
384
384
  "member": "string",
385
385
  "name": "Url",
@@ -388,7 +388,7 @@
388
388
  },
389
389
  {
390
390
  "disabled": false,
391
- "document": "人脸识别服务所用的算法模型版本。\n\n目前入参支持 “2.0”和“3.0“ 两个输入。\n\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
391
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
392
392
  "example": "3.0",
393
393
  "member": "string",
394
394
  "name": "FaceModelVersion",
@@ -397,7 +397,7 @@
397
397
  },
398
398
  {
399
399
  "disabled": false,
400
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
400
+ "document": "是否开启图片旋转识别支持。\n- 0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
401
401
  "example": "0",
402
402
  "member": "uint64",
403
403
  "name": "NeedRotateDetection",
@@ -464,8 +464,8 @@
464
464
  "members": [
465
465
  {
466
466
  "disabled": false,
467
- "document": "属性值",
468
- "example": "",
467
+ "document": "属性值。",
468
+ "example": "1",
469
469
  "member": "int64",
470
470
  "name": "Type",
471
471
  "output_required": true,
@@ -474,8 +474,8 @@
474
474
  },
475
475
  {
476
476
  "disabled": false,
477
- "document": "Type识别概率值,[0,1],代表判断正确的概率。",
478
- "example": "",
477
+ "document": "Type识别概率值。\n- 取值范围:[0,1],代表判断正确的概率。",
478
+ "example": "90",
479
479
  "member": "float",
480
480
  "name": "Probability",
481
481
  "output_required": true,
@@ -490,61 +490,61 @@
490
490
  "members": [
491
491
  {
492
492
  "disabled": false,
493
- "document": "人员ID",
493
+ "document": "人员ID",
494
494
  "example": "person1",
495
495
  "member": "string",
496
496
  "name": "PersonId",
497
- "required": true,
497
+ "output_required": true,
498
498
  "type": "string",
499
499
  "value_allowed_null": false
500
500
  },
501
501
  {
502
502
  "disabled": false,
503
- "document": "人脸ID,仅在SearchFaces/SearchFacesReturnsByGroup接口返回时有效。人员搜索类接口采用融合特征方式检索,该字段无意义",
503
+ "document": "人脸ID。\n- 仅在SearchFaces/SearchFacesReturnsByGroup接口返回时有效。\n- 人员搜索类接口采用融合特征方式检索,该字段无意义。",
504
504
  "example": "3820314501007076807",
505
505
  "member": "string",
506
506
  "name": "FaceId",
507
- "required": true,
507
+ "output_required": true,
508
508
  "type": "string",
509
509
  "value_allowed_null": false
510
510
  },
511
511
  {
512
512
  "disabled": false,
513
- "document": "候选者的匹配得分。 \n\n1万大小人脸底库下,误识率百分之一对应分数为70分,误识率千分之一对应分数为80分,误识率万分之一对应分数为90分;\n10万大小人脸底库下,误识率百分之一对应分数为80分,误识率千分之一对应分数为90分,误识率万分之一对应分数为100分;\n30万大小人脸底库下,误识率百分之一对应分数为85分,误识率千分之一对应分数为95分。\n\n一般80分左右可适用大部分场景,建议分数不要超过90分。您可以根据实际情况选择合适的分数。",
513
+ "document": "候选者的匹配得分。 \n- 1万大小人脸底库下,误识率百分之一对应分数为70分,误识率千分之一对应分数为80分,误识率万分之一对应分数为90分。\n- 10万大小人脸底库下,误识率百分之一对应分数为80分,误识率千分之一对应分数为90分,误识率万分之一对应分数为100分。\n- 30万大小人脸底库下,误识率百分之一对应分数为85分,误识率千分之一对应分数为95分。\n- 一般80分左右可适用大部分场景,建议分数不要超过90分。您可以根据实际情况选择合适的分数。",
514
514
  "example": "50",
515
515
  "member": "float",
516
516
  "name": "Score",
517
- "required": true,
517
+ "output_required": true,
518
518
  "type": "float",
519
519
  "value_allowed_null": false
520
520
  },
521
521
  {
522
522
  "disabled": false,
523
- "document": "人员名称\n注意:此字段可能返回 null,表示取不到有效值。",
524
- "example": "hello",
523
+ "document": "人员名称。\n注意:此字段可能返回 null,表示取不到有效值。",
524
+ "example": "韦小宝",
525
525
  "member": "string",
526
526
  "name": "PersonName",
527
- "required": true,
527
+ "output_required": true,
528
528
  "type": "string",
529
529
  "value_allowed_null": true
530
530
  },
531
531
  {
532
532
  "disabled": false,
533
- "document": "人员性别\n注意:此字段可能返回 null,表示取不到有效值。",
533
+ "document": "人员性别。\n注意:此字段可能返回 null,表示取不到有效值。",
534
534
  "example": "0",
535
535
  "member": "int64",
536
536
  "name": "Gender",
537
- "required": true,
537
+ "output_required": true,
538
538
  "type": "int",
539
539
  "value_allowed_null": true
540
540
  },
541
541
  {
542
542
  "disabled": false,
543
- "document": "包含此人员的人员库及描述字段内容列表\n注意:此字段可能返回 null,表示取不到有效值。",
543
+ "document": "包含此人员的人员库及描述字段内容列表。\n注意:此字段可能返回 null,表示取不到有效值。",
544
544
  "example": "无",
545
545
  "member": "PersonGroupInfo",
546
546
  "name": "PersonGroupInfos",
547
- "required": true,
547
+ "output_required": true,
548
548
  "type": "list",
549
549
  "value_allowed_null": true
550
550
  }
@@ -556,8 +556,8 @@
556
556
  "members": [
557
557
  {
558
558
  "disabled": false,
559
- "document": "A 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中置信度最高的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
560
- "example": "",
559
+ "document": "A 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中置信度最高的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
560
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
561
561
  "member": "string",
562
562
  "name": "ImageA",
563
563
  "required": false,
@@ -565,8 +565,8 @@
565
565
  },
566
566
  {
567
567
  "disabled": false,
568
- "document": "B 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中置信度最高的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
569
- "example": "",
568
+ "document": "B 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中置信度最高的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
569
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
570
570
  "member": "string",
571
571
  "name": "ImageB",
572
572
  "required": false,
@@ -574,7 +574,7 @@
574
574
  },
575
575
  {
576
576
  "disabled": false,
577
- "document": "A 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nA 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
577
+ "document": "A 图片的 Url。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- A 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
578
578
  "example": "http://test.image.myqcloud.com/testA.jpg",
579
579
  "member": "string",
580
580
  "name": "UrlA",
@@ -583,7 +583,7 @@
583
583
  },
584
584
  {
585
585
  "disabled": false,
586
- "document": "B 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nB 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
586
+ "document": "B 图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- B 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
587
587
  "example": "http://test.image.myqcloud.com/testB.jpg",
588
588
  "member": "string",
589
589
  "name": "UrlB",
@@ -592,7 +592,7 @@
592
592
  },
593
593
  {
594
594
  "disabled": false,
595
- "document": "人脸识别服务所用的算法模型版本。\n\n目前入参支持 “2.0”和“3.0“ 两个输入。\n\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
595
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
596
596
  "example": "3.0",
597
597
  "member": "string",
598
598
  "name": "FaceModelVersion",
@@ -601,7 +601,7 @@
601
601
  },
602
602
  {
603
603
  "disabled": false,
604
- "document": "图片质量控制。 \n0: 不进行控制; \n1: 较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多,在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
604
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1: 较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多,在某一维度上存在轻微问题; \n默认 0。 \n\n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
605
605
  "example": "0",
606
606
  "member": "uint64",
607
607
  "name": "QualityControl",
@@ -610,7 +610,7 @@
610
610
  },
611
611
  {
612
612
  "disabled": false,
613
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
613
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
614
614
  "example": "0",
615
615
  "member": "uint64",
616
616
  "name": "NeedRotateDetection",
@@ -625,7 +625,7 @@
625
625
  "members": [
626
626
  {
627
627
  "disabled": false,
628
- "document": "两张图片中人脸的相似度分数。\n不同算法版本返回的相似度分数不同。 \n若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
628
+ "document": "两张图片中人脸的相似度分数。\n- 不同算法版本返回的相似度分数不同。 \n- 若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n- 2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n- 若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
629
629
  "example": "0.999",
630
630
  "member": "float",
631
631
  "name": "Score",
@@ -657,8 +657,8 @@
657
657
  "members": [
658
658
  {
659
659
  "disabled": false,
660
- "document": "A 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
661
- "example": "XyE7l...",
660
+ "document": "A 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
661
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
662
662
  "member": "string",
663
663
  "name": "ImageA",
664
664
  "required": false,
@@ -666,8 +666,8 @@
666
666
  },
667
667
  {
668
668
  "disabled": false,
669
- "document": "B 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
670
- "example": "XyE7l...",
669
+ "document": "B 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
670
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
671
671
  "member": "string",
672
672
  "name": "ImageB",
673
673
  "required": false,
@@ -675,7 +675,7 @@
675
675
  },
676
676
  {
677
677
  "disabled": false,
678
- "document": "A 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nA 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
678
+ "document": "A 图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- A 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
679
679
  "example": "http://test.image.myqcloud.com/testA.jpg",
680
680
  "member": "string",
681
681
  "name": "UrlA",
@@ -684,7 +684,7 @@
684
684
  },
685
685
  {
686
686
  "disabled": false,
687
- "document": "B 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nB 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
687
+ "document": "B 图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- B 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
688
688
  "example": "http://test.image.myqcloud.com/testB.jpg",
689
689
  "member": "string",
690
690
  "name": "UrlB",
@@ -702,7 +702,7 @@
702
702
  },
703
703
  {
704
704
  "disabled": false,
705
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
705
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
706
706
  "example": "0",
707
707
  "member": "uint64",
708
708
  "name": "QualityControl",
@@ -717,7 +717,7 @@
717
717
  "members": [
718
718
  {
719
719
  "disabled": false,
720
- "document": "两张图片中人脸的相似度分数。\n不同算法版本返回的相似度分数不同。 \n若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
720
+ "document": "两张图片中人脸的相似度分数。\n- 不同算法版本返回的相似度分数不同。 \n- 若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n- 2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n- 若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
721
721
  "example": "99",
722
722
  "member": "float",
723
723
  "name": "Score",
@@ -749,8 +749,8 @@
749
749
  "members": [
750
750
  {
751
751
  "disabled": false,
752
- "document": "人员ID,取值为创建人员接口中的PersonId",
753
- "example": "",
752
+ "document": "人员ID,取值为创建人员接口中的PersonId",
753
+ "example": "1001",
754
754
  "member": "string",
755
755
  "name": "PersonId",
756
756
  "required": true,
@@ -758,8 +758,8 @@
758
758
  },
759
759
  {
760
760
  "disabled": false,
761
- "document": "待加入的人员库列表,数组元素取值为创建人员库接口中的GroupId",
762
- "example": "",
761
+ "document": "待加入的人员库列表,数组元素取值为创建人员库接口中的GroupId",
762
+ "example": "[\"TencentShenZhenEmployee\"]",
763
763
  "member": "string",
764
764
  "name": "GroupIds",
765
765
  "required": true,
@@ -773,19 +773,21 @@
773
773
  "members": [
774
774
  {
775
775
  "disabled": false,
776
- "document": "成功加入的人员库数量",
777
- "example": "",
776
+ "document": "成功加入的人员库数量。",
777
+ "example": "10",
778
778
  "member": "uint64",
779
779
  "name": "SucGroupNum",
780
+ "output_required": true,
780
781
  "type": "int",
781
782
  "value_allowed_null": false
782
783
  },
783
784
  {
784
785
  "disabled": false,
785
- "document": "成功加入的人员库列表",
786
- "example": "",
786
+ "document": "成功加入的人员库列表。",
787
+ "example": "[\"TencentShenZhenEmployee\"]",
787
788
  "member": "string",
788
789
  "name": "SucGroupIds",
790
+ "output_required": true,
789
791
  "type": "list",
790
792
  "value_allowed_null": false
791
793
  },
@@ -803,7 +805,7 @@
803
805
  "members": [
804
806
  {
805
807
  "disabled": false,
806
- "document": "人员ID,取值为创建人员接口中的PersonId",
808
+ "document": "人员ID,取值为创建人员接口中的PersonId",
807
809
  "example": "1001",
808
810
  "member": "string",
809
811
  "name": "PersonId",
@@ -812,8 +814,8 @@
812
814
  },
813
815
  {
814
816
  "disabled": false,
815
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n人员人脸总数量不可超过5张。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
816
- "example": "",
817
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 人员人脸总数量不可超过5张。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
818
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
817
819
  "member": "string",
818
820
  "name": "Images",
819
821
  "required": false,
@@ -821,8 +823,8 @@
821
823
  },
822
824
  {
823
825
  "disabled": false,
824
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。\n人员人脸总数量不可超过5张。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。",
825
- "example": "[\"http:\\/\\/test.image.myqcloud.com\\/testA.jpg\"]",
826
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。\n- 人员人脸总数量不可超过5张。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。",
827
+ "example": "[\"http://test.image.myqcloud.com/testA.jpg\"]",
826
828
  "member": "string",
827
829
  "name": "Urls",
828
830
  "required": false,
@@ -830,7 +832,7 @@
830
832
  },
831
833
  {
832
834
  "disabled": false,
833
- "document": "只有和该人员已有的人脸相似度超过FaceMatchThreshold值的人脸,才能增加人脸成功。 \n默认值60分。取值范围[0,100] 。",
835
+ "document": "只有和该人员已有的人脸相似度超过FaceMatchThreshold值的人脸,才能增加人脸成功。 \n- 默认值60分。\n- 取值范围:[0,100] 。",
834
836
  "example": "60",
835
837
  "member": "float",
836
838
  "name": "FaceMatchThreshold",
@@ -839,7 +841,7 @@
839
841
  },
840
842
  {
841
843
  "disabled": false,
842
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
844
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
843
845
  "example": "0",
844
846
  "member": "uint64",
845
847
  "name": "QualityControl",
@@ -848,7 +850,7 @@
848
850
  },
849
851
  {
850
852
  "disabled": false,
851
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
853
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
852
854
  "example": "0",
853
855
  "member": "uint64",
854
856
  "name": "NeedRotateDetection",
@@ -863,7 +865,7 @@
863
865
  "members": [
864
866
  {
865
867
  "disabled": false,
866
- "document": "加入成功的人脸数量",
868
+ "document": "加入成功的人脸数量。",
867
869
  "example": "1",
868
870
  "member": "uint64",
869
871
  "name": "SucFaceNum",
@@ -873,7 +875,7 @@
873
875
  },
874
876
  {
875
877
  "disabled": false,
876
- "document": "加入成功的人脸ID列表",
878
+ "document": "加入成功的人脸ID列表。",
877
879
  "example": "[\"2875186538564559728\"]",
878
880
  "member": "string",
879
881
  "name": "SucFaceIds",
@@ -883,7 +885,7 @@
883
885
  },
884
886
  {
885
887
  "disabled": false,
886
- "document": "每张人脸图片添加结果,-1101 代表未检测到人脸,-1102 代表图片解码失败,-1109 代表图片尺寸过大或者过小, \n-1601代表不符合图片质量控制要求, -1604 代表人脸相似度没有超过FaceMatchThreshold。 \n其他非 0 值代表算法服务异常。 \nRetCode的顺序和入参中 Images 或 Urls 的顺序一致。",
888
+ "document": "每张人脸图片添加结果。\n- 其他非 0 值代表算法服务异常,取值范围:\n-1101 代表未检测到人脸。\n-1102 代表图片解码失败。\n-1109 代表图片尺寸过大或者过小。\n-1601代表不符合图片质量控制要求。\n-1604 代表人脸相似度没有超过FaceMatchThreshold。 \n- RetCode的顺序和入参中 Images 或 Urls 的顺序一致。",
887
889
  "example": "[0]",
888
890
  "member": "int64",
889
891
  "name": "RetCode",
@@ -893,7 +895,7 @@
893
895
  },
894
896
  {
895
897
  "disabled": false,
896
- "document": "加入成功的人脸索引。索引顺序和入参中 Images 或 Urls 的顺序一致。 \n例如, Urls 中 有 3 个 url,第二个 url 失败,则 SucIndexes 值为 [0,2] 。",
898
+ "document": "加入成功的人脸索引。\n- 索引顺序和入参中 Images 或 Urls 的顺序一致。 \n- 例如, Urls 中 有 3 个 url,第二个 url 失败,则 SucIndexes 值为 [0,2] 。",
897
899
  "example": "[0]",
898
900
  "member": "uint64",
899
901
  "name": "SucIndexes",
@@ -953,8 +955,8 @@
953
955
  },
954
956
  {
955
957
  "disabled": false,
956
- "document": "人员库自定义描述字段,用于描述人员库中人员属性,该人员库下所有人员将拥有此描述字段。 \n最多可以创建5个。 \n每个自定义描述字段支持[1,30]个字符。 \n在同一人员库中自定义描述字段不可重复。 \n例: 设置某人员库“自定义描述字段”为[\"学号\",\"工号\",\"手机号\"], \n则该人员库下所有人员将拥有名为“学号”、“工号”、“手机号”的描述字段, \n可在对应人员描述字段中填写内容,登记该人员的学号、工号、手机号等信息。",
957
- "example": "[\"\\u4e8b\\u4e1a\\u7fa4\",\"\\u90e8\\u95e8\\u540d\",\"\\u7ec4\\u540d\"]",
958
+ "document": "人员库自定义描述字段,用于描述人员库中人员属性,该人员库下所有人员将拥有此描述字段。 \n- 最多可以创建5个。 \n- 每个自定义描述字段支持[1,30]个字符。 \n- 在同一人员库中自定义描述字段不可重复。 \n- 例: 设置某人员库“自定义描述字段”为[\"学号\",\"工号\",\"手机号\"], 则该人员库下所有人员将拥有名为“学号”、“工号”、“手机号”的描述字段, 可在对应人员描述字段中填写内容,登记该人员的学号、工号、手机号等信息。",
959
+ "example": "[\"学号\",\"工号\",\"手机号\"]",
958
960
  "member": "string",
959
961
  "name": "GroupExDescriptions",
960
962
  "required": false,
@@ -971,7 +973,7 @@
971
973
  },
972
974
  {
973
975
  "disabled": false,
974
- "document": "人脸识别服务所用的算法模型版本。\n目前入参支持 “2.0”和“3.0“ 两个输入。\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
976
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
975
977
  "example": "3.0",
976
978
  "member": "string",
977
979
  "name": "FaceModelVersion",
@@ -1008,8 +1010,8 @@
1008
1010
  "members": [
1009
1011
  {
1010
1012
  "disabled": false,
1011
- "document": "待加入的人员库ID,取值为创建人员库接口中的GroupId",
1012
- "example": "ZhuYuanDormitoryNo1",
1013
+ "document": "待加入的人员库ID,取值为创建人员库接口中的GroupId",
1014
+ "example": "78",
1013
1015
  "member": "string",
1014
1016
  "name": "GroupId",
1015
1017
  "required": true,
@@ -1018,7 +1020,7 @@
1018
1020
  {
1019
1021
  "disabled": false,
1020
1022
  "document": "人员名称。[1,60]个字符,可修改,可重复。",
1021
- "example": "Junly",
1023
+ "example": "韦小宝",
1022
1024
  "member": "string",
1023
1025
  "name": "PersonName",
1024
1026
  "required": true,
@@ -1026,7 +1028,7 @@
1026
1028
  },
1027
1029
  {
1028
1030
  "disabled": false,
1029
- "document": "人员ID,单个腾讯云账号下不可修改,不可重复。支持英文、数字、-%@#&_,长度限制64B。",
1031
+ "document": "人员ID。\n- 单个腾讯云账号下不可修改,不可重复。\n- 支持英文、数字、-%@#&_,长度限制64B。",
1030
1032
  "example": "2001",
1031
1033
  "member": "string",
1032
1034
  "name": "PersonId",
@@ -1035,7 +1037,7 @@
1035
1037
  },
1036
1038
  {
1037
1039
  "disabled": false,
1038
- "document": "0代表未填写,1代表男性,2代表女性。",
1040
+ "document": "性别。\n- 取值范围:0代表未填写,1代表男性,2代表女性。",
1039
1041
  "example": "1",
1040
1042
  "member": "int64",
1041
1043
  "name": "Gender",
@@ -1053,8 +1055,8 @@
1053
1055
  },
1054
1056
  {
1055
1057
  "disabled": false,
1056
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1057
- "example": "",
1058
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1059
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1058
1060
  "member": "string",
1059
1061
  "name": "Image",
1060
1062
  "required": false,
@@ -1062,7 +1064,7 @@
1062
1064
  },
1063
1065
  {
1064
1066
  "disabled": false,
1065
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1067
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1066
1068
  "example": "http://test.image.myqcloud.com/testB.jpg",
1067
1069
  "member": "string",
1068
1070
  "name": "Url",
@@ -1071,7 +1073,7 @@
1071
1073
  },
1072
1074
  {
1073
1075
  "disabled": false,
1074
- "document": "此参数用于控制判断 Image 或 Url 中图片包含的人脸,是否在人员库中已有疑似的同一人。 \n如果判断为已有相同人在人员库中,则不会创建新的人员,返回疑似同一人的人员信息。 \n如果判断没有,则完成创建人员。 \n0: 不进行判断,无论是否有疑似同一人在库中均完成入库; \n1:较低的同一人判断要求(百一误识别率); \n2: 一般的同一人判断要求(千一误识别率); \n3: 较高的同一人判断要求(万一误识别率); \n4: 很高的同一人判断要求(十万一误识别率)。 \n默认 0。 \n注: 要求越高,则疑似同一人的概率越小。不同要求对应的误识别率仅为参考值,您可以根据实际情况调整。",
1076
+ "document": "此参数用于控制判断 Image 或 Url 中图片包含的人脸,是否在人员库中已有疑似的同一人。 \n- 如果判断为已有相同人在人员库中,则不会创建新的人员,返回疑似同一人的人员信息。 \n- 如果判断没有,则完成创建人员。 \n- 取值范围:\n0: 不进行判断,无论是否有疑似同一人在库中均完成入库; \n1:较低的同一人判断要求(百一误识别率); \n2: 一般的同一人判断要求(千一误识别率); \n3: 较高的同一人判断要求(万一误识别率); \n4: 很高的同一人判断要求(十万一误识别率)。 \n- 默认 0。 \n- 注: 要求越高,则疑似同一人的概率越小。不同要求对应的误识别率仅为参考值,您可以根据实际情况调整。",
1075
1077
  "example": "0",
1076
1078
  "member": "uint64",
1077
1079
  "name": "UniquePersonControl",
@@ -1080,7 +1082,7 @@
1080
1082
  },
1081
1083
  {
1082
1084
  "disabled": false,
1083
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
1085
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
1084
1086
  "example": "0",
1085
1087
  "member": "uint64",
1086
1088
  "name": "QualityControl",
@@ -1089,7 +1091,7 @@
1089
1091
  },
1090
1092
  {
1091
1093
  "disabled": false,
1092
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1094
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1093
1095
  "example": "0",
1094
1096
  "member": "uint64",
1095
1097
  "name": "NeedRotateDetection",
@@ -1124,8 +1126,8 @@
1124
1126
  },
1125
1127
  {
1126
1128
  "disabled": false,
1127
- "document": "疑似同一人的PersonId。 \n当 UniquePersonControl 参数不为0且人员库中有疑似的同一人,此参数才有意义。",
1128
- "example": "",
1129
+ "document": "疑似同一人的PersonId。 \n- 当 UniquePersonControl 参数不为0且人员库中有疑似的同一人,此参数才有意义。",
1130
+ "example": "18",
1129
1131
  "member": "string",
1130
1132
  "name": "SimilarPersonId",
1131
1133
  "output_required": true,
@@ -1156,8 +1158,8 @@
1156
1158
  "members": [
1157
1159
  {
1158
1160
  "disabled": false,
1159
- "document": "人员ID,取值为创建人员接口中的PersonId",
1160
- "example": "",
1161
+ "document": "人员ID,取值为创建人员接口中的PersonId",
1162
+ "example": "5001",
1161
1163
  "member": "string",
1162
1164
  "name": "PersonId",
1163
1165
  "required": true,
@@ -1165,8 +1167,8 @@
1165
1167
  },
1166
1168
  {
1167
1169
  "disabled": false,
1168
- "document": "待删除的人脸ID列表,数组元素取值为增加人脸接口返回的FaceId",
1169
- "example": "",
1170
+ "document": "待删除的人脸ID列表,数组元素取值为增加人脸接口返回的FaceId",
1171
+ "example": "[\"2875186538564559728\"]",
1170
1172
  "member": "string",
1171
1173
  "name": "FaceIds",
1172
1174
  "required": true,
@@ -1180,19 +1182,21 @@
1180
1182
  "members": [
1181
1183
  {
1182
1184
  "disabled": false,
1183
- "document": "删除成功的人脸数量",
1184
- "example": "",
1185
+ "document": "删除成功的人脸数量.",
1186
+ "example": "1",
1185
1187
  "member": "uint64",
1186
1188
  "name": "SucDeletedNum",
1189
+ "output_required": true,
1187
1190
  "type": "int",
1188
1191
  "value_allowed_null": false
1189
1192
  },
1190
1193
  {
1191
1194
  "disabled": false,
1192
- "document": "删除成功的人脸ID列表",
1193
- "example": "",
1195
+ "document": "删除成功的人脸ID列表。",
1196
+ "example": "[\"2875186538564559728\"]",
1194
1197
  "member": "string",
1195
1198
  "name": "SucFaceIds",
1199
+ "output_required": true,
1196
1200
  "type": "list",
1197
1201
  "value_allowed_null": false
1198
1202
  },
@@ -1210,8 +1214,8 @@
1210
1214
  "members": [
1211
1215
  {
1212
1216
  "disabled": false,
1213
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
1214
- "example": "",
1217
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
1218
+ "example": "21",
1215
1219
  "member": "string",
1216
1220
  "name": "GroupId",
1217
1221
  "required": true,
@@ -1237,8 +1241,8 @@
1237
1241
  "members": [
1238
1242
  {
1239
1243
  "disabled": false,
1240
- "document": "人员ID,取值为创建人员接口中的PersonId",
1241
- "example": "",
1244
+ "document": "人员ID,取值为创建人员接口中的PersonId",
1245
+ "example": "3001",
1242
1246
  "member": "string",
1243
1247
  "name": "PersonId",
1244
1248
  "required": true,
@@ -1246,8 +1250,8 @@
1246
1250
  },
1247
1251
  {
1248
1252
  "disabled": false,
1249
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
1250
- "example": "",
1253
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
1254
+ "example": "ZhuYuanDormitoryNo1",
1251
1255
  "member": "string",
1252
1256
  "name": "GroupId",
1253
1257
  "required": true,
@@ -1273,8 +1277,8 @@
1273
1277
  "members": [
1274
1278
  {
1275
1279
  "disabled": false,
1276
- "document": "人员ID,取值为创建人员接口中的PersonId",
1277
- "example": "",
1280
+ "document": "人员ID,取值为创建人员接口中的PersonId",
1281
+ "example": "3001",
1278
1282
  "member": "string",
1279
1283
  "name": "PersonId",
1280
1284
  "required": true,
@@ -1301,180 +1305,180 @@
1301
1305
  {
1302
1306
  "disabled": false,
1303
1307
  "document": "人脸框左上角横坐标。",
1304
- "example": "",
1308
+ "example": "198",
1305
1309
  "member": "int64",
1306
1310
  "name": "X",
1307
- "required": true,
1311
+ "output_required": true,
1308
1312
  "type": "int",
1309
1313
  "value_allowed_null": false
1310
1314
  },
1311
1315
  {
1312
1316
  "disabled": false,
1313
1317
  "document": "人脸框左上角纵坐标。",
1314
- "example": "",
1318
+ "example": "254",
1315
1319
  "member": "int64",
1316
1320
  "name": "Y",
1317
- "required": true,
1321
+ "output_required": true,
1318
1322
  "type": "int",
1319
1323
  "value_allowed_null": false
1320
1324
  },
1321
1325
  {
1322
1326
  "disabled": false,
1323
1327
  "document": "人脸框宽度。",
1324
- "example": "",
1328
+ "example": "924",
1325
1329
  "member": "int64",
1326
1330
  "name": "Width",
1327
- "required": true,
1331
+ "output_required": true,
1328
1332
  "type": "int",
1329
1333
  "value_allowed_null": false
1330
1334
  },
1331
1335
  {
1332
1336
  "disabled": false,
1333
1337
  "document": "人脸框高度。",
1334
- "example": "",
1338
+ "example": "809",
1335
1339
  "member": "int64",
1336
1340
  "name": "Height",
1337
- "required": true,
1341
+ "output_required": true,
1338
1342
  "type": "int",
1339
1343
  "value_allowed_null": false
1340
1344
  },
1341
1345
  {
1342
1346
  "disabled": false,
1343
1347
  "document": "描述左侧眼睛轮廓的 XX 点。",
1344
- "example": "",
1348
+ "example": "",
1345
1349
  "member": "Point",
1346
1350
  "name": "LeftEye",
1347
- "required": true,
1351
+ "output_required": true,
1348
1352
  "type": "list",
1349
1353
  "value_allowed_null": false
1350
1354
  },
1351
1355
  {
1352
1356
  "disabled": false,
1353
1357
  "document": "描述右侧眼睛轮廓的 XX 点。",
1354
- "example": "",
1358
+ "example": "",
1355
1359
  "member": "Point",
1356
1360
  "name": "RightEye",
1357
- "required": true,
1361
+ "output_required": true,
1358
1362
  "type": "list",
1359
1363
  "value_allowed_null": false
1360
1364
  },
1361
1365
  {
1362
1366
  "disabled": false,
1363
1367
  "document": "描述左侧眉毛轮廓的 XX 点。",
1364
- "example": "",
1368
+ "example": "",
1365
1369
  "member": "Point",
1366
1370
  "name": "LeftEyeBrow",
1367
- "required": true,
1371
+ "output_required": true,
1368
1372
  "type": "list",
1369
1373
  "value_allowed_null": false
1370
1374
  },
1371
1375
  {
1372
1376
  "disabled": false,
1373
1377
  "document": "描述右侧眉毛轮廓的 XX 点。",
1374
- "example": "",
1378
+ "example": "",
1375
1379
  "member": "Point",
1376
1380
  "name": "RightEyeBrow",
1377
- "required": true,
1381
+ "output_required": true,
1378
1382
  "type": "list",
1379
1383
  "value_allowed_null": false
1380
1384
  },
1381
1385
  {
1382
1386
  "disabled": false,
1383
1387
  "document": "描述外嘴巴轮廓的 XX 点, 从左侧开始逆时针返回。",
1384
- "example": "",
1388
+ "example": "",
1385
1389
  "member": "Point",
1386
1390
  "name": "MouthOutside",
1387
- "required": true,
1391
+ "output_required": true,
1388
1392
  "type": "list",
1389
1393
  "value_allowed_null": false
1390
1394
  },
1391
1395
  {
1392
1396
  "disabled": false,
1393
1397
  "document": "描述内嘴巴轮廓的 XX 点,从左侧开始逆时针返回。",
1394
- "example": "",
1398
+ "example": "",
1395
1399
  "member": "Point",
1396
1400
  "name": "MouthInside",
1397
- "required": true,
1401
+ "output_required": true,
1398
1402
  "type": "list",
1399
1403
  "value_allowed_null": false
1400
1404
  },
1401
1405
  {
1402
1406
  "disabled": false,
1403
1407
  "document": "描述鼻子轮廓的 XX 点。",
1404
- "example": "",
1408
+ "example": "",
1405
1409
  "member": "Point",
1406
1410
  "name": "Nose",
1407
- "required": true,
1411
+ "output_required": true,
1408
1412
  "type": "list",
1409
1413
  "value_allowed_null": false
1410
1414
  },
1411
1415
  {
1412
1416
  "disabled": false,
1413
1417
  "document": "左瞳孔轮廓的 XX 个点。",
1414
- "example": "",
1418
+ "example": "",
1415
1419
  "member": "Point",
1416
1420
  "name": "LeftPupil",
1417
- "required": true,
1421
+ "output_required": true,
1418
1422
  "type": "list",
1419
1423
  "value_allowed_null": false
1420
1424
  },
1421
1425
  {
1422
1426
  "disabled": false,
1423
1427
  "document": "右瞳孔轮廓的 XX 个点。",
1424
- "example": "",
1428
+ "example": "",
1425
1429
  "member": "Point",
1426
1430
  "name": "RightPupil",
1427
- "required": true,
1431
+ "output_required": true,
1428
1432
  "type": "list",
1429
1433
  "value_allowed_null": false
1430
1434
  },
1431
1435
  {
1432
1436
  "disabled": false,
1433
1437
  "document": "中轴线轮廓的 XX 个点。",
1434
- "example": "",
1438
+ "example": "",
1435
1439
  "member": "Point",
1436
1440
  "name": "CentralAxis",
1437
- "required": true,
1441
+ "output_required": true,
1438
1442
  "type": "list",
1439
1443
  "value_allowed_null": false
1440
1444
  },
1441
1445
  {
1442
1446
  "disabled": false,
1443
1447
  "document": "下巴轮廓的 XX 个点。",
1444
- "example": "",
1448
+ "example": "",
1445
1449
  "member": "Point",
1446
1450
  "name": "Chin",
1447
- "required": true,
1451
+ "output_required": true,
1448
1452
  "type": "list",
1449
1453
  "value_allowed_null": false
1450
1454
  },
1451
1455
  {
1452
1456
  "disabled": false,
1453
1457
  "document": "左眼袋的 XX 个点。",
1454
- "example": "",
1458
+ "example": "",
1455
1459
  "member": "Point",
1456
1460
  "name": "LeftEyeBags",
1457
- "required": true,
1461
+ "output_required": true,
1458
1462
  "type": "list",
1459
1463
  "value_allowed_null": false
1460
1464
  },
1461
1465
  {
1462
1466
  "disabled": false,
1463
1467
  "document": "右眼袋的 XX 个点。",
1464
- "example": "",
1468
+ "example": "",
1465
1469
  "member": "Point",
1466
1470
  "name": "RightEyeBags",
1467
- "required": true,
1471
+ "output_required": true,
1468
1472
  "type": "list",
1469
1473
  "value_allowed_null": false
1470
1474
  },
1471
1475
  {
1472
1476
  "disabled": false,
1473
1477
  "document": "额头的 XX 个点。",
1474
- "example": "",
1478
+ "example": "",
1475
1479
  "member": "Point",
1476
1480
  "name": "Forehead",
1477
- "required": true,
1481
+ "output_required": true,
1478
1482
  "type": "list",
1479
1483
  "value_allowed_null": false
1480
1484
  }
@@ -1486,7 +1490,7 @@
1486
1490
  "members": [
1487
1491
  {
1488
1492
  "disabled": false,
1489
- "document": "最多处理的人脸数目。 \n默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1493
+ "document": "最多处理的人脸数目。 \n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n- 此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1490
1494
  "example": "1",
1491
1495
  "member": "uint64",
1492
1496
  "name": "MaxFaceNum",
@@ -1495,8 +1499,8 @@
1495
1499
  },
1496
1500
  {
1497
1501
  "disabled": false,
1498
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1499
- "example": "",
1502
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 \n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1503
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1500
1504
  "member": "string",
1501
1505
  "name": "Image",
1502
1506
  "required": false,
@@ -1504,7 +1508,7 @@
1504
1508
  },
1505
1509
  {
1506
1510
  "disabled": false,
1507
- "document": "图片的 Url 。 \n对应图片 base64 编码后大小不可超过5M。 \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。 \n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1511
+ "document": "图片的 Url 。 \n- 对应图片 base64 编码后大小不可超过5M。 \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。 \n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1508
1512
  "example": "http://test.image.myqcloud.com/testA.jpg",
1509
1513
  "member": "string",
1510
1514
  "name": "Url",
@@ -1513,7 +1517,7 @@
1513
1517
  },
1514
1518
  {
1515
1519
  "disabled": false,
1516
- "document": "是否返回年龄、性别、情绪等属性。 \n合法值为(大小写不敏感):None、Age、Beauty、Emotion、Eye、Eyebrow、 \nGender、Hair、Hat、Headpose、Mask、Mouth、Moustache、Nose、Shape、Skin、Smile。 \nNone为不需要返回。默认为 None。即FaceAttributesType属性为空时,各属性返回值为0。\n需要将属性组成一个用逗号分隔的字符串,属性之间的顺序没有要求。 \n关于各属性的详细描述,参见下文出参。 \n最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 AttributesInfo 不具备参考意义。",
1520
+ "document": "是否返回年龄、性别、情绪等属性。 \n- 合法值为(大小写不敏感):None、Age、Beauty、Emotion、Eye、Eyebrow、Gender、Hair、Hat、Headpose、Mask、Mouth、Moustache、Nose、Shape、Skin、Smile。 \n- None为不需要返回。\n- 默认为 None。即FaceAttributesType属性为空时,各属性返回值为0。\n- 需要将属性组成一个用逗号分隔的字符串,属性之间的顺序没有要求。 \n- 关于各属性的详细描述,参见下文出参。 \n- 最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 AttributesInfo 不具备参考意义。",
1517
1521
  "example": "eye",
1518
1522
  "member": "string",
1519
1523
  "name": "FaceAttributesType",
@@ -1522,7 +1526,7 @@
1522
1526
  },
1523
1527
  {
1524
1528
  "disabled": false,
1525
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1529
+ "document": "是否开启图片旋转识别支持。\n- 0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1526
1530
  "example": "0",
1527
1531
  "member": "uint64",
1528
1532
  "name": "NeedRotateDetection",
@@ -1598,7 +1602,7 @@
1598
1602
  "members": [
1599
1603
  {
1600
1604
  "disabled": false,
1601
- "document": "最多处理的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1605
+ "document": "最多处理的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n- 此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1602
1606
  "example": "1",
1603
1607
  "member": "uint64",
1604
1608
  "name": "MaxFaceNum",
@@ -1607,7 +1611,7 @@
1607
1611
  },
1608
1612
  {
1609
1613
  "disabled": false,
1610
- "document": "人脸长和宽的最小尺寸,单位为像素,低于MinFaceSize值的人脸不会被检测。\n只支持设置34和20,建议使用34。\n",
1614
+ "document": "人脸长和宽的最小尺寸,单位为像素,低于MinFaceSize值的人脸不会被检测。\n- 只支持设置34和20,建议使用34",
1611
1615
  "example": "34",
1612
1616
  "member": "uint64",
1613
1617
  "name": "MinFaceSize",
@@ -1616,8 +1620,8 @@
1616
1620
  },
1617
1621
  {
1618
1622
  "disabled": false,
1619
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1620
- "example": "",
1623
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1624
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1621
1625
  "member": "string",
1622
1626
  "name": "Image",
1623
1627
  "required": false,
@@ -1625,7 +1629,7 @@
1625
1629
  },
1626
1630
  {
1627
1631
  "disabled": false,
1628
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1632
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1629
1633
  "example": "https://test.image.myqcloud.com/testB.jpg",
1630
1634
  "member": "string",
1631
1635
  "name": "Url",
@@ -1634,7 +1638,7 @@
1634
1638
  },
1635
1639
  {
1636
1640
  "disabled": false,
1637
- "document": "是否需要返回人脸属性信息(FaceAttributesInfo)。0 为不需要返回,1 为需要返回。默认为 0。 \n非 1 值均视为不需要返回,此时 FaceAttributesInfo 不具备参考意义。 \n最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 FaceAttributesInfo 不具备参考意义。 \n提取人脸属性信息较为耗时,如不需要人脸属性信息,建议关闭此项功能,加快人脸检测速度。",
1641
+ "document": "是否需要返回人脸属性信息(FaceAttributesInfo)。\n- 0 为不需要返回,1 为需要返回。\n- 默认为 0。 \n- 非 1 值均视为不需要返回,此时 FaceAttributesInfo 不具备参考意义。 \n- 最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 FaceAttributesInfo 不具备参考意义。 \n- 提取人脸属性信息较为耗时,如不需要人脸属性信息,建议关闭此项功能,加快人脸检测速度。",
1638
1642
  "example": "0",
1639
1643
  "member": "uint64",
1640
1644
  "name": "NeedFaceAttributes",
@@ -1643,7 +1647,7 @@
1643
1647
  },
1644
1648
  {
1645
1649
  "disabled": false,
1646
- "document": "是否开启质量检测。0 为关闭,1 为开启。默认为 0。 \n非 1 值均视为不进行质量检测。\n最多返回面积最大的 30 张人脸质量分信息,超过 30 张人脸(第 31 张及以后的人脸)的 FaceQualityInfo不具备参考意义。 \n建议:人脸入库操作建议开启此功能。",
1650
+ "document": "是否开启质量检测。\n- 0 为关闭,1 为开启。\n- 默认为 0。 \n- 非 1 值均视为不进行质量检测。\n- 最多返回面积最大的 30 张人脸质量分信息,超过 30 张人脸(第 31 张及以后的人脸)的 FaceQualityInfo不具备参考意义。 \n- 建议:人脸入库操作建议开启此功能。",
1647
1651
  "example": "0",
1648
1652
  "member": "uint64",
1649
1653
  "name": "NeedQualityDetection",
@@ -1652,7 +1656,7 @@
1652
1656
  },
1653
1657
  {
1654
1658
  "disabled": false,
1655
- "document": "人脸识别服务所用的算法模型版本。\n目前入参支持 “2.0”和“3.0“ 两个输入。\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
1659
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
1656
1660
  "example": "3.0",
1657
1661
  "member": "string",
1658
1662
  "name": "FaceModelVersion",
@@ -1661,7 +1665,7 @@
1661
1665
  },
1662
1666
  {
1663
1667
  "disabled": false,
1664
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1668
+ "document": "是否开启图片旋转识别支持。\n- 0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1665
1669
  "example": "0",
1666
1670
  "member": "uint64",
1667
1671
  "name": "NeedRotateDetection",
@@ -1696,7 +1700,7 @@
1696
1700
  },
1697
1701
  {
1698
1702
  "disabled": false,
1699
- "document": "人脸信息列表。包含人脸坐标信息、属性信息(若需要)、质量分信息(若需要)。",
1703
+ "document": "人脸信息列表。\n- 包含人脸坐标信息、属性信息(若需要)、质量分信息(若需要)。",
1700
1704
  "example": "无",
1701
1705
  "member": "FaceInfo",
1702
1706
  "name": "FaceInfos",
@@ -1728,8 +1732,8 @@
1728
1732
  "members": [
1729
1733
  {
1730
1734
  "disabled": false,
1731
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 \n图片的宽高比请接近 3:4,手机拍摄比例最佳。\n人脸尺寸大于100X100像素。\n图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1732
- "example": "base64",
1735
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 \n- 图片的宽高比请接近 3:4,手机拍摄比例最佳。\n- 人脸尺寸大于100X100像素。\n- 图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1736
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1733
1737
  "member": "string",
1734
1738
  "name": "Image",
1735
1739
  "required": false,
@@ -1737,7 +1741,7 @@
1737
1741
  },
1738
1742
  {
1739
1743
  "disabled": false,
1740
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片的宽高比请接近 3:4,手机拍摄比例最佳。\n人脸尺寸大于100X100像素。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。非腾讯云存储的Url速度和稳定性可能受一定影响。\n图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1744
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片的宽高比请接近 3:4,手机拍摄比例最佳。\n- 人脸尺寸大于100X100像素。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1741
1745
  "example": "http://test.image.myqcloud.com/testA.jpg",
1742
1746
  "member": "string",
1743
1747
  "name": "Url",
@@ -1761,11 +1765,11 @@
1761
1765
  "members": [
1762
1766
  {
1763
1767
  "disabled": false,
1764
- "document": "活体打分,取值范围 [0,100],根据活体分数对应的阈值区间来判断是否为翻拍。目前阈值可分为[5,10,40,70,90],其中推荐阈值为40。",
1768
+ "document": "活体打分。\n- 取值范围 [0,100]。\n- 根据活体分数对应的阈值区间来判断是否为翻拍。\n- 目前阈值可分为[5,10,40,70,90],其中推荐阈值为40。",
1765
1769
  "example": "99",
1766
1770
  "member": "float",
1767
1771
  "name": "Score",
1768
- "required": true,
1772
+ "output_required": true,
1769
1773
  "type": "float",
1770
1774
  "value_allowed_null": false
1771
1775
  },
@@ -1775,7 +1779,7 @@
1775
1779
  "example": "3.0",
1776
1780
  "member": "string",
1777
1781
  "name": "FaceModelVersion",
1778
- "required": true,
1782
+ "output_required": true,
1779
1783
  "type": "string",
1780
1784
  "value_allowed_null": false
1781
1785
  },
@@ -1868,41 +1872,41 @@
1868
1872
  "members": [
1869
1873
  {
1870
1874
  "disabled": false,
1871
- "document": "识别是否佩戴眼镜。\nAttributeItem对应的Type为 —— 0:无眼镜,1:普通眼镜,2:墨镜",
1872
- "example": "",
1875
+ "document": "识别是否佩戴眼镜。\n- AttributeItem对应的Type为 —— 0:无眼镜,1:普通眼镜,2:墨镜",
1876
+ "example": "",
1873
1877
  "member": "AttributeItem",
1874
1878
  "name": "Glass",
1875
- "required": true,
1879
+ "output_required": true,
1876
1880
  "type": "object",
1877
1881
  "value_allowed_null": false
1878
1882
  },
1879
1883
  {
1880
1884
  "disabled": false,
1881
- "document": "识别眼睛的睁开、闭合状态。\nAttributeItem对应的Type为 —— 0:睁开,1:闭眼",
1882
- "example": "",
1885
+ "document": "识别眼睛的睁开、闭合状态。\n- AttributeItem对应的Type为 —— 0:睁开,1:闭眼",
1886
+ "example": "",
1883
1887
  "member": "AttributeItem",
1884
1888
  "name": "EyeOpen",
1885
- "required": true,
1889
+ "output_required": true,
1886
1890
  "type": "object",
1887
1891
  "value_allowed_null": false
1888
1892
  },
1889
1893
  {
1890
1894
  "disabled": false,
1891
- "document": "识别是否双眼皮。\nAttributeItem对应的Type为 —— 0:无,1:有。",
1892
- "example": "",
1895
+ "document": "识别是否双眼皮。\n- AttributeItem对应的Type为 —— 0:无,1:有。",
1896
+ "example": "",
1893
1897
  "member": "AttributeItem",
1894
1898
  "name": "EyelidType",
1895
- "required": true,
1899
+ "output_required": true,
1896
1900
  "type": "object",
1897
1901
  "value_allowed_null": false
1898
1902
  },
1899
1903
  {
1900
1904
  "disabled": false,
1901
- "document": "眼睛大小。\nAttributeItem对应的Type为 —— 0:小眼睛,1:普通眼睛,2:大眼睛。",
1902
- "example": "",
1905
+ "document": "眼睛大小。\n- AttributeItem对应的Type为 —— 0:小眼睛,1:普通眼睛,2:大眼睛。",
1906
+ "example": "",
1903
1907
  "member": "AttributeItem",
1904
1908
  "name": "EyeSize",
1905
- "required": true,
1909
+ "output_required": true,
1906
1910
  "type": "object",
1907
1911
  "value_allowed_null": false
1908
1912
  }
@@ -1914,31 +1918,31 @@
1914
1918
  "members": [
1915
1919
  {
1916
1920
  "disabled": false,
1917
- "document": "眉毛浓密。\nAttributeItem对应的Type为 —— 0:淡眉,1:浓眉。",
1918
- "example": "",
1921
+ "document": "眉毛浓密。\n- AttributeItem对应的Type为 —— 0:淡眉,1:浓眉。",
1922
+ "example": "",
1919
1923
  "member": "AttributeItem",
1920
1924
  "name": "EyebrowDensity",
1921
- "required": true,
1925
+ "output_required": true,
1922
1926
  "type": "object",
1923
1927
  "value_allowed_null": false
1924
1928
  },
1925
1929
  {
1926
1930
  "disabled": false,
1927
- "document": "眉毛弯曲。\nAttributeItem对应的Type为 —— 0:不弯,1:弯眉。",
1928
- "example": "",
1931
+ "document": "眉毛弯曲。\n- AttributeItem对应的Type为 —— 0:不弯,1:弯眉。",
1932
+ "example": "",
1929
1933
  "member": "AttributeItem",
1930
1934
  "name": "EyebrowCurve",
1931
- "required": true,
1935
+ "output_required": true,
1932
1936
  "type": "object",
1933
1937
  "value_allowed_null": false
1934
1938
  },
1935
1939
  {
1936
1940
  "disabled": false,
1937
- "document": "眉毛长短。\nAttributeItem对应的Type为 —— 0:短眉毛,1:长眉毛。",
1938
- "example": "",
1941
+ "document": "眉毛长短。\n- AttributeItem对应的Type为 —— 0:短眉毛,1:长眉毛。",
1942
+ "example": "",
1939
1943
  "member": "AttributeItem",
1940
1944
  "name": "EyebrowLength",
1941
- "required": true,
1945
+ "output_required": true,
1942
1946
  "type": "object",
1943
1947
  "value_allowed_null": false
1944
1948
  }
@@ -1950,8 +1954,8 @@
1950
1954
  "members": [
1951
1955
  {
1952
1956
  "disabled": false,
1953
- "document": "性别[0~49]为女性,[50,100]为男性,越接近0和100表示置信度越高。NeedFaceAttributes 不为 1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1954
- "example": "",
1957
+ "document": "性别。\n- 取值说明:[0~49]为女性,[50,100]为男性,越接近0和100表示置信度越高。\n- NeedFaceAttributes 不为 1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1958
+ "example": "40",
1955
1959
  "member": "int64",
1956
1960
  "name": "Gender",
1957
1961
  "output_required": true,
@@ -1960,8 +1964,8 @@
1960
1964
  },
1961
1965
  {
1962
1966
  "disabled": false,
1963
- "document": "年龄 [0~100]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1964
- "example": "",
1967
+ "document": "年龄 。\n- 取值范围:[0~100]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1968
+ "example": "39",
1965
1969
  "member": "int64",
1966
1970
  "name": "Age",
1967
1971
  "output_required": true,
@@ -1970,8 +1974,8 @@
1970
1974
  },
1971
1975
  {
1972
1976
  "disabled": false,
1973
- "document": "微笑[0(normal,正常)~100(laugh,大笑)]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1974
- "example": "",
1977
+ "document": "微笑。\n- 取值说明:[0(normal,正常)~100(laugh,大笑)]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1978
+ "example": "13",
1975
1979
  "member": "int64",
1976
1980
  "name": "Expression",
1977
1981
  "output_required": true,
@@ -1980,8 +1984,8 @@
1980
1984
  },
1981
1985
  {
1982
1986
  "disabled": false,
1983
- "document": "是否有眼镜 [true,false]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1984
- "example": "",
1987
+ "document": "是否有眼镜。\n- 取值范围: [true,false]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1988
+ "example": "true",
1985
1989
  "member": "bool",
1986
1990
  "name": "Glass",
1987
1991
  "output_required": true,
@@ -1990,8 +1994,8 @@
1990
1994
  },
1991
1995
  {
1992
1996
  "disabled": false,
1993
- "document": "上下偏移[-30,30],单位角度。NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n建议:人脸入库选择[-10,10]的图片。",
1994
- "example": "",
1997
+ "document": "上下偏移。\n- 取值范围:[-30,30],单位角度。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n- 建议:人脸入库选择[-10,10]的图片。",
1998
+ "example": "13",
1995
1999
  "member": "int64",
1996
2000
  "name": "Pitch",
1997
2001
  "output_required": true,
@@ -2000,8 +2004,8 @@
2000
2004
  },
2001
2005
  {
2002
2006
  "disabled": false,
2003
- "document": "左右偏移[-30,30],单位角度。 NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n建议:人脸入库选择[-10,10]的图片。",
2004
- "example": "",
2007
+ "document": "左右偏移。\n- 取值范围:[-30,30],单位角度。 \n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n- 建议:人脸入库选择[-10,10]的图片。",
2008
+ "example": "21",
2005
2009
  "member": "int64",
2006
2010
  "name": "Yaw",
2007
2011
  "output_required": true,
@@ -2010,8 +2014,8 @@
2010
2014
  },
2011
2015
  {
2012
2016
  "disabled": false,
2013
- "document": "平面旋转[-180,180],单位角度。 NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n建议:人脸入库选择[-20,20]的图片。",
2014
- "example": "",
2017
+ "document": "平面旋转。\n- 取值范围:[-180,180],单位角度。 \n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n- 建议:人脸入库选择[-20,20]的图片。",
2018
+ "example": "54",
2015
2019
  "member": "int64",
2016
2020
  "name": "Roll",
2017
2021
  "output_required": true,
@@ -2020,8 +2024,8 @@
2020
2024
  },
2021
2025
  {
2022
2026
  "disabled": false,
2023
- "document": "魅力[0~100]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2024
- "example": "",
2027
+ "document": "魅力。\n- 取值范围:[0~100]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2028
+ "example": "50",
2025
2029
  "member": "int64",
2026
2030
  "name": "Beauty",
2027
2031
  "output_required": true,
@@ -2030,8 +2034,8 @@
2030
2034
  },
2031
2035
  {
2032
2036
  "disabled": false,
2033
- "document": "是否有帽子 [true,false]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2034
- "example": "",
2037
+ "document": "是否有帽子。\n- 取值范围: [true,false]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2038
+ "example": "true",
2035
2039
  "member": "bool",
2036
2040
  "name": "Hat",
2037
2041
  "output_required": true,
@@ -2040,8 +2044,8 @@
2040
2044
  },
2041
2045
  {
2042
2046
  "disabled": false,
2043
- "document": "是否有口罩 [true,false]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2044
- "example": "",
2047
+ "document": "是否有口罩。\n- 取值范围: [true,false]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2048
+ "example": "false",
2045
2049
  "member": "bool",
2046
2050
  "name": "Mask",
2047
2051
  "output_required": true,
@@ -2050,7 +2054,7 @@
2050
2054
  },
2051
2055
  {
2052
2056
  "disabled": false,
2053
- "document": "头发信息,包含头发长度(length)、有无刘海(bang)、头发颜色(color)。NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2057
+ "document": "头发信息,包含头发长度(length)、有无刘海(bang)、头发颜色(color)。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2054
2058
  "example": "无",
2055
2059
  "member": "FaceHairAttributesInfo",
2056
2060
  "name": "Hair",
@@ -2060,8 +2064,8 @@
2060
2064
  },
2061
2065
  {
2062
2066
  "disabled": false,
2063
- "document": "双眼是否睁开 [true,false]。只要有超过一只眼睛闭眼,就返回falseNeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2064
- "example": "",
2067
+ "document": "双眼是否睁开。\n- 取值范围: [true,false]。\n- 只要有超过一只眼睛闭眼,就返回false。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2068
+ "example": "true",
2065
2069
  "member": "bool",
2066
2070
  "name": "EyeOpen",
2067
2071
  "output_required": true,
@@ -2076,8 +2080,8 @@
2076
2080
  "members": [
2077
2081
  {
2078
2082
  "disabled": false,
2079
- "document": "年龄 [0,65],其中65代表“65岁及以上”。 \nFaceAttributesType 不含Age 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2080
- "example": "",
2083
+ "document": "年龄。\n- 取值范围: [0,65],其中65代表“65岁及以上”。 \n- FaceAttributesType 不含Age 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2084
+ "example": "30",
2081
2085
  "member": "int64",
2082
2086
  "name": "Age",
2083
2087
  "output_required": true,
@@ -2086,7 +2090,7 @@
2086
2090
  },
2087
2091
  {
2088
2092
  "disabled": false,
2089
- "document": "美丑打分[0,100]。 \nFaceAttributesType 不含 Beauty 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2093
+ "document": "美丑打分。\n- 取值范围:[0,100]。 \n- FaceAttributesType 不含 Beauty 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2090
2094
  "example": "无",
2091
2095
  "member": "int64",
2092
2096
  "name": "Beauty",
@@ -2096,7 +2100,7 @@
2096
2100
  },
2097
2101
  {
2098
2102
  "disabled": false,
2099
- "document": "情绪,可识别自然、高兴、惊讶、生气、悲伤、厌恶、害怕。 \nAttributeItem对应的Type为 —— 0:自然,1:高兴,2:惊讶,3:生气,4:悲伤,5:厌恶,6:害怕\nFaceAttributesType 不含Emotion 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2103
+ "document": "情绪,可识别自然、高兴、惊讶、生气、悲伤、厌恶、害怕。 \n- AttributeItem对应的Type为 —— 0:自然,1:高兴,2:惊讶,3:生气,4:悲伤,5:厌恶,6:害怕。\n- FaceAttributesType 不含Emotion 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2100
2104
  "example": "无",
2101
2105
  "member": "AttributeItem",
2102
2106
  "name": "Emotion",
@@ -2106,7 +2110,7 @@
2106
2110
  },
2107
2111
  {
2108
2112
  "disabled": false,
2109
- "document": "眼睛相关信息,可识别是否戴眼镜、是否闭眼、是否双眼皮和眼睛大小。 \nFaceAttributesType 不含Eye 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2113
+ "document": "眼睛相关信息,可识别是否戴眼镜、是否闭眼、是否双眼皮和眼睛大小。 \n- FaceAttributesType 不含Eye 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2110
2114
  "example": "无",
2111
2115
  "member": "Eye",
2112
2116
  "name": "Eye",
@@ -2126,7 +2130,7 @@
2126
2130
  },
2127
2131
  {
2128
2132
  "disabled": false,
2129
- "document": "性别信息。 \nAttributeItem对应的Type为 —— \t0:男性,1:女性。\nFaceAttributesType 不含Gender 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2133
+ "document": "性别信息。 \n- AttributeItem对应的Type为 —— \t0:男性,1:女性。\n- FaceAttributesType 不含Gender 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2130
2134
  "example": "无",
2131
2135
  "member": "AttributeItem",
2132
2136
  "name": "Gender",
@@ -2136,7 +2140,7 @@
2136
2140
  },
2137
2141
  {
2138
2142
  "disabled": false,
2139
- "document": "头发信息,包含头发长度、有无刘海、头发颜色。 \nFaceAttributesType 不含Hair 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2143
+ "document": "头发信息,包含头发长度、有无刘海、头发颜色。 \n- FaceAttributesType 不含Hair 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2140
2144
  "example": "无",
2141
2145
  "member": "Hair",
2142
2146
  "name": "Hair",
@@ -2146,7 +2150,7 @@
2146
2150
  },
2147
2151
  {
2148
2152
  "disabled": false,
2149
- "document": "帽子信息,可识别是否佩戴帽子、帽子款式、帽子颜色。 \nFaceAttributesType 不含Hat 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2153
+ "document": "帽子信息,可识别是否佩戴帽子、帽子款式、帽子颜色。 \n- FaceAttributesType 不含Hat 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2150
2154
  "example": "无",
2151
2155
  "member": "Hat",
2152
2156
  "name": "Hat",
@@ -2156,7 +2160,7 @@
2156
2160
  },
2157
2161
  {
2158
2162
  "disabled": false,
2159
- "document": "姿态信息,包含人脸的上下偏移、左右偏移、平面旋转信息。 \nFaceAttributesType 不含Headpose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2163
+ "document": "姿态信息,包含人脸的上下偏移、左右偏移、平面旋转信息。 \n- FaceAttributesType 不含Headpose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2160
2164
  "example": "无",
2161
2165
  "member": "HeadPose",
2162
2166
  "name": "HeadPose",
@@ -2166,7 +2170,7 @@
2166
2170
  },
2167
2171
  {
2168
2172
  "disabled": false,
2169
- "document": "口罩佩戴信息。 \nAttributeItem对应的Type为 —— 0: 无口罩, 1: 有口罩不遮脸,2: 有口罩遮下巴,3: 有口罩遮嘴,4: 正确佩戴口罩。\nFaceAttributesType 不含Mask 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2173
+ "document": "口罩佩戴信息。 \n- AttributeItem对应的Type为 —— 0: 无口罩, 1: 有口罩不遮脸,2: 有口罩遮下巴,3: 有口罩遮嘴,4: 正确佩戴口罩。\n- FaceAttributesType 不含Mask 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2170
2174
  "example": "无",
2171
2175
  "member": "AttributeItem",
2172
2176
  "name": "Mask",
@@ -2176,7 +2180,7 @@
2176
2180
  },
2177
2181
  {
2178
2182
  "disabled": false,
2179
- "document": "嘴巴信息,可识别是否张嘴、嘴唇厚度。 \nFaceAttributesType 不含 Mouth 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2183
+ "document": "嘴巴信息,可识别是否张嘴、嘴唇厚度。 \n- FaceAttributesType 不含 Mouth 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2180
2184
  "example": "无",
2181
2185
  "member": "Mouth",
2182
2186
  "name": "Mouth",
@@ -2186,7 +2190,7 @@
2186
2190
  },
2187
2191
  {
2188
2192
  "disabled": false,
2189
- "document": "胡子信息。\nAttributeItem对应的Type为 —— 0:无胡子,1:有胡子。 \nFaceAttributesType 不含 Moustache 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2193
+ "document": "胡子信息。\n- AttributeItem对应的Type为 —— 0:无胡子,1:有胡子。 \n- FaceAttributesType 不含 Moustache 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2190
2194
  "example": "无",
2191
2195
  "member": "AttributeItem",
2192
2196
  "name": "Moustache",
@@ -2196,7 +2200,7 @@
2196
2200
  },
2197
2201
  {
2198
2202
  "disabled": false,
2199
- "document": "鼻子信息。 \nAttributeItem对应的Type为 —— 0:朝天鼻,1:鹰钩鼻,2:普通,3:圆鼻头\nFaceAttributesType 不含 Nose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2203
+ "document": "鼻子信息。 \n- AttributeItem对应的Type为 —— 0:朝天鼻,1:鹰钩鼻,2:普通,3:圆鼻头\n- FaceAttributesType 不含 Nose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2200
2204
  "example": "无",
2201
2205
  "member": "AttributeItem",
2202
2206
  "name": "Nose",
@@ -2206,7 +2210,7 @@
2206
2210
  },
2207
2211
  {
2208
2212
  "disabled": false,
2209
- "document": "脸型信息。 \nAttributeItem对应的Type为 —— 0:方脸,1:三角脸,2:鹅蛋脸,3:心形脸,4:圆脸。\nFaceAttributesType 不含 Shape 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2213
+ "document": "脸型信息。 \n- AttributeItem对应的Type为 —— 0:方脸,1:三角脸,2:鹅蛋脸,3:心形脸,4:圆脸。\n- FaceAttributesType 不含 Shape 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2210
2214
  "example": "无",
2211
2215
  "member": "AttributeItem",
2212
2216
  "name": "Shape",
@@ -2216,7 +2220,7 @@
2216
2220
  },
2217
2221
  {
2218
2222
  "disabled": false,
2219
- "document": "肤色信息。 \nAttributeItem对应的Type为 —— 0:黄色皮肤,1:棕色皮肤,2:黑色皮肤,3:白色皮肤。\nFaceAttributesType 不含 Skin 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2223
+ "document": "肤色信息。 \n- AttributeItem对应的Type为 —— 0:黄色皮肤,1:棕色皮肤,2:黑色皮肤,3:白色皮肤。\n- FaceAttributesType 不含 Skin 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2220
2224
  "example": "无",
2221
2225
  "member": "AttributeItem",
2222
2226
  "name": "Skin",
@@ -2226,8 +2230,8 @@
2226
2230
  },
2227
2231
  {
2228
2232
  "disabled": false,
2229
- "document": "微笑程度,[0,100]。 \nFaceAttributesType 不含 Smile 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2230
- "example": "",
2233
+ "document": "微笑程度\n- 取值范围:[0,100]。 \n- FaceAttributesType 不含 Smile 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2234
+ "example": "20",
2231
2235
  "member": "int64",
2232
2236
  "name": "Smile",
2233
2237
  "output_required": true,
@@ -2252,7 +2256,7 @@
2252
2256
  },
2253
2257
  {
2254
2258
  "disabled": false,
2255
- "document": "人脸属性信息,根据 FaceAttributesType 输入的类型,返回年龄(Age)、颜值(Beauty) \n情绪(Emotion)、眼睛信息(Eye)、眉毛(Eyebrow)、性别(Gender) \n头发(Hair)、帽子(Hat)、姿态(Headpose)、口罩(Mask)、嘴巴(Mouth)、胡子(Moustache) \n鼻子(Nose)、脸型(Shape)、肤色(Skin)、微笑(Smile)等人脸属性信息。 \n若 FaceAttributesType 没有输入相关类型,则FaceDetaiAttributesInfo返回的细项不具备参考意义。",
2259
+ "document": "人脸属性信息。\n- 根据 FaceAttributesType 输入的类型,返回年龄(Age)、颜值(Beauty)、情绪(Emotion)、眼睛信息(Eye)、眉毛(Eyebrow)、性别(Gender)、头发(Hair)、帽子(Hat)、姿态(Headpose)、口罩(Mask)、嘴巴(Mouth)、胡子(Moustache) 、鼻子(Nose)、脸型(Shape)、肤色(Skin)、微笑(Smile)等人脸属性信息。 \n- 若 FaceAttributesType 没有输入相关类型,则FaceDetaiAttributesInfo返回的细项不具备参考意义。",
2256
2260
  "example": "无",
2257
2261
  "member": "FaceDetailAttributesInfo",
2258
2262
  "name": "FaceDetailAttributesInfo",
@@ -2268,31 +2272,31 @@
2268
2272
  "members": [
2269
2273
  {
2270
2274
  "disabled": false,
2271
- "document": "0:光头,1:短发,2:中发,3:长发,4:绑发\n注意:此字段可能返回 null,表示取不到有效值。",
2272
- "example": "",
2275
+ "document": "取值范围:0:光头,1:短发,2:中发,3:长发,4:绑发。\n注意:此字段可能返回 null,表示取不到有效值。",
2276
+ "example": "1",
2273
2277
  "member": "int64",
2274
2278
  "name": "Length",
2275
- "required": true,
2279
+ "output_required": true,
2276
2280
  "type": "int",
2277
2281
  "value_allowed_null": true
2278
2282
  },
2279
2283
  {
2280
2284
  "disabled": false,
2281
- "document": "0:有刘海,1:无刘海\n注意:此字段可能返回 null,表示取不到有效值。",
2282
- "example": "",
2285
+ "document": "取值范围:0:有刘海,1:无刘海。\n注意:此字段可能返回 null,表示取不到有效值。",
2286
+ "example": "0",
2283
2287
  "member": "int64",
2284
2288
  "name": "Bang",
2285
- "required": true,
2289
+ "output_required": true,
2286
2290
  "type": "int",
2287
2291
  "value_allowed_null": true
2288
2292
  },
2289
2293
  {
2290
2294
  "disabled": false,
2291
- "document": "0:黑色,1:金色,2:棕色,3:灰白色\n注意:此字段可能返回 null,表示取不到有效值。",
2292
- "example": "",
2295
+ "document": "取值范围:0:黑色,1:金色,2:棕色,3:灰白色。\n注意:此字段可能返回 null,表示取不到有效值。",
2296
+ "example": "1",
2293
2297
  "member": "int64",
2294
2298
  "name": "Color",
2295
- "required": true,
2299
+ "output_required": true,
2296
2300
  "type": "int",
2297
2301
  "value_allowed_null": true
2298
2302
  }
@@ -2304,61 +2308,61 @@
2304
2308
  "members": [
2305
2309
  {
2306
2310
  "disabled": false,
2307
- "document": "人脸框左上角横坐标。\n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2308
- "example": "",
2311
+ "document": "人脸框左上角横坐标。\n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2312
+ "example": "35",
2309
2313
  "member": "int64",
2310
2314
  "name": "X",
2311
- "required": true,
2315
+ "output_required": true,
2312
2316
  "type": "int",
2313
2317
  "value_allowed_null": false
2314
2318
  },
2315
2319
  {
2316
2320
  "disabled": false,
2317
- "document": "人脸框左上角纵坐标。 \n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2318
- "example": "",
2321
+ "document": "人脸框左上角纵坐标。 \n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2322
+ "example": "61",
2319
2323
  "member": "int64",
2320
2324
  "name": "Y",
2321
- "required": true,
2325
+ "output_required": true,
2322
2326
  "type": "int",
2323
2327
  "value_allowed_null": false
2324
2328
  },
2325
2329
  {
2326
2330
  "disabled": false,
2327
2331
  "document": "人脸框宽度。",
2328
- "example": "",
2332
+ "example": "10",
2329
2333
  "member": "int64",
2330
2334
  "name": "Width",
2331
- "required": true,
2335
+ "output_required": true,
2332
2336
  "type": "int",
2333
2337
  "value_allowed_null": false
2334
2338
  },
2335
2339
  {
2336
2340
  "disabled": false,
2337
2341
  "document": "人脸框高度。",
2338
- "example": "",
2342
+ "example": "8",
2339
2343
  "member": "int64",
2340
2344
  "name": "Height",
2341
- "required": true,
2345
+ "output_required": true,
2342
2346
  "type": "int",
2343
2347
  "value_allowed_null": false
2344
2348
  },
2345
2349
  {
2346
2350
  "disabled": false,
2347
- "document": "人脸属性信息,包含性别( gender )、年龄( age )、表情( expression )、 \n魅力( beauty )、眼镜( glass )、口罩(mask)、头发(hair)和姿态 (pitch,roll,yaw )。只有当 NeedFaceAttributes 设为 1 时才返回有效信息。",
2348
- "example": "",
2351
+ "document": "人脸属性信息。\n- 包含性别( gender )、年龄( age )、表情( expression )、魅力( beauty )、眼镜( glass )、口罩(mask)、头发(hair)和姿态 (pitch,roll,yaw )。\n- 只有当 NeedFaceAttributes 设为 1 时才返回有效信息。",
2352
+ "example": "",
2349
2353
  "member": "FaceAttributesInfo",
2350
2354
  "name": "FaceAttributesInfo",
2351
- "required": true,
2355
+ "output_required": true,
2352
2356
  "type": "object",
2353
2357
  "value_allowed_null": false
2354
2358
  },
2355
2359
  {
2356
2360
  "disabled": false,
2357
- "document": "人脸质量信息,包含质量分(score)、模糊分(sharpness)、光照分(brightness)、遮挡分(completeness)。只有当NeedFaceDetection设为1时才返回有效信息。\n注意:此字段可能返回 null,表示取不到有效值。",
2358
- "example": "",
2361
+ "document": "人脸质量信息。\n- 包含质量分(score)、模糊分(sharpness)、光照分(brightness)、遮挡分(completeness)。\n- 只有当NeedFaceDetection设为1时才返回有效信息。\n注意:此字段可能返回 null,表示取不到有效值。",
2362
+ "example": "",
2359
2363
  "member": "FaceQualityInfo",
2360
2364
  "name": "FaceQualityInfo",
2361
- "required": true,
2365
+ "output_required": true,
2362
2366
  "type": "object",
2363
2367
  "value_allowed_null": true
2364
2368
  }
@@ -2370,61 +2374,61 @@
2370
2374
  "members": [
2371
2375
  {
2372
2376
  "disabled": false,
2373
- "document": "眉毛的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2374
- "example": "",
2377
+ "document": "眉毛的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2378
+ "example": "70",
2375
2379
  "member": "int64",
2376
2380
  "name": "Eyebrow",
2377
- "required": true,
2381
+ "output_required": true,
2378
2382
  "type": "int",
2379
2383
  "value_allowed_null": true
2380
2384
  },
2381
2385
  {
2382
2386
  "disabled": false,
2383
- "document": "眼睛的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2384
- "example": "",
2387
+ "document": "眼睛的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2388
+ "example": "60",
2385
2389
  "member": "int64",
2386
2390
  "name": "Eye",
2387
- "required": true,
2391
+ "output_required": true,
2388
2392
  "type": "int",
2389
2393
  "value_allowed_null": true
2390
2394
  },
2391
2395
  {
2392
2396
  "disabled": false,
2393
- "document": "鼻子的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,60]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2394
- "example": "",
2397
+ "document": "鼻子的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,60]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2398
+ "example": "30",
2395
2399
  "member": "int64",
2396
2400
  "name": "Nose",
2397
- "required": true,
2401
+ "output_required": true,
2398
2402
  "type": "int",
2399
2403
  "value_allowed_null": true
2400
2404
  },
2401
2405
  {
2402
2406
  "disabled": false,
2403
- "document": "脸颊的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2404
- "example": "",
2407
+ "document": "脸颊的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2408
+ "example": "10",
2405
2409
  "member": "int64",
2406
2410
  "name": "Cheek",
2407
- "required": true,
2411
+ "output_required": true,
2408
2412
  "type": "int",
2409
2413
  "value_allowed_null": true
2410
2414
  },
2411
2415
  {
2412
2416
  "disabled": false,
2413
- "document": "嘴巴的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,50]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2414
- "example": "",
2417
+ "document": "嘴巴的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,50]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2418
+ "example": "10",
2415
2419
  "member": "int64",
2416
2420
  "name": "Mouth",
2417
- "required": true,
2421
+ "output_required": true,
2418
2422
  "type": "int",
2419
2423
  "value_allowed_null": true
2420
2424
  },
2421
2425
  {
2422
2426
  "disabled": false,
2423
- "document": "下巴的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2424
- "example": "",
2427
+ "document": "下巴的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2428
+ "example": "80",
2425
2429
  "member": "int64",
2426
2430
  "name": "Chin",
2427
- "required": true,
2431
+ "output_required": true,
2428
2432
  "type": "int",
2429
2433
  "value_allowed_null": true
2430
2434
  }
@@ -2436,41 +2440,41 @@
2436
2440
  "members": [
2437
2441
  {
2438
2442
  "disabled": false,
2439
- "document": "质量分: [0,100],综合评价图像质量是否适合人脸识别,分数越高质量越好。 \n正常情况,只需要使用Score作为质量分总体的判断标准即可。Sharpness、Brightness、Completeness等细项分仅供参考。\n参考范围:[0,40]较差,[40,60] 一般,[60,80]较好,[80,100]很好。 \n建议:人脸入库选取70以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2440
- "example": "",
2443
+ "document": "质量分。\n- 取值范围:[0,100],综合评价图像质量是否适合人脸识别,分数越高质量越好。 \n- 正常情况,只需要使用Score作为质量分总体的判断标准即可。Sharpness、Brightness、Completeness等细项分仅供参考。\n- 参考范围:[0,40]较差,[40,60] 一般,[60,80]较好,[80,100]很好。 \n- 建议:人脸入库选取70以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2444
+ "example": "80",
2441
2445
  "member": "int64",
2442
2446
  "name": "Score",
2443
- "required": true,
2447
+ "output_required": true,
2444
2448
  "type": "int",
2445
2449
  "value_allowed_null": true
2446
2450
  },
2447
2451
  {
2448
2452
  "disabled": false,
2449
- "document": "清晰分:[0,100],评价图片清晰程度,分数越高越清晰。 \n参考范围:[0,40]特别模糊,[40,60]模糊,[60,80]一般,[80,100]清晰。 \n建议:人脸入库选取80以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2450
- "example": "",
2453
+ "document": "清晰分。\n- 取值范围:[0,100],评价图片清晰程度,分数越高越清晰。 \n- 参考范围:[0,40]特别模糊,[40,60]模糊,[60,80]一般,[80,100]清晰。 \n- 建议:人脸入库选取80以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2454
+ "example": "100",
2451
2455
  "member": "int64",
2452
2456
  "name": "Sharpness",
2453
- "required": true,
2457
+ "output_required": true,
2454
2458
  "type": "int",
2455
2459
  "value_allowed_null": true
2456
2460
  },
2457
2461
  {
2458
2462
  "disabled": false,
2459
- "document": "光照分:[0,100],评价图片光照程度,分数越高越亮。 \n参考范围: [0,30]偏暗,[30,70]光照正常,[70,100]偏亮。 \n建议:人脸入库选取[30,70]的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2460
- "example": "",
2463
+ "document": "光照分。\n- 取值范围:[0,100],评价图片光照程度,分数越高越亮。 \n- 参考范围: [0,30]偏暗,[30,70]光照正常,[70,100]偏亮。 \n- 建议:人脸入库选取[30,70]的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2464
+ "example": "30",
2461
2465
  "member": "int64",
2462
2466
  "name": "Brightness",
2463
- "required": true,
2467
+ "output_required": true,
2464
2468
  "type": "int",
2465
2469
  "value_allowed_null": true
2466
2470
  },
2467
2471
  {
2468
2472
  "disabled": false,
2469
2473
  "document": "五官遮挡分,评价眉毛(Eyebrow)、眼睛(Eye)、鼻子(Nose)、脸颊(Cheek)、嘴巴(Mouth)、下巴(Chin)的被遮挡程度。\n注意:此字段可能返回 null,表示取不到有效值。",
2470
- "example": "",
2474
+ "example": "",
2471
2475
  "member": "FaceQualityCompleteness",
2472
2476
  "name": "Completeness",
2473
- "required": true,
2477
+ "output_required": true,
2474
2478
  "type": "object",
2475
2479
  "value_allowed_null": true
2476
2480
  }
@@ -2482,46 +2486,50 @@
2482
2486
  "members": [
2483
2487
  {
2484
2488
  "disabled": false,
2485
- "document": "人脸框左上角横坐标。 \n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2486
- "example": "",
2489
+ "document": "人脸框左上角横坐标。 \n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2490
+ "example": "253",
2487
2491
  "member": "int64",
2488
2492
  "name": "X",
2489
- "required": true,
2493
+ "output_required": true,
2494
+ "required": false,
2490
2495
  "type": "int",
2491
2496
  "value_allowed_null": false
2492
2497
  },
2493
2498
  {
2494
2499
  "disabled": false,
2495
- "document": "人脸框左上角纵坐标。 \n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2496
- "example": "",
2500
+ "document": "人脸框左上角纵坐标。 \n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2501
+ "example": "414",
2497
2502
  "member": "int64",
2498
2503
  "name": "Y",
2499
- "required": true,
2504
+ "output_required": true,
2505
+ "required": false,
2500
2506
  "type": "int",
2501
2507
  "value_allowed_null": false
2502
2508
  },
2503
2509
  {
2504
2510
  "disabled": false,
2505
- "document": "人脸宽度",
2506
- "example": "",
2511
+ "document": "人脸宽度。",
2512
+ "example": "180",
2507
2513
  "member": "uint64",
2508
2514
  "name": "Width",
2509
- "required": true,
2515
+ "output_required": true,
2516
+ "required": false,
2510
2517
  "type": "int",
2511
2518
  "value_allowed_null": false
2512
2519
  },
2513
2520
  {
2514
2521
  "disabled": false,
2515
- "document": "人脸高度",
2516
- "example": "",
2522
+ "document": "人脸高度。",
2523
+ "example": "90",
2517
2524
  "member": "uint64",
2518
2525
  "name": "Height",
2519
- "required": true,
2526
+ "output_required": true,
2527
+ "required": false,
2520
2528
  "type": "int",
2521
2529
  "value_allowed_null": false
2522
2530
  }
2523
2531
  ],
2524
- "usage": "out"
2532
+ "usage": "both"
2525
2533
  },
2526
2534
  "FaceShape": {
2527
2535
  "document": "五官定位(人脸关键点)具体信息。",
@@ -2624,8 +2632,8 @@
2624
2632
  "members": [
2625
2633
  {
2626
2634
  "disabled": false,
2627
- "document": "人员库 ID,取值为创建人员库接口中的GroupId",
2628
- "example": "ABC",
2635
+ "document": "人员库 ID,取值为创建人员库接口中的GroupId",
2636
+ "example": "32",
2629
2637
  "member": "string",
2630
2638
  "name": "GroupId",
2631
2639
  "required": true,
@@ -2639,8 +2647,8 @@
2639
2647
  "members": [
2640
2648
  {
2641
2649
  "disabled": false,
2642
- "document": "人员库名称",
2643
- "example": "ABC",
2650
+ "document": "人员库名称。",
2651
+ "example": "正式人员名单",
2644
2652
  "member": "string",
2645
2653
  "name": "GroupName",
2646
2654
  "output_required": true,
@@ -2649,8 +2657,8 @@
2649
2657
  },
2650
2658
  {
2651
2659
  "disabled": false,
2652
- "document": "人员库ID",
2653
- "example": "ABC",
2660
+ "document": "人员库ID",
2661
+ "example": "31",
2654
2662
  "member": "string",
2655
2663
  "name": "GroupId",
2656
2664
  "output_required": true,
@@ -2659,8 +2667,8 @@
2659
2667
  },
2660
2668
  {
2661
2669
  "disabled": false,
2662
- "document": "人员库自定义描述字段",
2663
- "example": "ABC",
2670
+ "document": "人员库自定义描述字段。",
2671
+ "example": "[\"年龄\"]",
2664
2672
  "member": "string",
2665
2673
  "name": "GroupExDescriptions",
2666
2674
  "output_required": true,
@@ -2669,8 +2677,8 @@
2669
2677
  },
2670
2678
  {
2671
2679
  "disabled": false,
2672
- "document": "人员库信息备注",
2673
- "example": "ABC",
2680
+ "document": "人员库信息备注。",
2681
+ "example": "无实习生",
2674
2682
  "member": "string",
2675
2683
  "name": "Tag",
2676
2684
  "output_required": true,
@@ -2767,8 +2775,8 @@
2767
2775
  "members": [
2768
2776
  {
2769
2777
  "disabled": false,
2770
- "document": "人员ID,创建人员接口中的PersonId",
2771
- "example": "",
2778
+ "document": "人员ID,创建人员接口中的PersonId",
2779
+ "example": "1002",
2772
2780
  "member": "string",
2773
2781
  "name": "PersonId",
2774
2782
  "required": true,
@@ -2782,28 +2790,31 @@
2782
2790
  "members": [
2783
2791
  {
2784
2792
  "disabled": false,
2785
- "document": "人员名称",
2786
- "example": "",
2793
+ "document": "人员名称。",
2794
+ "example": "韦小宝",
2787
2795
  "member": "string",
2788
2796
  "name": "PersonName",
2797
+ "output_required": true,
2789
2798
  "type": "string",
2790
2799
  "value_allowed_null": false
2791
2800
  },
2792
2801
  {
2793
2802
  "disabled": false,
2794
- "document": "人员性别,0代表未填写,1代表男性,2代表女性",
2795
- "example": "",
2803
+ "document": "人员性别。\n- 取值范围:0代表未填写,1代表男性,2代表女性。",
2804
+ "example": "2",
2796
2805
  "member": "int64",
2797
2806
  "name": "Gender",
2807
+ "output_required": true,
2798
2808
  "type": "int",
2799
2809
  "value_allowed_null": false
2800
2810
  },
2801
2811
  {
2802
2812
  "disabled": false,
2803
- "document": "包含的人脸 ID 列表",
2804
- "example": "",
2813
+ "document": "包含的人脸 ID 列表。",
2814
+ "example": "[ \"287364080202264488\"]",
2805
2815
  "member": "string",
2806
2816
  "name": "FaceIds",
2817
+ "output_required": true,
2807
2818
  "type": "list",
2808
2819
  "value_allowed_null": false
2809
2820
  },
@@ -2821,8 +2832,8 @@
2821
2832
  "members": [
2822
2833
  {
2823
2834
  "disabled": false,
2824
- "document": "人员ID,取值为创建人员接口中的PersonId",
2825
- "example": "",
2835
+ "document": "人员ID,取值为创建人员接口中的PersonId",
2836
+ "example": "1002",
2826
2837
  "member": "string",
2827
2838
  "name": "PersonId",
2828
2839
  "required": true,
@@ -2830,8 +2841,8 @@
2830
2841
  },
2831
2842
  {
2832
2843
  "disabled": false,
2833
- "document": "起始序号,默认值为0",
2834
- "example": "",
2844
+ "document": "起始序号,默认值为0",
2845
+ "example": "0",
2835
2846
  "member": "uint64",
2836
2847
  "name": "Offset",
2837
2848
  "required": false,
@@ -2839,8 +2850,8 @@
2839
2850
  },
2840
2851
  {
2841
2852
  "disabled": false,
2842
- "document": "返回数量,默认值为10,最大值为100",
2843
- "example": "",
2853
+ "document": "返回数量,默认值为10,最大值为100",
2854
+ "example": "10",
2844
2855
  "member": "uint64",
2845
2856
  "name": "Limit",
2846
2857
  "required": false,
@@ -2854,28 +2865,31 @@
2854
2865
  "members": [
2855
2866
  {
2856
2867
  "disabled": false,
2857
- "document": "包含此人员的人员库及描述字段内容列表",
2858
- "example": "",
2868
+ "document": "包含此人员的人员库及描述字段内容列表。",
2869
+ "example": "",
2859
2870
  "member": "PersonGroupInfo",
2860
2871
  "name": "PersonGroupInfos",
2872
+ "output_required": true,
2861
2873
  "type": "list",
2862
2874
  "value_allowed_null": false
2863
2875
  },
2864
2876
  {
2865
2877
  "disabled": false,
2866
- "document": "人员库总数量\n注意:此字段可能返回 null,表示取不到有效值。",
2867
- "example": "",
2878
+ "document": "人员库总数量。\n注意:此字段可能返回 null,表示取不到有效值。",
2879
+ "example": "30",
2868
2880
  "member": "uint64",
2869
2881
  "name": "GroupNum",
2882
+ "output_required": true,
2870
2883
  "type": "int",
2871
2884
  "value_allowed_null": true
2872
2885
  },
2873
2886
  {
2874
2887
  "disabled": false,
2875
2888
  "document": "人脸识别服务所用的算法模型版本。\n注意:此字段可能返回 null,表示取不到有效值。",
2876
- "example": "",
2889
+ "example": "3.0",
2877
2890
  "member": "string",
2878
2891
  "name": "FaceModelVersion",
2892
+ "output_required": true,
2879
2893
  "type": "string",
2880
2894
  "value_allowed_null": true
2881
2895
  },
@@ -2893,8 +2907,8 @@
2893
2907
  "members": [
2894
2908
  {
2895
2909
  "disabled": false,
2896
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
2897
- "example": "",
2910
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
2911
+ "example": "TencentShenZhenEmployee",
2898
2912
  "member": "string",
2899
2913
  "name": "GroupId",
2900
2914
  "required": true,
@@ -2908,19 +2922,21 @@
2908
2922
  "members": [
2909
2923
  {
2910
2924
  "disabled": false,
2911
- "document": "人员数量",
2912
- "example": "",
2925
+ "document": "人员数量。",
2926
+ "example": "10",
2913
2927
  "member": "uint64",
2914
2928
  "name": "PersonNum",
2929
+ "output_required": true,
2915
2930
  "type": "int",
2916
2931
  "value_allowed_null": false
2917
2932
  },
2918
2933
  {
2919
2934
  "disabled": false,
2920
- "document": "人脸数量",
2921
- "example": "",
2935
+ "document": "人脸数量。",
2936
+ "example": "10",
2922
2937
  "member": "uint64",
2923
2938
  "name": "FaceNum",
2939
+ "output_required": true,
2924
2940
  "type": "int",
2925
2941
  "value_allowed_null": false
2926
2942
  },
@@ -2938,8 +2954,8 @@
2938
2954
  "members": [
2939
2955
  {
2940
2956
  "disabled": false,
2941
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
2942
- "example": "",
2957
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
2958
+ "example": "ZhuYuanDormitory",
2943
2959
  "member": "string",
2944
2960
  "name": "GroupId",
2945
2961
  "required": true,
@@ -2947,8 +2963,8 @@
2947
2963
  },
2948
2964
  {
2949
2965
  "disabled": false,
2950
- "document": "起始序号,默认值为0",
2951
- "example": "",
2966
+ "document": "起始序号,默认值为0",
2967
+ "example": "0",
2952
2968
  "member": "uint64",
2953
2969
  "name": "Offset",
2954
2970
  "required": false,
@@ -2956,8 +2972,8 @@
2956
2972
  },
2957
2973
  {
2958
2974
  "disabled": false,
2959
- "document": "返回数量,默认值为10,最大值为1000",
2960
- "example": "",
2975
+ "document": "返回数量,默认值为10,最大值为1000",
2976
+ "example": "10",
2961
2977
  "member": "uint64",
2962
2978
  "name": "Limit",
2963
2979
  "required": false,
@@ -2971,37 +2987,41 @@
2971
2987
  "members": [
2972
2988
  {
2973
2989
  "disabled": false,
2974
- "document": "返回的人员信息",
2975
- "example": "",
2990
+ "document": "返回的人员信息。",
2991
+ "example": "",
2976
2992
  "member": "PersonInfo",
2977
2993
  "name": "PersonInfos",
2994
+ "output_required": true,
2978
2995
  "type": "list",
2979
2996
  "value_allowed_null": false
2980
2997
  },
2981
2998
  {
2982
2999
  "disabled": false,
2983
- "document": "该人员库的人员数量\n注意:此字段可能返回 null,表示取不到有效值。",
2984
- "example": "",
3000
+ "document": "该人员库的人员数量。\n注意:此字段可能返回 null,表示取不到有效值。",
3001
+ "example": "20",
2985
3002
  "member": "uint64",
2986
3003
  "name": "PersonNum",
3004
+ "output_required": true,
2987
3005
  "type": "int",
2988
3006
  "value_allowed_null": true
2989
3007
  },
2990
3008
  {
2991
3009
  "disabled": false,
2992
- "document": "该人员库的人脸数量\n注意:此字段可能返回 null,表示取不到有效值。",
2993
- "example": "",
3010
+ "document": "该人员库的人脸数量。\n注意:此字段可能返回 null,表示取不到有效值。",
3011
+ "example": "20",
2994
3012
  "member": "uint64",
2995
3013
  "name": "FaceNum",
3014
+ "output_required": true,
2996
3015
  "type": "int",
2997
3016
  "value_allowed_null": true
2998
3017
  },
2999
3018
  {
3000
3019
  "disabled": false,
3001
3020
  "document": "人脸识别所用的算法模型版本。\n注意:此字段可能返回 null,表示取不到有效值。",
3002
- "example": "",
3021
+ "example": "3.0",
3003
3022
  "member": "string",
3004
3023
  "name": "FaceModelVersion",
3024
+ "output_required": true,
3005
3025
  "type": "string",
3006
3026
  "value_allowed_null": true
3007
3027
  },
@@ -3181,10 +3201,10 @@
3181
3201
  {
3182
3202
  "disabled": false,
3183
3203
  "document": "人员库ID 。",
3184
- "example": "",
3204
+ "example": "1001",
3185
3205
  "member": "string",
3186
3206
  "name": "GroupId",
3187
- "required": true,
3207
+ "output_required": true,
3188
3208
  "type": "string",
3189
3209
  "value_allowed_null": false
3190
3210
  },
@@ -3194,7 +3214,7 @@
3194
3214
  "example": "无",
3195
3215
  "member": "Candidate",
3196
3216
  "name": "Candidates",
3197
- "required": true,
3217
+ "output_required": true,
3198
3218
  "type": "list",
3199
3219
  "value_allowed_null": false
3200
3220
  }
@@ -3206,23 +3226,21 @@
3206
3226
  "members": [
3207
3227
  {
3208
3228
  "disabled": false,
3209
- "document": "人员库自定义描述字段Index,从0开始",
3210
- "example": "",
3229
+ "document": "人员库自定义描述字段Index,从0开始。",
3230
+ "example": "",
3211
3231
  "member": "uint64",
3212
3232
  "name": "GroupExDescriptionIndex",
3213
3233
  "required": true,
3214
- "type": "int",
3215
- "value_allowed_null": true
3234
+ "type": "int"
3216
3235
  },
3217
3236
  {
3218
3237
  "disabled": false,
3219
- "document": "需要更新的人员库自定义描述字段内容",
3220
- "example": "",
3238
+ "document": "需要更新的人员库自定义描述字段内容。",
3239
+ "example": "年龄",
3221
3240
  "member": "string",
3222
3241
  "name": "GroupExDescription",
3223
3242
  "required": true,
3224
- "type": "string",
3225
- "value_allowed_null": false
3243
+ "type": "string"
3226
3244
  }
3227
3245
  ],
3228
3246
  "usage": "in"
@@ -3232,61 +3250,61 @@
3232
3250
  "members": [
3233
3251
  {
3234
3252
  "disabled": false,
3235
- "document": "人员库名称",
3236
- "example": "",
3253
+ "document": "人员库名称。",
3254
+ "example": "人员库",
3237
3255
  "member": "string",
3238
3256
  "name": "GroupName",
3239
- "required": true,
3257
+ "output_required": true,
3240
3258
  "type": "string",
3241
3259
  "value_allowed_null": false
3242
3260
  },
3243
3261
  {
3244
3262
  "disabled": false,
3245
- "document": "人员库ID",
3246
- "example": "",
3263
+ "document": "人员库ID",
3264
+ "example": "13",
3247
3265
  "member": "string",
3248
3266
  "name": "GroupId",
3249
- "required": true,
3267
+ "output_required": true,
3250
3268
  "type": "string",
3251
3269
  "value_allowed_null": false
3252
3270
  },
3253
3271
  {
3254
3272
  "disabled": false,
3255
- "document": "人员库自定义描述字段\n注意:此字段可能返回 null,表示取不到有效值。",
3256
- "example": "",
3273
+ "document": "人员库自定义描述字段。\n注意:此字段可能返回 null,表示取不到有效值。",
3274
+ "example": "[\"年龄\"]",
3257
3275
  "member": "string",
3258
3276
  "name": "GroupExDescriptions",
3259
- "required": true,
3277
+ "output_required": true,
3260
3278
  "type": "list",
3261
3279
  "value_allowed_null": true
3262
3280
  },
3263
3281
  {
3264
3282
  "disabled": false,
3265
- "document": "人员库信息备注\n注意:此字段可能返回 null,表示取不到有效值。",
3266
- "example": "",
3283
+ "document": "人员库信息备注。\n注意:此字段可能返回 null,表示取不到有效值。",
3284
+ "example": "无实习生",
3267
3285
  "member": "string",
3268
3286
  "name": "Tag",
3269
- "required": true,
3287
+ "output_required": true,
3270
3288
  "type": "string",
3271
3289
  "value_allowed_null": true
3272
3290
  },
3273
3291
  {
3274
3292
  "disabled": false,
3275
3293
  "document": "人脸识别所用的算法模型版本。\n注意:此字段可能返回 null,表示取不到有效值。",
3276
- "example": "",
3294
+ "example": "3.0",
3277
3295
  "member": "string",
3278
3296
  "name": "FaceModelVersion",
3279
- "required": true,
3297
+ "output_required": true,
3280
3298
  "type": "string",
3281
3299
  "value_allowed_null": true
3282
3300
  },
3283
3301
  {
3284
3302
  "disabled": false,
3285
- "document": "Group的创建时间和日期 CreationTimestampCreationTimestamp 的值是自 Unix 纪元时间到Group创建时间的毫秒数。 \nUnix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。有关更多信息,请参阅 Unix 时间。\n注意:此字段可能返回 null,表示取不到有效值。",
3286
- "example": "",
3303
+ "document": "Group的创建时间和日期 CreationTimestamp。\n- CreationTimestamp 的值是自 Unix 纪元时间到Group创建时间的毫秒数。 \n- Unix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。\n- 有关更多信息,请参阅 Unix 时间。\n注意:此字段可能返回 null,表示取不到有效值。",
3304
+ "example": "1694139227378",
3287
3305
  "member": "uint64",
3288
3306
  "name": "CreationTimestamp",
3289
- "required": true,
3307
+ "output_required": true,
3290
3308
  "type": "int",
3291
3309
  "value_allowed_null": true
3292
3310
  }
@@ -3361,30 +3379,30 @@
3361
3379
  {
3362
3380
  "disabled": false,
3363
3381
  "document": "上下偏移[-30,30]。",
3364
- "example": "",
3382
+ "example": "28",
3365
3383
  "member": "int64",
3366
3384
  "name": "Pitch",
3367
- "required": true,
3385
+ "output_required": true,
3368
3386
  "type": "int",
3369
3387
  "value_allowed_null": false
3370
3388
  },
3371
3389
  {
3372
3390
  "disabled": false,
3373
3391
  "document": "左右偏移[-30,30]。",
3374
- "example": "",
3392
+ "example": "10",
3375
3393
  "member": "int64",
3376
3394
  "name": "Yaw",
3377
- "required": true,
3395
+ "output_required": true,
3378
3396
  "type": "int",
3379
3397
  "value_allowed_null": false
3380
3398
  },
3381
3399
  {
3382
3400
  "disabled": false,
3383
3401
  "document": "平面旋转[-180,180]。",
3384
- "example": "",
3402
+ "example": "23",
3385
3403
  "member": "int64",
3386
3404
  "name": "Roll",
3387
- "required": true,
3405
+ "output_required": true,
3388
3406
  "type": "int",
3389
3407
  "value_allowed_null": false
3390
3408
  }
@@ -3396,8 +3414,8 @@
3396
3414
  "members": [
3397
3415
  {
3398
3416
  "disabled": false,
3399
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
3400
- "example": "",
3417
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
3418
+ "example": "32",
3401
3419
  "member": "string",
3402
3420
  "name": "GroupId",
3403
3421
  "required": true,
@@ -3405,8 +3423,8 @@
3405
3423
  },
3406
3424
  {
3407
3425
  "disabled": false,
3408
- "document": "人员库名称",
3409
- "example": "",
3426
+ "document": "人员库名称。",
3427
+ "example": "人员库名单",
3410
3428
  "member": "string",
3411
3429
  "name": "GroupName",
3412
3430
  "required": false,
@@ -3414,8 +3432,8 @@
3414
3432
  },
3415
3433
  {
3416
3434
  "disabled": false,
3417
- "document": "需要修改的人员库自定义描述字段,key-value",
3418
- "example": "",
3435
+ "document": "需要修改的人员库自定义描述字段,key-value",
3436
+ "example": "",
3419
3437
  "member": "GroupExDescriptionInfo",
3420
3438
  "name": "GroupExDescriptionInfos",
3421
3439
  "required": false,
@@ -3423,8 +3441,8 @@
3423
3441
  },
3424
3442
  {
3425
3443
  "disabled": false,
3426
- "document": "人员库信息备注",
3427
- "example": "",
3444
+ "document": "人员库信息备注。",
3445
+ "example": "无实习生",
3428
3446
  "member": "string",
3429
3447
  "name": "Tag",
3430
3448
  "required": false,
@@ -3450,7 +3468,7 @@
3450
3468
  "members": [
3451
3469
  {
3452
3470
  "disabled": false,
3453
- "document": "人员ID,取值为创建人员接口中的PersonId",
3471
+ "document": "人员ID,取值为创建人员接口中的PersonId",
3454
3472
  "example": "2001",
3455
3473
  "member": "string",
3456
3474
  "name": "PersonId",
@@ -3459,8 +3477,8 @@
3459
3477
  },
3460
3478
  {
3461
3479
  "disabled": false,
3462
- "document": "需要修改的人员名称",
3463
- "example": "JunlyWang",
3480
+ "document": "需要修改的人员名称。",
3481
+ "example": "韦小宝",
3464
3482
  "member": "string",
3465
3483
  "name": "PersonName",
3466
3484
  "required": false,
@@ -3468,7 +3486,7 @@
3468
3486
  },
3469
3487
  {
3470
3488
  "disabled": false,
3471
- "document": "需要修改的人员性别,1代表男性,2代表女性",
3489
+ "document": "需要修改的人员性别,1代表男性,2代表女性。",
3472
3490
  "example": "1",
3473
3491
  "member": "int64",
3474
3492
  "name": "Gender",
@@ -3495,8 +3513,8 @@
3495
3513
  "members": [
3496
3514
  {
3497
3515
  "disabled": false,
3498
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
3499
- "example": "",
3516
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
3517
+ "example": "TencentShenZhenEmployee",
3500
3518
  "member": "string",
3501
3519
  "name": "GroupId",
3502
3520
  "required": true,
@@ -3504,8 +3522,8 @@
3504
3522
  },
3505
3523
  {
3506
3524
  "disabled": false,
3507
- "document": "人员ID,取值为创建人员接口中的PersonId",
3508
- "example": "",
3525
+ "document": "人员ID,取值为创建人员接口中的PersonId",
3526
+ "example": "1001",
3509
3527
  "member": "string",
3510
3528
  "name": "PersonId",
3511
3529
  "required": true,
@@ -3513,8 +3531,8 @@
3513
3531
  },
3514
3532
  {
3515
3533
  "disabled": false,
3516
- "document": "需要修改的人员描述字段内容,key-value",
3517
- "example": "",
3534
+ "document": "需要修改的人员描述字段内容,key-value",
3535
+ "example": "",
3518
3536
  "member": "PersonExDescriptionInfo",
3519
3537
  "name": "PersonExDescriptionInfos",
3520
3538
  "required": true,
@@ -3556,23 +3574,21 @@
3556
3574
  "members": [
3557
3575
  {
3558
3576
  "disabled": false,
3559
- "document": "人员描述字段Index,从0开始",
3560
- "example": "",
3577
+ "document": "人员描述字段Index,从0开始。",
3578
+ "example": "0",
3561
3579
  "member": "uint64",
3562
3580
  "name": "PersonExDescriptionIndex",
3563
3581
  "required": true,
3564
- "type": "int",
3565
- "value_allowed_null": true
3582
+ "type": "int"
3566
3583
  },
3567
3584
  {
3568
3585
  "disabled": false,
3569
- "document": "需要更新的人员描述字段内容",
3570
- "example": "",
3586
+ "document": "需要更新的人员描述字段内容。",
3587
+ "example": "年龄",
3571
3588
  "member": "string",
3572
3589
  "name": "PersonExDescription",
3573
3590
  "required": true,
3574
- "type": "string",
3575
- "value_allowed_null": false
3591
+ "type": "string"
3576
3592
  }
3577
3593
  ],
3578
3594
  "usage": "in"
@@ -3582,21 +3598,21 @@
3582
3598
  "members": [
3583
3599
  {
3584
3600
  "disabled": false,
3585
- "document": "包含此人员的人员库ID",
3586
- "example": "",
3601
+ "document": "包含此人员的人员库ID",
3602
+ "example": "1001",
3587
3603
  "member": "string",
3588
3604
  "name": "GroupId",
3589
- "required": true,
3605
+ "output_required": true,
3590
3606
  "type": "string",
3591
3607
  "value_allowed_null": false
3592
3608
  },
3593
3609
  {
3594
3610
  "disabled": false,
3595
- "document": "人员描述字段内容",
3596
- "example": "",
3611
+ "document": "人员描述字段内容。",
3612
+ "example": "[\"年龄\"]",
3597
3613
  "member": "string",
3598
3614
  "name": "PersonExDescriptions",
3599
- "required": true,
3615
+ "output_required": true,
3600
3616
  "type": "list",
3601
3617
  "value_allowed_null": false
3602
3618
  }
@@ -3608,61 +3624,61 @@
3608
3624
  "members": [
3609
3625
  {
3610
3626
  "disabled": false,
3611
- "document": "人员名称",
3612
- "example": "",
3627
+ "document": "人员名称。",
3628
+ "example": "韦小宝",
3613
3629
  "member": "string",
3614
3630
  "name": "PersonName",
3615
- "required": true,
3631
+ "output_required": true,
3616
3632
  "type": "string",
3617
3633
  "value_allowed_null": false
3618
3634
  },
3619
3635
  {
3620
3636
  "disabled": false,
3621
- "document": "人员Id",
3622
- "example": "",
3637
+ "document": "人员Id",
3638
+ "example": "1001",
3623
3639
  "member": "string",
3624
3640
  "name": "PersonId",
3625
- "required": true,
3641
+ "output_required": true,
3626
3642
  "type": "string",
3627
3643
  "value_allowed_null": false
3628
3644
  },
3629
3645
  {
3630
3646
  "disabled": false,
3631
- "document": "人员性别",
3632
- "example": "",
3647
+ "document": "人员性别。",
3648
+ "example": "0",
3633
3649
  "member": "int64",
3634
3650
  "name": "Gender",
3635
- "required": true,
3651
+ "output_required": true,
3636
3652
  "type": "int",
3637
3653
  "value_allowed_null": false
3638
3654
  },
3639
3655
  {
3640
3656
  "disabled": false,
3641
- "document": "人员描述字段内容",
3642
- "example": "",
3657
+ "document": "人员描述字段内容。",
3658
+ "example": "[\"年龄\"]",
3643
3659
  "member": "string",
3644
3660
  "name": "PersonExDescriptions",
3645
- "required": true,
3661
+ "output_required": true,
3646
3662
  "type": "list",
3647
3663
  "value_allowed_null": false
3648
3664
  },
3649
3665
  {
3650
3666
  "disabled": false,
3651
- "document": "包含的人脸照片列表",
3652
- "example": "",
3667
+ "document": "包含的人脸照片列表。",
3668
+ "example": "[\"2877244861637985315\"]",
3653
3669
  "member": "string",
3654
3670
  "name": "FaceIds",
3655
- "required": true,
3671
+ "output_required": true,
3656
3672
  "type": "list",
3657
3673
  "value_allowed_null": false
3658
3674
  },
3659
3675
  {
3660
3676
  "disabled": false,
3661
- "document": "人员的创建时间和日期 CreationTimestampCreationTimestamp 的值是自 Unix 纪元时间到Person创建时间的毫秒数。 \nUnix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。有关更多信息,请参阅 Unix 时间。",
3662
- "example": "",
3677
+ "document": "人员的创建时间和日期 CreationTimestamp。\n- CreationTimestamp 的值是自 Unix 纪元时间到Person创建时间的毫秒数。 \n- Unix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。\n- 有关更多信息,请参阅 Unix 时间。",
3678
+ "example": "1594642823572",
3663
3679
  "member": "uint64",
3664
3680
  "name": "CreationTimestamp",
3665
- "required": true,
3681
+ "output_required": true,
3666
3682
  "type": "int",
3667
3683
  "value_allowed_null": false
3668
3684
  }
@@ -3674,21 +3690,21 @@
3674
3690
  "members": [
3675
3691
  {
3676
3692
  "disabled": false,
3677
- "document": "x坐标",
3678
- "example": "",
3693
+ "document": "x坐标。",
3694
+ "example": "294",
3679
3695
  "member": "int64",
3680
3696
  "name": "X",
3681
- "required": true,
3697
+ "output_required": true,
3682
3698
  "type": "int",
3683
3699
  "value_allowed_null": false
3684
3700
  },
3685
3701
  {
3686
3702
  "disabled": false,
3687
- "document": "Y坐标",
3688
- "example": "",
3703
+ "document": "Y坐标。",
3704
+ "example": "137",
3689
3705
  "member": "int64",
3690
3706
  "name": "Y",
3691
- "required": true,
3707
+ "output_required": true,
3692
3708
  "type": "int",
3693
3709
  "value_allowed_null": false
3694
3710
  }
@@ -3700,31 +3716,31 @@
3700
3716
  "members": [
3701
3717
  {
3702
3718
  "disabled": false,
3703
- "document": "识别出的最相似候选人",
3704
- "example": "",
3719
+ "document": "识别出的最相似候选人。",
3720
+ "example": "",
3705
3721
  "member": "Candidate",
3706
3722
  "name": "Candidates",
3707
- "required": true,
3723
+ "output_required": true,
3708
3724
  "type": "list",
3709
3725
  "value_allowed_null": false
3710
3726
  },
3711
3727
  {
3712
3728
  "disabled": false,
3713
- "document": "检测出的人脸框位置",
3714
- "example": "",
3729
+ "document": "检测出的人脸框位置。",
3730
+ "example": "",
3715
3731
  "member": "FaceRect",
3716
3732
  "name": "FaceRect",
3717
- "required": true,
3733
+ "output_required": true,
3718
3734
  "type": "object",
3719
3735
  "value_allowed_null": false
3720
3736
  },
3721
3737
  {
3722
3738
  "disabled": false,
3723
- "document": "检测出的人脸图片状态返回码。0 表示正常。 \n-1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3724
- "example": "",
3739
+ "document": "检测出的人脸图片状态返回码。\n- 0 表示正常。 \n- -1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3740
+ "example": "0",
3725
3741
  "member": "int64",
3726
3742
  "name": "RetCode",
3727
- "required": true,
3743
+ "output_required": true,
3728
3744
  "type": "int",
3729
3745
  "value_allowed_null": false
3730
3746
  }
@@ -3732,35 +3748,35 @@
3732
3748
  "usage": "out"
3733
3749
  },
3734
3750
  "ResultsReturnsByGroup": {
3735
- "document": "识别结果。\n",
3751
+ "document": "识别结果。",
3736
3752
  "members": [
3737
3753
  {
3738
3754
  "disabled": false,
3739
3755
  "document": "检测出的人脸框位置。",
3740
- "example": "",
3756
+ "example": "",
3741
3757
  "member": "FaceRect",
3742
3758
  "name": "FaceRect",
3743
- "required": true,
3759
+ "output_required": true,
3744
3760
  "type": "object",
3745
3761
  "value_allowed_null": false
3746
3762
  },
3747
3763
  {
3748
3764
  "disabled": false,
3749
3765
  "document": "识别结果。",
3750
- "example": "",
3766
+ "example": "",
3751
3767
  "member": "GroupCandidate",
3752
3768
  "name": "GroupCandidates",
3753
- "required": true,
3769
+ "output_required": true,
3754
3770
  "type": "list",
3755
3771
  "value_allowed_null": false
3756
3772
  },
3757
3773
  {
3758
3774
  "disabled": false,
3759
- "document": "检测出的人脸图片状态返回码。0 表示正常。 \n-1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3760
- "example": "",
3775
+ "document": "检测出的人脸图片状态返回码。\n- 0 表示正常。 \n- -1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3776
+ "example": "",
3761
3777
  "member": "int64",
3762
3778
  "name": "RetCode",
3763
- "required": true,
3779
+ "output_required": true,
3764
3780
  "type": "int",
3765
3781
  "value_allowed_null": false
3766
3782
  }
@@ -3799,7 +3815,7 @@
3799
3815
  "members": [
3800
3816
  {
3801
3817
  "disabled": false,
3802
- "document": "希望搜索的人员库列表,上限100个。数组元素取值为创建人员库接口中的GroupId。\n不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3818
+ "document": "希望搜索的人员库列表,上限100个。\n- 数组元素取值为创建人员库接口中的GroupId。\n- 不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3803
3819
  "example": "[\"TencentShenZhenEmployee\"]",
3804
3820
  "member": "string",
3805
3821
  "name": "GroupIds",
@@ -3808,8 +3824,8 @@
3808
3824
  },
3809
3825
  {
3810
3826
  "disabled": false,
3811
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3812
- "example": "",
3827
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3828
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
3813
3829
  "member": "string",
3814
3830
  "name": "Image",
3815
3831
  "required": false,
@@ -3817,7 +3833,7 @@
3817
3833
  },
3818
3834
  {
3819
3835
  "disabled": false,
3820
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3836
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3821
3837
  "example": "http://test.image.myqcloud.com/testA.jpg",
3822
3838
  "member": "string",
3823
3839
  "name": "Url",
@@ -3826,7 +3842,7 @@
3826
3842
  },
3827
3843
  {
3828
3844
  "disabled": false,
3829
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。 \nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。 \n例如:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3845
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。 \n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。 \n- 例如:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3830
3846
  "example": "1",
3831
3847
  "member": "uint64",
3832
3848
  "name": "MaxFaceNum",
@@ -3835,7 +3851,7 @@
3835
3851
  },
3836
3852
  {
3837
3853
  "disabled": false,
3838
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34的人脸图片无法被识别。建议设置为80。",
3854
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34的人脸图片无法被识别。\n- 建议设置为80。",
3839
3855
  "example": "40",
3840
3856
  "member": "uint64",
3841
3857
  "name": "MinFaceSize",
@@ -3844,7 +3860,7 @@
3844
3860
  },
3845
3861
  {
3846
3862
  "disabled": false,
3847
- "document": "单张被识别的人脸返回的最相似人员数量。默认值为5,最大值为100。 \n例如,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n值越大,需要处理的时间越长。建议不要超过10。",
3863
+ "document": "单张被识别的人脸返回的最相似人员数量。\n- 默认值为5,最大值为100。 \n- 例如,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n- 值越大,需要处理的时间越长。\n- 建议不要超过10。",
3848
3864
  "example": "5",
3849
3865
  "member": "uint64",
3850
3866
  "name": "MaxPersonNum",
@@ -3853,7 +3869,7 @@
3853
3869
  },
3854
3870
  {
3855
3871
  "disabled": false,
3856
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
3872
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
3857
3873
  "example": "0",
3858
3874
  "member": "int64",
3859
3875
  "name": "NeedPersonInfo",
@@ -3862,7 +3878,7 @@
3862
3878
  },
3863
3879
  {
3864
3880
  "disabled": false,
3865
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
3881
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
3866
3882
  "example": "0",
3867
3883
  "member": "uint64",
3868
3884
  "name": "QualityControl",
@@ -3880,7 +3896,7 @@
3880
3896
  },
3881
3897
  {
3882
3898
  "disabled": false,
3883
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
3899
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
3884
3900
  "example": "0",
3885
3901
  "member": "uint64",
3886
3902
  "name": "NeedRotateDetection",
@@ -3937,7 +3953,7 @@
3937
3953
  "members": [
3938
3954
  {
3939
3955
  "disabled": false,
3940
- "document": "希望搜索的人员库列表,上限60个。数组元素取值为创建人员库接口中的GroupId。\n不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3956
+ "document": "希望搜索的人员库列表,上限60个。\n- 数组元素取值为创建人员库接口中的GroupId。\n- 不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3941
3957
  "example": "[\"TencentShenZhenEmployee\\n\"]",
3942
3958
  "member": "string",
3943
3959
  "name": "GroupIds",
@@ -3946,8 +3962,8 @@
3946
3962
  },
3947
3963
  {
3948
3964
  "disabled": false,
3949
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3950
- "example": "",
3965
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3966
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
3951
3967
  "member": "string",
3952
3968
  "name": "Image",
3953
3969
  "required": false,
@@ -3955,7 +3971,7 @@
3955
3971
  },
3956
3972
  {
3957
3973
  "disabled": false,
3958
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3974
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3959
3975
  "example": "http://test.image.myqcloud.com/testA.jpg",
3960
3976
  "member": "string",
3961
3977
  "name": "Url",
@@ -3964,7 +3980,7 @@
3964
3980
  },
3965
3981
  {
3966
3982
  "disabled": false,
3967
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3983
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n- 例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3968
3984
  "example": "1",
3969
3985
  "member": "uint64",
3970
3986
  "name": "MaxFaceNum",
@@ -3973,7 +3989,7 @@
3973
3989
  },
3974
3990
  {
3975
3991
  "disabled": false,
3976
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34将影响搜索精度。建议设置为80。",
3992
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34将影响搜索精度。\n- 建议设置为80。",
3977
3993
  "example": "40",
3978
3994
  "member": "uint64",
3979
3995
  "name": "MinFaceSize",
@@ -3982,7 +3998,7 @@
3982
3998
  },
3983
3999
  {
3984
4000
  "disabled": false,
3985
- "document": "被检测到的人脸,对应最多返回的最相似人员数目。默认值为5,最大值为10。 \n例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
4001
+ "document": "被检测到的人脸,对应最多返回的最相似人员数目。\n- 默认值为5,最大值为10。 \n- 例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
3986
4002
  "example": "5",
3987
4003
  "member": "uint64",
3988
4004
  "name": "MaxPersonNumPerGroup",
@@ -3991,7 +4007,7 @@
3991
4007
  },
3992
4008
  {
3993
4009
  "disabled": false,
3994
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
4010
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
3995
4011
  "example": "0",
3996
4012
  "member": "int64",
3997
4013
  "name": "NeedPersonInfo",
@@ -4000,7 +4016,7 @@
4000
4016
  },
4001
4017
  {
4002
4018
  "disabled": false,
4003
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4019
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4004
4020
  "example": "0",
4005
4021
  "member": "uint64",
4006
4022
  "name": "QualityControl",
@@ -4009,7 +4025,7 @@
4009
4025
  },
4010
4026
  {
4011
4027
  "disabled": false,
4012
- "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。\n默认为0。\n取值范围[0.0,100.0) 。",
4028
+ "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。\n- 默认为0。\n- 取值范围:[0.0,100.0) 。",
4013
4029
  "example": "0",
4014
4030
  "member": "float",
4015
4031
  "name": "FaceMatchThreshold",
@@ -4018,7 +4034,7 @@
4018
4034
  },
4019
4035
  {
4020
4036
  "disabled": false,
4021
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4037
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4022
4038
  "example": "0",
4023
4039
  "member": "uint64",
4024
4040
  "name": "NeedRotateDetection",
@@ -4075,8 +4091,8 @@
4075
4091
  "members": [
4076
4092
  {
4077
4093
  "disabled": false,
4078
- "document": "希望搜索的人员库列表,上限100个。数组元素取值为创建人员库接口中的GroupId",
4079
- "example": "[\"TencentShenZhenEmployee\\r\\n\"]",
4094
+ "document": "希望搜索的人员库列表,上限100个。数组元素取值为创建人员库接口中的GroupId",
4095
+ "example": "[\"TencentShenZhenEmployee\"]",
4080
4096
  "member": "string",
4081
4097
  "name": "GroupIds",
4082
4098
  "required": true,
@@ -4084,8 +4100,8 @@
4084
4100
  },
4085
4101
  {
4086
4102
  "disabled": false,
4087
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4088
- "example": "",
4103
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4104
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4089
4105
  "member": "string",
4090
4106
  "name": "Image",
4091
4107
  "required": false,
@@ -4093,7 +4109,7 @@
4093
4109
  },
4094
4110
  {
4095
4111
  "disabled": false,
4096
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4112
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4097
4113
  "example": "http://test.image.myqcloud.com/testA.jpg",
4098
4114
  "member": "string",
4099
4115
  "name": "Url",
@@ -4102,7 +4118,7 @@
4102
4118
  },
4103
4119
  {
4104
4120
  "disabled": false,
4105
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4121
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n- 例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4106
4122
  "example": "1",
4107
4123
  "member": "uint64",
4108
4124
  "name": "MaxFaceNum",
@@ -4111,7 +4127,7 @@
4111
4127
  },
4112
4128
  {
4113
4129
  "disabled": false,
4114
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34将影响搜索精度。建议设置为80。",
4130
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34将影响搜索精度。\n- 建议设置为80。",
4115
4131
  "example": "40",
4116
4132
  "member": "uint64",
4117
4133
  "name": "MinFaceSize",
@@ -4120,7 +4136,7 @@
4120
4136
  },
4121
4137
  {
4122
4138
  "disabled": false,
4123
- "document": "单张被识别的人脸返回的最相似人员数量。默认值为5,最大值为100。\n例,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n值越大,需要处理的时间越长。建议不要超过10。",
4139
+ "document": "单张被识别的人脸返回的最相似人员数量。\n- 默认值为5,最大值为100。\n- 例,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n- 值越大,需要处理的时间越长。建议不要超过10。",
4124
4140
  "example": "3",
4125
4141
  "member": "uint64",
4126
4142
  "name": "MaxPersonNum",
@@ -4129,7 +4145,7 @@
4129
4145
  },
4130
4146
  {
4131
4147
  "disabled": false,
4132
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4148
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4133
4149
  "example": "0",
4134
4150
  "member": "uint64",
4135
4151
  "name": "QualityControl",
@@ -4138,7 +4154,7 @@
4138
4154
  },
4139
4155
  {
4140
4156
  "disabled": false,
4141
- "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。默认为0。取值范围[0.0,100.0) 。",
4157
+ "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。\n- 默认为0。\n- 取值范围:[0.0,100.0) 。",
4142
4158
  "example": "0",
4143
4159
  "member": "float",
4144
4160
  "name": "FaceMatchThreshold",
@@ -4147,7 +4163,7 @@
4147
4163
  },
4148
4164
  {
4149
4165
  "disabled": false,
4150
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
4166
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
4151
4167
  "example": "0",
4152
4168
  "member": "int64",
4153
4169
  "name": "NeedPersonInfo",
@@ -4156,7 +4172,7 @@
4156
4172
  },
4157
4173
  {
4158
4174
  "disabled": false,
4159
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4175
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4160
4176
  "example": "0",
4161
4177
  "member": "uint64",
4162
4178
  "name": "NeedRotateDetection",
@@ -4213,8 +4229,8 @@
4213
4229
  "members": [
4214
4230
  {
4215
4231
  "disabled": false,
4216
- "document": "希望搜索的人员库列表,上限60个。数组元素取值为创建人员库接口中的GroupId",
4217
- "example": "TencentShenZhenEmployee",
4232
+ "document": "希望搜索的人员库列表,上限60个。数组元素取值为创建人员库接口中的GroupId",
4233
+ "example": "[\"TencentShenZhenEmployee\"]",
4218
4234
  "member": "string",
4219
4235
  "name": "GroupIds",
4220
4236
  "required": true,
@@ -4222,8 +4238,8 @@
4222
4238
  },
4223
4239
  {
4224
4240
  "disabled": false,
4225
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4226
- "example": "http://test.image.myqcloud.com/testB.jpg",
4241
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4242
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4227
4243
  "member": "string",
4228
4244
  "name": "Image",
4229
4245
  "required": false,
@@ -4231,7 +4247,7 @@
4231
4247
  },
4232
4248
  {
4233
4249
  "disabled": false,
4234
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4250
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4235
4251
  "example": "http://test.image.myqcloud.com/testB.jpg",
4236
4252
  "member": "string",
4237
4253
  "name": "Url",
@@ -4240,7 +4256,7 @@
4240
4256
  },
4241
4257
  {
4242
4258
  "disabled": false,
4243
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4259
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n- 例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4244
4260
  "example": "1",
4245
4261
  "member": "uint64",
4246
4262
  "name": "MaxFaceNum",
@@ -4249,7 +4265,7 @@
4249
4265
  },
4250
4266
  {
4251
4267
  "disabled": false,
4252
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34将影响搜索精度。建议设置为80。",
4268
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34将影响搜索精度。\n- 建议设置为80。",
4253
4269
  "example": "80",
4254
4270
  "member": "uint64",
4255
4271
  "name": "MinFaceSize",
@@ -4258,7 +4274,7 @@
4258
4274
  },
4259
4275
  {
4260
4276
  "disabled": false,
4261
- "document": "被检测到的人脸,对应最多返回的最相似人员数目。默认值为5,最大值为10。 \n例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
4277
+ "document": "被检测到的人脸,对应最多返回的最相似人员数目。\n- 默认值为5,最大值为10。 \n- 例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
4262
4278
  "example": "5",
4263
4279
  "member": "uint64",
4264
4280
  "name": "MaxPersonNumPerGroup",
@@ -4267,7 +4283,7 @@
4267
4283
  },
4268
4284
  {
4269
4285
  "disabled": false,
4270
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4286
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4271
4287
  "example": "0",
4272
4288
  "member": "uint64",
4273
4289
  "name": "QualityControl",
@@ -4285,7 +4301,7 @@
4285
4301
  },
4286
4302
  {
4287
4303
  "disabled": false,
4288
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
4304
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
4289
4305
  "example": "0",
4290
4306
  "member": "int64",
4291
4307
  "name": "NeedPersonInfo",
@@ -4294,7 +4310,7 @@
4294
4310
  },
4295
4311
  {
4296
4312
  "disabled": false,
4297
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4313
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4298
4314
  "example": "0",
4299
4315
  "member": "uint64",
4300
4316
  "name": "NeedRotateDetection",
@@ -4464,7 +4480,7 @@
4464
4480
  {
4465
4481
  "disabled": false,
4466
4482
  "document": "待验证的人员ID。人员ID具体信息请参考人员库管理相关接口。",
4467
- "example": "11111111",
4483
+ "example": "1001",
4468
4484
  "member": "string",
4469
4485
  "name": "PersonId",
4470
4486
  "required": true,
@@ -4472,8 +4488,8 @@
4472
4488
  },
4473
4489
  {
4474
4490
  "disabled": false,
4475
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4476
- "example": "",
4491
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4492
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4477
4493
  "member": "string",
4478
4494
  "name": "Image",
4479
4495
  "required": false,
@@ -4481,7 +4497,7 @@
4481
4497
  },
4482
4498
  {
4483
4499
  "disabled": false,
4484
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4500
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4485
4501
  "example": "http://test.image.myqcloud.com/testA.jpg",
4486
4502
  "member": "string",
4487
4503
  "name": "Url",
@@ -4490,7 +4506,7 @@
4490
4506
  },
4491
4507
  {
4492
4508
  "disabled": false,
4493
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4509
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4494
4510
  "example": "0",
4495
4511
  "member": "uint64",
4496
4512
  "name": "QualityControl",
@@ -4499,7 +4515,7 @@
4499
4515
  },
4500
4516
  {
4501
4517
  "disabled": false,
4502
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4518
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4503
4519
  "example": "0",
4504
4520
  "member": "uint64",
4505
4521
  "name": "NeedRotateDetection",
@@ -4514,31 +4530,31 @@
4514
4530
  "members": [
4515
4531
  {
4516
4532
  "disabled": false,
4517
- "document": "给定的人脸图片与 PersonId 对应人脸的相似度。若 PersonId 下有多张人脸(Face),返回相似度最大的分数。\n\n不同算法版本返回的相似度分数不同。\n若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。\n2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。",
4533
+ "document": "给定的人脸图片与 PersonId 对应人脸的相似度。\n- PersonId 下有多张人脸(Face),返回相似度最大的分数。\n- 不同算法版本返回的相似度分数不同。\n- 若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。\n- 2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。",
4518
4534
  "example": "100",
4519
4535
  "member": "float",
4520
4536
  "name": "Score",
4521
- "required": true,
4537
+ "output_required": true,
4522
4538
  "type": "float",
4523
4539
  "value_allowed_null": false
4524
4540
  },
4525
4541
  {
4526
4542
  "disabled": false,
4527
- "document": "是否为同一人判断,固定阈值分数为60分,若想更灵活地调整阈值可取Score参数返回进行判断",
4543
+ "document": "是否为同一人判断,固定阈值分数为60分,若想更灵活地调整阈值可取Score参数返回进行判断。",
4528
4544
  "example": "1",
4529
4545
  "member": "bool",
4530
4546
  "name": "IsMatch",
4531
- "required": true,
4547
+ "output_required": true,
4532
4548
  "type": "bool",
4533
4549
  "value_allowed_null": false
4534
4550
  },
4535
4551
  {
4536
4552
  "disabled": false,
4537
- "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4553
+ "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。\n- 在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4538
4554
  "example": "3.0",
4539
4555
  "member": "string",
4540
4556
  "name": "FaceModelVersion",
4541
- "required": true,
4557
+ "output_required": true,
4542
4558
  "type": "string",
4543
4559
  "value_allowed_null": false
4544
4560
  },
@@ -4557,7 +4573,7 @@
4557
4573
  {
4558
4574
  "disabled": false,
4559
4575
  "document": "待验证的人员ID。人员ID具体信息请参考人员库管理相关接口。",
4560
- "example": "",
4576
+ "example": "2001",
4561
4577
  "member": "string",
4562
4578
  "name": "PersonId",
4563
4579
  "required": true,
@@ -4565,8 +4581,8 @@
4565
4581
  },
4566
4582
  {
4567
4583
  "disabled": false,
4568
- "document": "图片 base64 数据。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4569
- "example": "",
4584
+ "document": "图片 base64 数据。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4585
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4570
4586
  "member": "string",
4571
4587
  "name": "Image",
4572
4588
  "required": false,
@@ -4574,8 +4590,8 @@
4574
4590
  },
4575
4591
  {
4576
4592
  "disabled": false,
4577
- "document": "图片的 Url \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。。\n 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4578
- "example": "",
4593
+ "document": "图片的 Url \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4594
+ "example": "http://test.image.myqcloud.com/testA.jpg",
4579
4595
  "member": "string",
4580
4596
  "name": "Url",
4581
4597
  "required": false,
@@ -4583,8 +4599,8 @@
4583
4599
  },
4584
4600
  {
4585
4601
  "disabled": false,
4586
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4587
- "example": "",
4602
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4603
+ "example": "0",
4588
4604
  "member": "uint64",
4589
4605
  "name": "QualityControl",
4590
4606
  "required": false,
@@ -4592,8 +4608,8 @@
4592
4608
  },
4593
4609
  {
4594
4610
  "disabled": false,
4595
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4596
- "example": "",
4611
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4612
+ "example": "0",
4597
4613
  "member": "uint64",
4598
4614
  "name": "NeedRotateDetection",
4599
4615
  "required": false,
@@ -4608,27 +4624,30 @@
4608
4624
  {
4609
4625
  "disabled": false,
4610
4626
  "document": "给定的人脸照片与 PersonId 对应的相似度。若 PersonId 下有多张人脸(Face),会融合多张人脸信息进行验证。",
4611
- "example": "",
4627
+ "example": "100",
4612
4628
  "member": "float",
4613
4629
  "name": "Score",
4630
+ "output_required": true,
4614
4631
  "type": "float",
4615
4632
  "value_allowed_null": false
4616
4633
  },
4617
4634
  {
4618
4635
  "disabled": false,
4619
4636
  "document": "是否为同一人的判断。",
4620
- "example": "",
4637
+ "example": "false",
4621
4638
  "member": "bool",
4622
4639
  "name": "IsMatch",
4640
+ "output_required": true,
4623
4641
  "type": "bool",
4624
4642
  "value_allowed_null": false
4625
4643
  },
4626
4644
  {
4627
4645
  "disabled": false,
4628
- "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4629
- "example": "",
4646
+ "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。\n- 在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4647
+ "example": "3.0",
4630
4648
  "member": "string",
4631
4649
  "name": "FaceModelVersion",
4650
+ "output_required": true,
4632
4651
  "type": "string",
4633
4652
  "value_allowed_null": false
4634
4653
  },