tccli 3.0.1215.1__py2.py3-none-any.whl → 3.0.1217.1__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
Files changed (282) hide show
  1. tccli/__init__.py +1 -1
  2. tccli/argparser.py +1 -1
  3. tccli/command.py +2 -2
  4. tccli/configure.py +46 -1
  5. tccli/credentials.py +25 -0
  6. tccli/main.py +6 -2
  7. tccli/plugins/sso/__init__.py +61 -0
  8. tccli/plugins/sso/configs.py +4 -0
  9. tccli/plugins/sso/configure.py +45 -0
  10. tccli/plugins/sso/login.py +144 -0
  11. tccli/plugins/sso/logout.py +21 -0
  12. tccli/plugins/sso/terminal.py +161 -0
  13. tccli/plugins/sso/texts.py +40 -0
  14. tccli/services/__init__.py +6 -3
  15. tccli/services/acp/v20220105/api.json +7 -7
  16. tccli/services/acp/v20220105/examples.json +2 -2
  17. tccli/services/aiart/v20221229/api.json +29 -29
  18. tccli/services/aiart/v20221229/examples.json +8 -8
  19. tccli/services/apigateway/v20180808/api.json +18 -17
  20. tccli/services/apigateway/v20180808/examples.json +12 -12
  21. tccli/services/apm/v20210622/api.json +118 -4
  22. tccli/services/asr/v20190614/api.json +21 -20
  23. tccli/services/asr/v20190614/examples.json +13 -13
  24. tccli/services/autoscaling/v20180419/api.json +371 -309
  25. tccli/services/autoscaling/v20180419/examples.json +17 -17
  26. tccli/services/batch/v20170312/api.json +7 -7
  27. tccli/services/bda/v20200324/api.json +39 -31
  28. tccli/services/bda/v20200324/examples.json +9 -9
  29. tccli/services/bh/__init__.py +4 -0
  30. tccli/services/bh/bh_client.py +3428 -0
  31. tccli/services/bh/v20230418/api.json +8180 -0
  32. tccli/services/bh/v20230418/examples.json +519 -0
  33. tccli/services/bi/v20220105/api.json +80 -4
  34. tccli/services/bi/v20220105/examples.json +1 -1
  35. tccli/services/billing/billing_client.py +53 -0
  36. tccli/services/billing/v20180709/api.json +330 -24
  37. tccli/services/billing/v20180709/examples.json +8 -0
  38. tccli/services/bsca/v20210811/api.json +223 -18
  39. tccli/services/bsca/v20210811/examples.json +4 -4
  40. tccli/services/btoe/v20210514/api.json +4 -4
  41. tccli/services/btoe/v20210514/examples.json +2 -2
  42. tccli/services/ca/v20230228/api.json +60 -0
  43. tccli/services/cam/v20190116/api.json +11 -11
  44. tccli/services/cat/v20180409/api.json +9 -0
  45. tccli/services/cbs/v20170312/api.json +200 -188
  46. tccli/services/cbs/v20170312/examples.json +4 -4
  47. tccli/services/ccc/ccc_client.py +53 -0
  48. tccli/services/ccc/v20200210/api.json +541 -325
  49. tccli/services/ccc/v20200210/examples.json +26 -18
  50. tccli/services/cdb/cdb_client.py +13 -13
  51. tccli/services/cdb/v20170320/api.json +308 -274
  52. tccli/services/cdb/v20170320/examples.json +38 -38
  53. tccli/services/cdc/v20201214/api.json +283 -270
  54. tccli/services/cdc/v20201214/examples.json +26 -26
  55. tccli/services/cdn/v20180606/api.json +5 -3
  56. tccli/services/cds/v20180420/api.json +82 -76
  57. tccli/services/cds/v20180420/examples.json +1 -1
  58. tccli/services/cdwch/v20200915/api.json +1 -1
  59. tccli/services/cdwdoris/v20211228/api.json +54 -4
  60. tccli/services/cdz/v20221123/api.json +41 -5
  61. tccli/services/cfg/v20210820/api.json +31 -0
  62. tccli/services/cfs/v20190719/api.json +89 -1
  63. tccli/services/cfs/v20190719/examples.json +1 -1
  64. tccli/services/cfw/cfw_client.py +0 -53
  65. tccli/services/cfw/v20190904/api.json +1895 -2011
  66. tccli/services/cfw/v20190904/examples.json +175 -171
  67. tccli/services/ciam/v20220331/api.json +316 -315
  68. tccli/services/ciam/v20220331/examples.json +49 -49
  69. tccli/services/ckafka/v20190819/api.json +104 -75
  70. tccli/services/clb/v20180317/api.json +48 -26
  71. tccli/services/clb/v20180317/examples.json +1 -1
  72. tccli/services/cloudapp/v20220530/api.json +5 -1
  73. tccli/services/cloudaudit/cloudaudit_client.py +30 -30
  74. tccli/services/cloudaudit/v20190319/api.json +254 -211
  75. tccli/services/cloudaudit/v20190319/examples.json +19 -19
  76. tccli/services/cloudstudio/v20230508/api.json +38 -37
  77. tccli/services/cloudstudio/v20230508/examples.json +4 -4
  78. tccli/services/cls/cls_client.py +216 -4
  79. tccli/services/cls/v20201016/api.json +935 -147
  80. tccli/services/cls/v20201016/examples.json +43 -5
  81. tccli/services/csip/v20221121/api.json +2566 -2386
  82. tccli/services/csip/v20221121/examples.json +108 -108
  83. tccli/services/cvm/v20170312/api.json +191 -112
  84. tccli/services/cvm/v20170312/examples.json +2 -2
  85. tccli/services/cwp/cwp_client.py +4 -110
  86. tccli/services/cwp/v20180228/api.json +6498 -6252
  87. tccli/services/cwp/v20180228/examples.json +372 -412
  88. tccli/services/cynosdb/v20190107/api.json +170 -110
  89. tccli/services/cynosdb/v20190107/examples.json +91 -91
  90. tccli/services/dasb/v20191018/api.json +859 -637
  91. tccli/services/dasb/v20191018/examples.json +101 -101
  92. tccli/services/dcdb/dcdb_client.py +114 -61
  93. tccli/services/dcdb/v20180411/api.json +141 -7
  94. tccli/services/dcdb/v20180411/examples.json +32 -0
  95. tccli/services/dlc/v20210125/api.json +21 -11
  96. tccli/services/dnspod/dnspod_client.py +417 -46
  97. tccli/services/dnspod/v20210323/api.json +751 -30
  98. tccli/services/dnspod/v20210323/examples.json +62 -0
  99. tccli/services/domain/v20180808/api.json +3 -3
  100. tccli/services/domain/v20180808/examples.json +3 -3
  101. tccli/services/dts/v20211206/api.json +4 -4
  102. tccli/services/eb/v20210416/api.json +15 -15
  103. tccli/services/eb/v20210416/examples.json +1 -1
  104. tccli/services/ecm/v20190719/api.json +2 -2
  105. tccli/services/emr/v20190103/api.json +339 -114
  106. tccli/services/emr/v20190103/examples.json +64 -82
  107. tccli/services/es/es_client.py +249 -37
  108. tccli/services/es/v20180416/api.json +550 -0
  109. tccli/services/es/v20180416/examples.json +33 -1
  110. tccli/services/ess/ess_client.py +53 -0
  111. tccli/services/ess/v20201111/api.json +192 -38
  112. tccli/services/ess/v20201111/examples.json +35 -9
  113. tccli/services/essbasic/essbasic_client.py +106 -0
  114. tccli/services/essbasic/v20210526/api.json +287 -60
  115. tccli/services/essbasic/v20210526/examples.json +58 -18
  116. tccli/services/facefusion/v20181201/api.json +47 -45
  117. tccli/services/facefusion/v20181201/examples.json +2 -2
  118. tccli/services/facefusion/v20220927/api.json +54 -48
  119. tccli/services/facefusion/v20220927/examples.json +5 -5
  120. tccli/services/faceid/v20180301/api.json +497 -496
  121. tccli/services/faceid/v20180301/examples.json +219 -101
  122. tccli/services/fmu/v20191213/api.json +59 -67
  123. tccli/services/fmu/v20191213/examples.json +22 -22
  124. tccli/services/ft/v20200304/api.json +53 -57
  125. tccli/services/ft/v20200304/examples.json +14 -14
  126. tccli/services/gaap/v20180529/api.json +44 -26
  127. tccli/services/gaap/v20180529/examples.json +24 -30
  128. tccli/services/gme/v20180711/api.json +21 -11
  129. tccli/services/gme/v20180711/examples.json +1 -1
  130. tccli/services/hai/v20230812/api.json +116 -9
  131. tccli/services/hai/v20230812/examples.json +4 -4
  132. tccli/services/hunyuan/hunyuan_client.py +436 -12
  133. tccli/services/hunyuan/v20230901/api.json +1482 -118
  134. tccli/services/hunyuan/v20230901/examples.json +82 -18
  135. tccli/services/iai/v20180301/api.json +23 -19
  136. tccli/services/iai/v20180301/examples.json +2 -2
  137. tccli/services/iai/v20200303/api.json +530 -511
  138. tccli/services/iai/v20200303/examples.json +116 -86
  139. tccli/services/ig/__init__.py +4 -0
  140. tccli/services/ig/ig_client.py +195 -0
  141. tccli/services/ig/v20210518/api.json +83 -0
  142. tccli/services/ig/v20210518/examples.json +13 -0
  143. tccli/services/ioa/ioa_client.py +53 -0
  144. tccli/services/ioa/v20220601/api.json +662 -413
  145. tccli/services/ioa/v20220601/examples.json +24 -10
  146. tccli/services/iotexplorer/v20190423/api.json +73 -13
  147. tccli/services/iotexplorer/v20190423/examples.json +3 -3
  148. tccli/services/iotvideo/iotvideo_client.py +106 -0
  149. tccli/services/iotvideo/v20191126/api.json +256 -24
  150. tccli/services/iotvideo/v20191126/examples.json +19 -3
  151. tccli/services/iotvideo/v20201215/api.json +1 -1
  152. tccli/services/iotvideo/v20201215/examples.json +1 -1
  153. tccli/services/iotvideo/v20211125/api.json +1 -1
  154. tccli/services/iotvideo/v20211125/examples.json +2 -2
  155. tccli/services/iss/iss_client.py +69 -122
  156. tccli/services/iss/v20230517/api.json +10 -54
  157. tccli/services/iss/v20230517/examples.json +0 -14
  158. tccli/services/kms/v20190118/api.json +301 -268
  159. tccli/services/kms/v20190118/examples.json +45 -51
  160. tccli/services/lcic/lcic_client.py +159 -0
  161. tccli/services/lcic/v20220817/api.json +273 -1
  162. tccli/services/lcic/v20220817/examples.json +24 -0
  163. tccli/services/lighthouse/v20200324/api.json +56 -0
  164. tccli/services/live/live_client.py +159 -0
  165. tccli/services/live/v20180801/api.json +279 -9
  166. tccli/services/live/v20180801/examples.json +24 -0
  167. tccli/services/lke/v20231130/api.json +17 -17
  168. tccli/services/lke/v20231130/examples.json +19 -25
  169. tccli/services/mariadb/v20170312/api.json +7 -7
  170. tccli/services/market/v20191010/api.json +3 -3
  171. tccli/services/market/v20191010/examples.json +2 -2
  172. tccli/services/mmps/v20200710/api.json +47 -47
  173. tccli/services/mmps/v20200710/examples.json +3 -3
  174. tccli/services/mongodb/v20190725/api.json +10 -12
  175. tccli/services/monitor/v20180724/api.json +46 -19
  176. tccli/services/mps/v20190612/api.json +282 -5
  177. tccli/services/mps/v20190612/examples.json +25 -1
  178. tccli/services/mqtt/v20240516/api.json +2 -2
  179. tccli/services/mrs/v20200910/api.json +72 -34
  180. tccli/services/mrs/v20200910/examples.json +2 -2
  181. tccli/services/ms/v20180408/api.json +535 -506
  182. tccli/services/ms/v20180408/examples.json +25 -25
  183. tccli/services/oceanus/v20190422/api.json +130 -0
  184. tccli/services/ocr/ocr_client.py +232 -20
  185. tccli/services/ocr/v20181119/api.json +2263 -758
  186. tccli/services/ocr/v20181119/examples.json +200 -180
  187. tccli/services/omics/v20221128/api.json +614 -553
  188. tccli/services/omics/v20221128/examples.json +9 -9
  189. tccli/services/organization/organization_client.py +352 -34
  190. tccli/services/organization/v20210331/api.json +464 -4
  191. tccli/services/organization/v20210331/examples.json +49 -1
  192. tccli/services/partners/v20180321/api.json +244 -234
  193. tccli/services/partners/v20180321/examples.json +19 -19
  194. tccli/services/privatedns/privatedns_client.py +428 -4
  195. tccli/services/privatedns/v20201028/api.json +815 -11
  196. tccli/services/privatedns/v20201028/examples.json +64 -0
  197. tccli/services/pts/v20210728/api.json +18 -0
  198. tccli/services/pts/v20210728/examples.json +1 -1
  199. tccli/services/rce/rce_client.py +53 -0
  200. tccli/services/rce/v20201103/api.json +146 -0
  201. tccli/services/rce/v20201103/examples.json +8 -0
  202. tccli/services/redis/v20180412/api.json +42 -42
  203. tccli/services/redis/v20180412/examples.json +19 -19
  204. tccli/services/region/v20220627/api.json +1 -1
  205. tccli/services/rum/v20210622/api.json +9 -0
  206. tccli/services/scf/scf_client.py +269 -4
  207. tccli/services/scf/v20180416/api.json +569 -15
  208. tccli/services/scf/v20180416/examples.json +47 -1
  209. tccli/services/smop/v20201203/api.json +46 -42
  210. tccli/services/smop/v20201203/examples.json +2 -2
  211. tccli/services/soe/v20180724/api.json +10 -10
  212. tccli/services/sqlserver/v20180328/api.json +21 -8
  213. tccli/services/sqlserver/v20180328/examples.json +5 -5
  214. tccli/services/ssl/v20191205/api.json +98 -5
  215. tccli/services/ssm/v20190923/api.json +292 -231
  216. tccli/services/ssm/v20190923/examples.json +42 -42
  217. tccli/services/tat/v20201028/api.json +124 -122
  218. tccli/services/tat/v20201028/examples.json +24 -30
  219. tccli/services/tchd/v20230306/api.json +5 -5
  220. tccli/services/tchd/v20230306/examples.json +3 -3
  221. tccli/services/tcr/v20190924/api.json +1 -1
  222. tccli/services/tcr/v20190924/examples.json +1 -1
  223. tccli/services/tcss/v20201101/api.json +1984 -1437
  224. tccli/services/tcss/v20201101/examples.json +350 -368
  225. tccli/services/tdmq/v20200217/api.json +603 -464
  226. tccli/services/tdmq/v20200217/examples.json +105 -105
  227. tccli/services/tds/v20220801/api.json +4 -4
  228. tccli/services/tem/v20210701/api.json +429 -372
  229. tccli/services/tem/v20210701/examples.json +85 -85
  230. tccli/services/teo/teo_client.py +277 -12
  231. tccli/services/teo/v20220901/api.json +1029 -124
  232. tccli/services/teo/v20220901/examples.json +84 -8
  233. tccli/services/thpc/v20230321/api.json +5 -5
  234. tccli/services/tke/tke_client.py +270 -58
  235. tccli/services/tke/v20180525/api.json +79 -27
  236. tccli/services/tke/v20180525/examples.json +9 -1
  237. tccli/services/tke/v20220501/api.json +176 -0
  238. tccli/services/tke/v20220501/examples.json +24 -0
  239. tccli/services/tms/tms_client.py +4 -57
  240. tccli/services/tms/v20201229/api.json +0 -354
  241. tccli/services/tms/v20201229/examples.json +0 -8
  242. tccli/services/tmt/v20180321/api.json +38 -8
  243. tccli/services/trp/v20210515/api.json +86 -74
  244. tccli/services/trp/v20210515/examples.json +65 -65
  245. tccli/services/trro/v20220325/api.json +72 -71
  246. tccli/services/trro/v20220325/examples.json +8 -8
  247. tccli/services/trtc/trtc_client.py +8 -61
  248. tccli/services/trtc/v20190722/api.json +293 -52
  249. tccli/services/trtc/v20190722/examples.json +3 -11
  250. tccli/services/tse/tse_client.py +110 -4
  251. tccli/services/tse/v20201207/api.json +122 -7
  252. tccli/services/tse/v20201207/examples.json +25 -9
  253. tccli/services/vclm/v20240523/api.json +225 -82
  254. tccli/services/vclm/v20240523/examples.json +13 -19
  255. tccli/services/vod/v20180717/api.json +431 -4
  256. tccli/services/vod/v20180717/examples.json +25 -5
  257. tccli/services/vod/v20240718/api.json +11 -11
  258. tccli/services/vod/v20240718/examples.json +4 -4
  259. tccli/services/vod/vod_client.py +53 -0
  260. tccli/services/vpc/v20170312/api.json +1195 -892
  261. tccli/services/vpc/v20170312/examples.json +84 -68
  262. tccli/services/vpc/vpc_client.py +168 -62
  263. tccli/services/waf/v20180125/api.json +2611 -2187
  264. tccli/services/waf/v20180125/examples.json +224 -284
  265. tccli/services/waf/waf_client.py +225 -119
  266. tccli/services/wav/v20210129/api.json +48 -48
  267. tccli/services/wav/v20210129/examples.json +4 -4
  268. tccli/services/wedata/v20210820/api.json +1595 -25
  269. tccli/services/wedata/v20210820/examples.json +44 -4
  270. tccli/services/wedata/wedata_client.py +265 -0
  271. tccli/services/weilingwith/v20230427/api.json +6 -6
  272. tccli/services/weilingwith/v20230427/examples.json +3 -3
  273. tccli/sso.py +229 -0
  274. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/METADATA +6 -2
  275. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/RECORD +278 -265
  276. tccli/services/cr/__init__.py +0 -4
  277. tccli/services/cr/cr_client.py +0 -1626
  278. tccli/services/cr/v20180321/api.json +0 -2829
  279. tccli/services/cr/v20180321/examples.json +0 -235
  280. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/WHEEL +0 -0
  281. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/entry_points.txt +0 -0
  282. {tccli-3.0.1215.1.dist-info → tccli-3.0.1217.1.dist-info}/license_files/LICENSE +0 -0
@@ -64,7 +64,7 @@
64
64
  "status": "online"
65
65
  },
66
66
  "DeleteGroup": {
67
- "document": "删除该人员库及包含的所有的人员。同时,人员对应的所有人脸信息将被删除。若某人员同时存在多个人员库中,该人员不会被删除,但属于该人员库中的自定义描述字段信息会被删除,属于其他人员库的自定义描述字段信息不受影响。\n",
67
+ "document": "删除该人员库及包含的所有的人员。同时,人员对应的所有人脸信息将被删除。若某人员同时存在多个人员库中,该人员不会被删除,但属于该人员库中的自定义描述字段信息会被删除,属于其他人员库的自定义描述字段信息不受影响。",
68
68
  "input": "DeleteGroupRequest",
69
69
  "name": "删除人员库",
70
70
  "output": "DeleteGroupResponse",
@@ -143,7 +143,7 @@
143
143
  "GetPersonList": {
144
144
  "document": "获取指定人员库中的人员列表。",
145
145
  "input": "GetPersonListRequest",
146
- "name": "获取人员列表",
146
+ "name": "获取指定人员列表",
147
147
  "output": "GetPersonListResponse",
148
148
  "status": "online"
149
149
  },
@@ -258,7 +258,7 @@
258
258
  "members": [
259
259
  {
260
260
  "disabled": false,
261
- "document": "检测模式。0 为检测所有出现的人脸, 1 为检测面积最大的人脸。 \n默认为 0。 \n最多返回 5 张人脸的五官定位(人脸关键点)具体信息。",
261
+ "document": "检测模式。\n- 取值范围:0 为检测所有出现的人脸, 1 为检测面积最大的人脸。 \n- 默认为 0。 \n- 最多返回 5 张人脸的五官定位(人脸关键点)具体信息。",
262
262
  "example": "0",
263
263
  "member": "uint64",
264
264
  "name": "Mode",
@@ -267,8 +267,8 @@
267
267
  },
268
268
  {
269
269
  "disabled": false,
270
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。 \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
271
- "example": "",
270
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。 \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
271
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
272
272
  "member": "string",
273
273
  "name": "Image",
274
274
  "required": false,
@@ -276,7 +276,7 @@
276
276
  },
277
277
  {
278
278
  "disabled": false,
279
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。 \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。 \n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
279
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。 \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。 \n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
280
280
  "example": "http://test.image.myqcloud.com/testA.jpg",
281
281
  "member": "string",
282
282
  "name": "Url",
@@ -294,7 +294,7 @@
294
294
  },
295
295
  {
296
296
  "disabled": false,
297
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
297
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
298
298
  "example": "0",
299
299
  "member": "int64",
300
300
  "name": "NeedRotateDetection",
@@ -361,7 +361,7 @@
361
361
  "members": [
362
362
  {
363
363
  "disabled": false,
364
- "document": "检测模式。0 为检测所有出现的人脸, 1 为检测面积最大的人脸。默认为 0。最多返回 10 张人脸的五官定位(人脸关键点)具体信息。",
364
+ "document": "检测模式。\n- 取值范围:\n0 为检测所有出现的人脸。\n1 为检测面积最大的人脸。\n- 默认为 0。\n- 最多返回 10 张人脸的五官定位(人脸关键点)具体信息。",
365
365
  "example": "0",
366
366
  "member": "uint64",
367
367
  "name": "Mode",
@@ -370,8 +370,8 @@
370
370
  },
371
371
  {
372
372
  "disabled": false,
373
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
374
- "example": "",
373
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
374
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
375
375
  "member": "string",
376
376
  "name": "Image",
377
377
  "required": false,
@@ -379,7 +379,7 @@
379
379
  },
380
380
  {
381
381
  "disabled": false,
382
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
382
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
383
383
  "example": "http://test.image.myqcloud.com/testA.jpg",
384
384
  "member": "string",
385
385
  "name": "Url",
@@ -388,7 +388,7 @@
388
388
  },
389
389
  {
390
390
  "disabled": false,
391
- "document": "人脸识别服务所用的算法模型版本。\n\n目前入参支持 “2.0”和“3.0“ 两个输入。\n\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
391
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
392
392
  "example": "3.0",
393
393
  "member": "string",
394
394
  "name": "FaceModelVersion",
@@ -397,7 +397,7 @@
397
397
  },
398
398
  {
399
399
  "disabled": false,
400
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
400
+ "document": "是否开启图片旋转识别支持。\n- 0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
401
401
  "example": "0",
402
402
  "member": "uint64",
403
403
  "name": "NeedRotateDetection",
@@ -464,8 +464,8 @@
464
464
  "members": [
465
465
  {
466
466
  "disabled": false,
467
- "document": "属性值",
468
- "example": "",
467
+ "document": "属性值。",
468
+ "example": "1",
469
469
  "member": "int64",
470
470
  "name": "Type",
471
471
  "output_required": true,
@@ -474,8 +474,8 @@
474
474
  },
475
475
  {
476
476
  "disabled": false,
477
- "document": "Type识别概率值,[0,1],代表判断正确的概率。",
478
- "example": "",
477
+ "document": "Type识别概率值。\n- 取值范围:[0,1],代表判断正确的概率。",
478
+ "example": "90",
479
479
  "member": "float",
480
480
  "name": "Probability",
481
481
  "output_required": true,
@@ -490,61 +490,61 @@
490
490
  "members": [
491
491
  {
492
492
  "disabled": false,
493
- "document": "人员ID",
493
+ "document": "人员ID",
494
494
  "example": "person1",
495
495
  "member": "string",
496
496
  "name": "PersonId",
497
- "required": true,
497
+ "output_required": true,
498
498
  "type": "string",
499
499
  "value_allowed_null": false
500
500
  },
501
501
  {
502
502
  "disabled": false,
503
- "document": "人脸ID,仅在SearchFaces/SearchFacesReturnsByGroup接口返回时有效。人员搜索类接口采用融合特征方式检索,该字段无意义",
503
+ "document": "人脸ID。\n- 仅在SearchFaces/SearchFacesReturnsByGroup接口返回时有效。\n- 人员搜索类接口采用融合特征方式检索,该字段无意义。",
504
504
  "example": "3820314501007076807",
505
505
  "member": "string",
506
506
  "name": "FaceId",
507
- "required": true,
507
+ "output_required": true,
508
508
  "type": "string",
509
509
  "value_allowed_null": false
510
510
  },
511
511
  {
512
512
  "disabled": false,
513
- "document": "候选者的匹配得分。 \n\n1万大小人脸底库下,误识率百分之一对应分数为70分,误识率千分之一对应分数为80分,误识率万分之一对应分数为90分;\n10万大小人脸底库下,误识率百分之一对应分数为80分,误识率千分之一对应分数为90分,误识率万分之一对应分数为100分;\n30万大小人脸底库下,误识率百分之一对应分数为85分,误识率千分之一对应分数为95分。\n\n一般80分左右可适用大部分场景,建议分数不要超过90分。您可以根据实际情况选择合适的分数。",
513
+ "document": "候选者的匹配得分。 \n- 1万大小人脸底库下,误识率百分之一对应分数为70分,误识率千分之一对应分数为80分,误识率万分之一对应分数为90分。\n- 10万大小人脸底库下,误识率百分之一对应分数为80分,误识率千分之一对应分数为90分,误识率万分之一对应分数为100分。\n- 30万大小人脸底库下,误识率百分之一对应分数为85分,误识率千分之一对应分数为95分。\n- 一般80分左右可适用大部分场景,建议分数不要超过90分。您可以根据实际情况选择合适的分数。",
514
514
  "example": "50",
515
515
  "member": "float",
516
516
  "name": "Score",
517
- "required": true,
517
+ "output_required": true,
518
518
  "type": "float",
519
519
  "value_allowed_null": false
520
520
  },
521
521
  {
522
522
  "disabled": false,
523
- "document": "人员名称\n注意:此字段可能返回 null,表示取不到有效值。",
524
- "example": "hello",
523
+ "document": "人员名称。\n注意:此字段可能返回 null,表示取不到有效值。",
524
+ "example": "韦小宝",
525
525
  "member": "string",
526
526
  "name": "PersonName",
527
- "required": true,
527
+ "output_required": true,
528
528
  "type": "string",
529
529
  "value_allowed_null": true
530
530
  },
531
531
  {
532
532
  "disabled": false,
533
- "document": "人员性别\n注意:此字段可能返回 null,表示取不到有效值。",
533
+ "document": "人员性别。\n注意:此字段可能返回 null,表示取不到有效值。",
534
534
  "example": "0",
535
535
  "member": "int64",
536
536
  "name": "Gender",
537
- "required": true,
537
+ "output_required": true,
538
538
  "type": "int",
539
539
  "value_allowed_null": true
540
540
  },
541
541
  {
542
542
  "disabled": false,
543
- "document": "包含此人员的人员库及描述字段内容列表\n注意:此字段可能返回 null,表示取不到有效值。",
543
+ "document": "包含此人员的人员库及描述字段内容列表。\n注意:此字段可能返回 null,表示取不到有效值。",
544
544
  "example": "无",
545
545
  "member": "PersonGroupInfo",
546
546
  "name": "PersonGroupInfos",
547
- "required": true,
547
+ "output_required": true,
548
548
  "type": "list",
549
549
  "value_allowed_null": true
550
550
  }
@@ -556,8 +556,8 @@
556
556
  "members": [
557
557
  {
558
558
  "disabled": false,
559
- "document": "A 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中置信度最高的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
560
- "example": "",
559
+ "document": "A 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中置信度最高的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
560
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
561
561
  "member": "string",
562
562
  "name": "ImageA",
563
563
  "required": false,
@@ -565,8 +565,8 @@
565
565
  },
566
566
  {
567
567
  "disabled": false,
568
- "document": "B 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中置信度最高的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
569
- "example": "",
568
+ "document": "B 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中置信度最高的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
569
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
570
570
  "member": "string",
571
571
  "name": "ImageB",
572
572
  "required": false,
@@ -574,7 +574,7 @@
574
574
  },
575
575
  {
576
576
  "disabled": false,
577
- "document": "A 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nA 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
577
+ "document": "A 图片的 Url。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- A 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
578
578
  "example": "http://test.image.myqcloud.com/testA.jpg",
579
579
  "member": "string",
580
580
  "name": "UrlA",
@@ -583,7 +583,7 @@
583
583
  },
584
584
  {
585
585
  "disabled": false,
586
- "document": "B 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nB 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
586
+ "document": "B 图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- B 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
587
587
  "example": "http://test.image.myqcloud.com/testB.jpg",
588
588
  "member": "string",
589
589
  "name": "UrlB",
@@ -592,7 +592,7 @@
592
592
  },
593
593
  {
594
594
  "disabled": false,
595
- "document": "人脸识别服务所用的算法模型版本。\n\n目前入参支持 “2.0”和“3.0“ 两个输入。\n\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
595
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
596
596
  "example": "3.0",
597
597
  "member": "string",
598
598
  "name": "FaceModelVersion",
@@ -601,7 +601,7 @@
601
601
  },
602
602
  {
603
603
  "disabled": false,
604
- "document": "图片质量控制。 \n0: 不进行控制; \n1: 较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多,在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
604
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1: 较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多,在某一维度上存在轻微问题; \n默认 0。 \n\n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
605
605
  "example": "0",
606
606
  "member": "uint64",
607
607
  "name": "QualityControl",
@@ -610,7 +610,7 @@
610
610
  },
611
611
  {
612
612
  "disabled": false,
613
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
613
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
614
614
  "example": "0",
615
615
  "member": "uint64",
616
616
  "name": "NeedRotateDetection",
@@ -625,7 +625,7 @@
625
625
  "members": [
626
626
  {
627
627
  "disabled": false,
628
- "document": "两张图片中人脸的相似度分数。\n不同算法版本返回的相似度分数不同。 \n若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
628
+ "document": "两张图片中人脸的相似度分数。\n- 不同算法版本返回的相似度分数不同。 \n- 若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n- 2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n- 若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
629
629
  "example": "0.999",
630
630
  "member": "float",
631
631
  "name": "Score",
@@ -657,8 +657,8 @@
657
657
  "members": [
658
658
  {
659
659
  "disabled": false,
660
- "document": "A 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
661
- "example": "XyE7l...",
660
+ "document": "A 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
661
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
662
662
  "member": "string",
663
663
  "name": "ImageA",
664
664
  "required": false,
@@ -666,8 +666,8 @@
666
666
  },
667
667
  {
668
668
  "disabled": false,
669
- "document": "B 图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
670
- "example": "XyE7l...",
669
+ "document": "B 图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
670
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
671
671
  "member": "string",
672
672
  "name": "ImageB",
673
673
  "required": false,
@@ -675,7 +675,7 @@
675
675
  },
676
676
  {
677
677
  "disabled": false,
678
- "document": "A 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nA 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
678
+ "document": "A 图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- A 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
679
679
  "example": "http://test.image.myqcloud.com/testA.jpg",
680
680
  "member": "string",
681
681
  "name": "UrlA",
@@ -684,7 +684,7 @@
684
684
  },
685
685
  {
686
686
  "disabled": false,
687
- "document": "B 图片的 Url ,对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nB 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
687
+ "document": "B 图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- B 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
688
688
  "example": "http://test.image.myqcloud.com/testB.jpg",
689
689
  "member": "string",
690
690
  "name": "UrlB",
@@ -702,7 +702,7 @@
702
702
  },
703
703
  {
704
704
  "disabled": false,
705
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
705
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
706
706
  "example": "0",
707
707
  "member": "uint64",
708
708
  "name": "QualityControl",
@@ -717,7 +717,7 @@
717
717
  "members": [
718
718
  {
719
719
  "disabled": false,
720
- "document": "两张图片中人脸的相似度分数。\n不同算法版本返回的相似度分数不同。 \n若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
720
+ "document": "两张图片中人脸的相似度分数。\n- 不同算法版本返回的相似度分数不同。 \n- 若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。 \n- 2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。 \n- 若需要验证两张图片中的人脸是否为同一人,建议使用人脸验证接口。",
721
721
  "example": "99",
722
722
  "member": "float",
723
723
  "name": "Score",
@@ -749,8 +749,8 @@
749
749
  "members": [
750
750
  {
751
751
  "disabled": false,
752
- "document": "人员ID,取值为创建人员接口中的PersonId",
753
- "example": "",
752
+ "document": "人员ID,取值为创建人员接口中的PersonId",
753
+ "example": "1001",
754
754
  "member": "string",
755
755
  "name": "PersonId",
756
756
  "required": true,
@@ -758,8 +758,8 @@
758
758
  },
759
759
  {
760
760
  "disabled": false,
761
- "document": "待加入的人员库列表,数组元素取值为创建人员库接口中的GroupId",
762
- "example": "",
761
+ "document": "待加入的人员库列表,数组元素取值为创建人员库接口中的GroupId",
762
+ "example": "[\"TencentShenZhenEmployee\"]",
763
763
  "member": "string",
764
764
  "name": "GroupIds",
765
765
  "required": true,
@@ -773,19 +773,21 @@
773
773
  "members": [
774
774
  {
775
775
  "disabled": false,
776
- "document": "成功加入的人员库数量",
777
- "example": "",
776
+ "document": "成功加入的人员库数量。",
777
+ "example": "10",
778
778
  "member": "uint64",
779
779
  "name": "SucGroupNum",
780
+ "output_required": true,
780
781
  "type": "int",
781
782
  "value_allowed_null": false
782
783
  },
783
784
  {
784
785
  "disabled": false,
785
- "document": "成功加入的人员库列表",
786
- "example": "",
786
+ "document": "成功加入的人员库列表。",
787
+ "example": "[\"TencentShenZhenEmployee\"]",
787
788
  "member": "string",
788
789
  "name": "SucGroupIds",
790
+ "output_required": true,
789
791
  "type": "list",
790
792
  "value_allowed_null": false
791
793
  },
@@ -803,7 +805,7 @@
803
805
  "members": [
804
806
  {
805
807
  "disabled": false,
806
- "document": "人员ID,取值为创建人员接口中的PersonId",
808
+ "document": "人员ID,取值为创建人员接口中的PersonId",
807
809
  "example": "1001",
808
810
  "member": "string",
809
811
  "name": "PersonId",
@@ -812,8 +814,8 @@
812
814
  },
813
815
  {
814
816
  "disabled": false,
815
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n人员人脸总数量不可超过5张。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
816
- "example": "",
817
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 人员人脸总数量不可超过5张。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
818
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
817
819
  "member": "string",
818
820
  "name": "Images",
819
821
  "required": false,
@@ -821,8 +823,8 @@
821
823
  },
822
824
  {
823
825
  "disabled": false,
824
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。\n人员人脸总数量不可超过5张。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。",
825
- "example": "[\"http:\\/\\/test.image.myqcloud.com\\/testA.jpg\"]",
826
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。\n- 人员人脸总数量不可超过5张。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。",
827
+ "example": "[\"http://test.image.myqcloud.com/testA.jpg\"]",
826
828
  "member": "string",
827
829
  "name": "Urls",
828
830
  "required": false,
@@ -830,7 +832,7 @@
830
832
  },
831
833
  {
832
834
  "disabled": false,
833
- "document": "只有和该人员已有的人脸相似度超过FaceMatchThreshold值的人脸,才能增加人脸成功。 \n默认值60分。取值范围[0,100] 。",
835
+ "document": "只有和该人员已有的人脸相似度超过FaceMatchThreshold值的人脸,才能增加人脸成功。 \n- 默认值60分。\n- 取值范围:[0,100] 。",
834
836
  "example": "60",
835
837
  "member": "float",
836
838
  "name": "FaceMatchThreshold",
@@ -839,7 +841,7 @@
839
841
  },
840
842
  {
841
843
  "disabled": false,
842
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
844
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
843
845
  "example": "0",
844
846
  "member": "uint64",
845
847
  "name": "QualityControl",
@@ -848,7 +850,7 @@
848
850
  },
849
851
  {
850
852
  "disabled": false,
851
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
853
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
852
854
  "example": "0",
853
855
  "member": "uint64",
854
856
  "name": "NeedRotateDetection",
@@ -863,7 +865,7 @@
863
865
  "members": [
864
866
  {
865
867
  "disabled": false,
866
- "document": "加入成功的人脸数量",
868
+ "document": "加入成功的人脸数量。",
867
869
  "example": "1",
868
870
  "member": "uint64",
869
871
  "name": "SucFaceNum",
@@ -873,7 +875,7 @@
873
875
  },
874
876
  {
875
877
  "disabled": false,
876
- "document": "加入成功的人脸ID列表",
878
+ "document": "加入成功的人脸ID列表。",
877
879
  "example": "[\"2875186538564559728\"]",
878
880
  "member": "string",
879
881
  "name": "SucFaceIds",
@@ -883,7 +885,7 @@
883
885
  },
884
886
  {
885
887
  "disabled": false,
886
- "document": "每张人脸图片添加结果,-1101 代表未检测到人脸,-1102 代表图片解码失败,-1109 代表图片尺寸过大或者过小, \n-1601代表不符合图片质量控制要求, -1604 代表人脸相似度没有超过FaceMatchThreshold。 \n其他非 0 值代表算法服务异常。 \nRetCode的顺序和入参中 Images 或 Urls 的顺序一致。",
888
+ "document": "每张人脸图片添加结果。\n- 其他非 0 值代表算法服务异常,取值范围:\n-1101 代表未检测到人脸。\n-1102 代表图片解码失败。\n-1109 代表图片尺寸过大或者过小。\n-1601代表不符合图片质量控制要求。\n-1604 代表人脸相似度没有超过FaceMatchThreshold。 \n- RetCode的顺序和入参中 Images 或 Urls 的顺序一致。",
887
889
  "example": "[0]",
888
890
  "member": "int64",
889
891
  "name": "RetCode",
@@ -893,7 +895,7 @@
893
895
  },
894
896
  {
895
897
  "disabled": false,
896
- "document": "加入成功的人脸索引。索引顺序和入参中 Images 或 Urls 的顺序一致。 \n例如, Urls 中 有 3 个 url,第二个 url 失败,则 SucIndexes 值为 [0,2] 。",
898
+ "document": "加入成功的人脸索引。\n- 索引顺序和入参中 Images 或 Urls 的顺序一致。 \n- 例如, Urls 中 有 3 个 url,第二个 url 失败,则 SucIndexes 值为 [0,2] 。",
897
899
  "example": "[0]",
898
900
  "member": "uint64",
899
901
  "name": "SucIndexes",
@@ -953,8 +955,8 @@
953
955
  },
954
956
  {
955
957
  "disabled": false,
956
- "document": "人员库自定义描述字段,用于描述人员库中人员属性,该人员库下所有人员将拥有此描述字段。 \n最多可以创建5个。 \n每个自定义描述字段支持[1,30]个字符。 \n在同一人员库中自定义描述字段不可重复。 \n例: 设置某人员库“自定义描述字段”为[\"学号\",\"工号\",\"手机号\"], \n则该人员库下所有人员将拥有名为“学号”、“工号”、“手机号”的描述字段, \n可在对应人员描述字段中填写内容,登记该人员的学号、工号、手机号等信息。",
957
- "example": "[\"\\u4e8b\\u4e1a\\u7fa4\",\"\\u90e8\\u95e8\\u540d\",\"\\u7ec4\\u540d\"]",
958
+ "document": "人员库自定义描述字段,用于描述人员库中人员属性,该人员库下所有人员将拥有此描述字段。 \n- 最多可以创建5个。 \n- 每个自定义描述字段支持[1,30]个字符。 \n- 在同一人员库中自定义描述字段不可重复。 \n- 例: 设置某人员库“自定义描述字段”为[\"学号\",\"工号\",\"手机号\"], 则该人员库下所有人员将拥有名为“学号”、“工号”、“手机号”的描述字段, 可在对应人员描述字段中填写内容,登记该人员的学号、工号、手机号等信息。",
959
+ "example": "[\"学号\",\"工号\",\"手机号\"]",
958
960
  "member": "string",
959
961
  "name": "GroupExDescriptions",
960
962
  "required": false,
@@ -971,7 +973,7 @@
971
973
  },
972
974
  {
973
975
  "disabled": false,
974
- "document": "人脸识别服务所用的算法模型版本。\n目前入参支持 “2.0”和“3.0“ 两个输入。\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
976
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
975
977
  "example": "3.0",
976
978
  "member": "string",
977
979
  "name": "FaceModelVersion",
@@ -1008,8 +1010,8 @@
1008
1010
  "members": [
1009
1011
  {
1010
1012
  "disabled": false,
1011
- "document": "待加入的人员库ID,取值为创建人员库接口中的GroupId",
1012
- "example": "ZhuYuanDormitoryNo1",
1013
+ "document": "待加入的人员库ID,取值为创建人员库接口中的GroupId",
1014
+ "example": "78",
1013
1015
  "member": "string",
1014
1016
  "name": "GroupId",
1015
1017
  "required": true,
@@ -1018,7 +1020,7 @@
1018
1020
  {
1019
1021
  "disabled": false,
1020
1022
  "document": "人员名称。[1,60]个字符,可修改,可重复。",
1021
- "example": "Junly",
1023
+ "example": "韦小宝",
1022
1024
  "member": "string",
1023
1025
  "name": "PersonName",
1024
1026
  "required": true,
@@ -1026,7 +1028,7 @@
1026
1028
  },
1027
1029
  {
1028
1030
  "disabled": false,
1029
- "document": "人员ID,单个腾讯云账号下不可修改,不可重复。支持英文、数字、-%@#&_,长度限制64B。",
1031
+ "document": "人员ID。\n- 单个腾讯云账号下不可修改,不可重复。\n- 支持英文、数字、-%@#&_,长度限制64B。",
1030
1032
  "example": "2001",
1031
1033
  "member": "string",
1032
1034
  "name": "PersonId",
@@ -1035,7 +1037,7 @@
1035
1037
  },
1036
1038
  {
1037
1039
  "disabled": false,
1038
- "document": "0代表未填写,1代表男性,2代表女性。",
1040
+ "document": "性别。\n- 取值范围:0代表未填写,1代表男性,2代表女性。",
1039
1041
  "example": "1",
1040
1042
  "member": "int64",
1041
1043
  "name": "Gender",
@@ -1053,8 +1055,8 @@
1053
1055
  },
1054
1056
  {
1055
1057
  "disabled": false,
1056
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1057
- "example": "",
1058
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1059
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1058
1060
  "member": "string",
1059
1061
  "name": "Image",
1060
1062
  "required": false,
@@ -1062,7 +1064,7 @@
1062
1064
  },
1063
1065
  {
1064
1066
  "disabled": false,
1065
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1067
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1066
1068
  "example": "http://test.image.myqcloud.com/testB.jpg",
1067
1069
  "member": "string",
1068
1070
  "name": "Url",
@@ -1071,7 +1073,7 @@
1071
1073
  },
1072
1074
  {
1073
1075
  "disabled": false,
1074
- "document": "此参数用于控制判断 Image 或 Url 中图片包含的人脸,是否在人员库中已有疑似的同一人。 \n如果判断为已有相同人在人员库中,则不会创建新的人员,返回疑似同一人的人员信息。 \n如果判断没有,则完成创建人员。 \n0: 不进行判断,无论是否有疑似同一人在库中均完成入库; \n1:较低的同一人判断要求(百一误识别率); \n2: 一般的同一人判断要求(千一误识别率); \n3: 较高的同一人判断要求(万一误识别率); \n4: 很高的同一人判断要求(十万一误识别率)。 \n默认 0。 \n注: 要求越高,则疑似同一人的概率越小。不同要求对应的误识别率仅为参考值,您可以根据实际情况调整。",
1076
+ "document": "此参数用于控制判断 Image 或 Url 中图片包含的人脸,是否在人员库中已有疑似的同一人。 \n- 如果判断为已有相同人在人员库中,则不会创建新的人员,返回疑似同一人的人员信息。 \n- 如果判断没有,则完成创建人员。 \n- 取值范围:\n0: 不进行判断,无论是否有疑似同一人在库中均完成入库; \n1:较低的同一人判断要求(百一误识别率); \n2: 一般的同一人判断要求(千一误识别率); \n3: 较高的同一人判断要求(万一误识别率); \n4: 很高的同一人判断要求(十万一误识别率)。 \n- 默认 0。 \n- 注: 要求越高,则疑似同一人的概率越小。不同要求对应的误识别率仅为参考值,您可以根据实际情况调整。",
1075
1077
  "example": "0",
1076
1078
  "member": "uint64",
1077
1079
  "name": "UniquePersonControl",
@@ -1080,7 +1082,7 @@
1080
1082
  },
1081
1083
  {
1082
1084
  "disabled": false,
1083
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
1085
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
1084
1086
  "example": "0",
1085
1087
  "member": "uint64",
1086
1088
  "name": "QualityControl",
@@ -1089,7 +1091,7 @@
1089
1091
  },
1090
1092
  {
1091
1093
  "disabled": false,
1092
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1094
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1093
1095
  "example": "0",
1094
1096
  "member": "uint64",
1095
1097
  "name": "NeedRotateDetection",
@@ -1124,8 +1126,8 @@
1124
1126
  },
1125
1127
  {
1126
1128
  "disabled": false,
1127
- "document": "疑似同一人的PersonId。 \n当 UniquePersonControl 参数不为0且人员库中有疑似的同一人,此参数才有意义。",
1128
- "example": "",
1129
+ "document": "疑似同一人的PersonId。 \n- 当 UniquePersonControl 参数不为0且人员库中有疑似的同一人,此参数才有意义。",
1130
+ "example": "18",
1129
1131
  "member": "string",
1130
1132
  "name": "SimilarPersonId",
1131
1133
  "output_required": true,
@@ -1156,8 +1158,8 @@
1156
1158
  "members": [
1157
1159
  {
1158
1160
  "disabled": false,
1159
- "document": "人员ID,取值为创建人员接口中的PersonId",
1160
- "example": "",
1161
+ "document": "人员ID,取值为创建人员接口中的PersonId",
1162
+ "example": "5001",
1161
1163
  "member": "string",
1162
1164
  "name": "PersonId",
1163
1165
  "required": true,
@@ -1165,8 +1167,8 @@
1165
1167
  },
1166
1168
  {
1167
1169
  "disabled": false,
1168
- "document": "待删除的人脸ID列表,数组元素取值为增加人脸接口返回的FaceId",
1169
- "example": "",
1170
+ "document": "待删除的人脸ID列表,数组元素取值为增加人脸接口返回的FaceId",
1171
+ "example": "[\"2875186538564559728\"]",
1170
1172
  "member": "string",
1171
1173
  "name": "FaceIds",
1172
1174
  "required": true,
@@ -1180,19 +1182,21 @@
1180
1182
  "members": [
1181
1183
  {
1182
1184
  "disabled": false,
1183
- "document": "删除成功的人脸数量",
1184
- "example": "",
1185
+ "document": "删除成功的人脸数量.",
1186
+ "example": "1",
1185
1187
  "member": "uint64",
1186
1188
  "name": "SucDeletedNum",
1189
+ "output_required": true,
1187
1190
  "type": "int",
1188
1191
  "value_allowed_null": false
1189
1192
  },
1190
1193
  {
1191
1194
  "disabled": false,
1192
- "document": "删除成功的人脸ID列表",
1193
- "example": "",
1195
+ "document": "删除成功的人脸ID列表。",
1196
+ "example": "[\"2875186538564559728\"]",
1194
1197
  "member": "string",
1195
1198
  "name": "SucFaceIds",
1199
+ "output_required": true,
1196
1200
  "type": "list",
1197
1201
  "value_allowed_null": false
1198
1202
  },
@@ -1210,8 +1214,8 @@
1210
1214
  "members": [
1211
1215
  {
1212
1216
  "disabled": false,
1213
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
1214
- "example": "",
1217
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
1218
+ "example": "21",
1215
1219
  "member": "string",
1216
1220
  "name": "GroupId",
1217
1221
  "required": true,
@@ -1237,8 +1241,8 @@
1237
1241
  "members": [
1238
1242
  {
1239
1243
  "disabled": false,
1240
- "document": "人员ID,取值为创建人员接口中的PersonId",
1241
- "example": "",
1244
+ "document": "人员ID,取值为创建人员接口中的PersonId",
1245
+ "example": "3001",
1242
1246
  "member": "string",
1243
1247
  "name": "PersonId",
1244
1248
  "required": true,
@@ -1246,8 +1250,8 @@
1246
1250
  },
1247
1251
  {
1248
1252
  "disabled": false,
1249
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
1250
- "example": "",
1253
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
1254
+ "example": "ZhuYuanDormitoryNo1",
1251
1255
  "member": "string",
1252
1256
  "name": "GroupId",
1253
1257
  "required": true,
@@ -1273,8 +1277,8 @@
1273
1277
  "members": [
1274
1278
  {
1275
1279
  "disabled": false,
1276
- "document": "人员ID,取值为创建人员接口中的PersonId",
1277
- "example": "",
1280
+ "document": "人员ID,取值为创建人员接口中的PersonId",
1281
+ "example": "3001",
1278
1282
  "member": "string",
1279
1283
  "name": "PersonId",
1280
1284
  "required": true,
@@ -1301,180 +1305,180 @@
1301
1305
  {
1302
1306
  "disabled": false,
1303
1307
  "document": "人脸框左上角横坐标。",
1304
- "example": "",
1308
+ "example": "198",
1305
1309
  "member": "int64",
1306
1310
  "name": "X",
1307
- "required": true,
1311
+ "output_required": true,
1308
1312
  "type": "int",
1309
1313
  "value_allowed_null": false
1310
1314
  },
1311
1315
  {
1312
1316
  "disabled": false,
1313
1317
  "document": "人脸框左上角纵坐标。",
1314
- "example": "",
1318
+ "example": "254",
1315
1319
  "member": "int64",
1316
1320
  "name": "Y",
1317
- "required": true,
1321
+ "output_required": true,
1318
1322
  "type": "int",
1319
1323
  "value_allowed_null": false
1320
1324
  },
1321
1325
  {
1322
1326
  "disabled": false,
1323
1327
  "document": "人脸框宽度。",
1324
- "example": "",
1328
+ "example": "924",
1325
1329
  "member": "int64",
1326
1330
  "name": "Width",
1327
- "required": true,
1331
+ "output_required": true,
1328
1332
  "type": "int",
1329
1333
  "value_allowed_null": false
1330
1334
  },
1331
1335
  {
1332
1336
  "disabled": false,
1333
1337
  "document": "人脸框高度。",
1334
- "example": "",
1338
+ "example": "809",
1335
1339
  "member": "int64",
1336
1340
  "name": "Height",
1337
- "required": true,
1341
+ "output_required": true,
1338
1342
  "type": "int",
1339
1343
  "value_allowed_null": false
1340
1344
  },
1341
1345
  {
1342
1346
  "disabled": false,
1343
1347
  "document": "描述左侧眼睛轮廓的 XX 点。",
1344
- "example": "",
1348
+ "example": "",
1345
1349
  "member": "Point",
1346
1350
  "name": "LeftEye",
1347
- "required": true,
1351
+ "output_required": true,
1348
1352
  "type": "list",
1349
1353
  "value_allowed_null": false
1350
1354
  },
1351
1355
  {
1352
1356
  "disabled": false,
1353
1357
  "document": "描述右侧眼睛轮廓的 XX 点。",
1354
- "example": "",
1358
+ "example": "",
1355
1359
  "member": "Point",
1356
1360
  "name": "RightEye",
1357
- "required": true,
1361
+ "output_required": true,
1358
1362
  "type": "list",
1359
1363
  "value_allowed_null": false
1360
1364
  },
1361
1365
  {
1362
1366
  "disabled": false,
1363
1367
  "document": "描述左侧眉毛轮廓的 XX 点。",
1364
- "example": "",
1368
+ "example": "",
1365
1369
  "member": "Point",
1366
1370
  "name": "LeftEyeBrow",
1367
- "required": true,
1371
+ "output_required": true,
1368
1372
  "type": "list",
1369
1373
  "value_allowed_null": false
1370
1374
  },
1371
1375
  {
1372
1376
  "disabled": false,
1373
1377
  "document": "描述右侧眉毛轮廓的 XX 点。",
1374
- "example": "",
1378
+ "example": "",
1375
1379
  "member": "Point",
1376
1380
  "name": "RightEyeBrow",
1377
- "required": true,
1381
+ "output_required": true,
1378
1382
  "type": "list",
1379
1383
  "value_allowed_null": false
1380
1384
  },
1381
1385
  {
1382
1386
  "disabled": false,
1383
1387
  "document": "描述外嘴巴轮廓的 XX 点, 从左侧开始逆时针返回。",
1384
- "example": "",
1388
+ "example": "",
1385
1389
  "member": "Point",
1386
1390
  "name": "MouthOutside",
1387
- "required": true,
1391
+ "output_required": true,
1388
1392
  "type": "list",
1389
1393
  "value_allowed_null": false
1390
1394
  },
1391
1395
  {
1392
1396
  "disabled": false,
1393
1397
  "document": "描述内嘴巴轮廓的 XX 点,从左侧开始逆时针返回。",
1394
- "example": "",
1398
+ "example": "",
1395
1399
  "member": "Point",
1396
1400
  "name": "MouthInside",
1397
- "required": true,
1401
+ "output_required": true,
1398
1402
  "type": "list",
1399
1403
  "value_allowed_null": false
1400
1404
  },
1401
1405
  {
1402
1406
  "disabled": false,
1403
1407
  "document": "描述鼻子轮廓的 XX 点。",
1404
- "example": "",
1408
+ "example": "",
1405
1409
  "member": "Point",
1406
1410
  "name": "Nose",
1407
- "required": true,
1411
+ "output_required": true,
1408
1412
  "type": "list",
1409
1413
  "value_allowed_null": false
1410
1414
  },
1411
1415
  {
1412
1416
  "disabled": false,
1413
1417
  "document": "左瞳孔轮廓的 XX 个点。",
1414
- "example": "",
1418
+ "example": "",
1415
1419
  "member": "Point",
1416
1420
  "name": "LeftPupil",
1417
- "required": true,
1421
+ "output_required": true,
1418
1422
  "type": "list",
1419
1423
  "value_allowed_null": false
1420
1424
  },
1421
1425
  {
1422
1426
  "disabled": false,
1423
1427
  "document": "右瞳孔轮廓的 XX 个点。",
1424
- "example": "",
1428
+ "example": "",
1425
1429
  "member": "Point",
1426
1430
  "name": "RightPupil",
1427
- "required": true,
1431
+ "output_required": true,
1428
1432
  "type": "list",
1429
1433
  "value_allowed_null": false
1430
1434
  },
1431
1435
  {
1432
1436
  "disabled": false,
1433
1437
  "document": "中轴线轮廓的 XX 个点。",
1434
- "example": "",
1438
+ "example": "",
1435
1439
  "member": "Point",
1436
1440
  "name": "CentralAxis",
1437
- "required": true,
1441
+ "output_required": true,
1438
1442
  "type": "list",
1439
1443
  "value_allowed_null": false
1440
1444
  },
1441
1445
  {
1442
1446
  "disabled": false,
1443
1447
  "document": "下巴轮廓的 XX 个点。",
1444
- "example": "",
1448
+ "example": "",
1445
1449
  "member": "Point",
1446
1450
  "name": "Chin",
1447
- "required": true,
1451
+ "output_required": true,
1448
1452
  "type": "list",
1449
1453
  "value_allowed_null": false
1450
1454
  },
1451
1455
  {
1452
1456
  "disabled": false,
1453
1457
  "document": "左眼袋的 XX 个点。",
1454
- "example": "",
1458
+ "example": "",
1455
1459
  "member": "Point",
1456
1460
  "name": "LeftEyeBags",
1457
- "required": true,
1461
+ "output_required": true,
1458
1462
  "type": "list",
1459
1463
  "value_allowed_null": false
1460
1464
  },
1461
1465
  {
1462
1466
  "disabled": false,
1463
1467
  "document": "右眼袋的 XX 个点。",
1464
- "example": "",
1468
+ "example": "",
1465
1469
  "member": "Point",
1466
1470
  "name": "RightEyeBags",
1467
- "required": true,
1471
+ "output_required": true,
1468
1472
  "type": "list",
1469
1473
  "value_allowed_null": false
1470
1474
  },
1471
1475
  {
1472
1476
  "disabled": false,
1473
1477
  "document": "额头的 XX 个点。",
1474
- "example": "",
1478
+ "example": "",
1475
1479
  "member": "Point",
1476
1480
  "name": "Forehead",
1477
- "required": true,
1481
+ "output_required": true,
1478
1482
  "type": "list",
1479
1483
  "value_allowed_null": false
1480
1484
  }
@@ -1486,7 +1490,7 @@
1486
1490
  "members": [
1487
1491
  {
1488
1492
  "disabled": false,
1489
- "document": "最多处理的人脸数目。 \n默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1493
+ "document": "最多处理的人脸数目。 \n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n- 此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1490
1494
  "example": "1",
1491
1495
  "member": "uint64",
1492
1496
  "name": "MaxFaceNum",
@@ -1495,8 +1499,8 @@
1495
1499
  },
1496
1500
  {
1497
1501
  "disabled": false,
1498
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1499
- "example": "",
1502
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 \n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1503
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1500
1504
  "member": "string",
1501
1505
  "name": "Image",
1502
1506
  "required": false,
@@ -1504,7 +1508,7 @@
1504
1508
  },
1505
1509
  {
1506
1510
  "disabled": false,
1507
- "document": "图片的 Url 。 \n对应图片 base64 编码后大小不可超过5M。 \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。 \n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1511
+ "document": "图片的 Url 。 \n- 对应图片 base64 编码后大小不可超过5M。 \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。 \n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1508
1512
  "example": "http://test.image.myqcloud.com/testA.jpg",
1509
1513
  "member": "string",
1510
1514
  "name": "Url",
@@ -1513,7 +1517,7 @@
1513
1517
  },
1514
1518
  {
1515
1519
  "disabled": false,
1516
- "document": "是否返回年龄、性别、情绪等属性。 \n合法值为(大小写不敏感):None、Age、Beauty、Emotion、Eye、Eyebrow、 \nGender、Hair、Hat、Headpose、Mask、Mouth、Moustache、Nose、Shape、Skin、Smile。 \nNone为不需要返回。默认为 None。即FaceAttributesType属性为空时,各属性返回值为0。\n需要将属性组成一个用逗号分隔的字符串,属性之间的顺序没有要求。 \n关于各属性的详细描述,参见下文出参。 \n最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 AttributesInfo 不具备参考意义。",
1520
+ "document": "是否返回年龄、性别、情绪等属性。 \n- 合法值为(大小写不敏感):None、Age、Beauty、Emotion、Eye、Eyebrow、Gender、Hair、Hat、Headpose、Mask、Mouth、Moustache、Nose、Shape、Skin、Smile。 \n- None为不需要返回。\n- 默认为 None。即FaceAttributesType属性为空时,各属性返回值为0。\n- 需要将属性组成一个用逗号分隔的字符串,属性之间的顺序没有要求。 \n- 关于各属性的详细描述,参见下文出参。 \n- 最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 AttributesInfo 不具备参考意义。",
1517
1521
  "example": "eye",
1518
1522
  "member": "string",
1519
1523
  "name": "FaceAttributesType",
@@ -1522,7 +1526,7 @@
1522
1526
  },
1523
1527
  {
1524
1528
  "disabled": false,
1525
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1529
+ "document": "是否开启图片旋转识别支持。\n- 0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1526
1530
  "example": "0",
1527
1531
  "member": "uint64",
1528
1532
  "name": "NeedRotateDetection",
@@ -1598,7 +1602,7 @@
1598
1602
  "members": [
1599
1603
  {
1600
1604
  "disabled": false,
1601
- "document": "最多处理的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1605
+ "document": "最多处理的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为120。 \n- 此参数用于控制处理待检测图片中的人脸个数,值越小,处理速度越快。",
1602
1606
  "example": "1",
1603
1607
  "member": "uint64",
1604
1608
  "name": "MaxFaceNum",
@@ -1607,7 +1611,7 @@
1607
1611
  },
1608
1612
  {
1609
1613
  "disabled": false,
1610
- "document": "人脸长和宽的最小尺寸,单位为像素,低于MinFaceSize值的人脸不会被检测。\n只支持设置34和20,建议使用34。\n",
1614
+ "document": "人脸长和宽的最小尺寸,单位为像素,低于MinFaceSize值的人脸不会被检测。\n- 只支持设置34和20,建议使用34",
1611
1615
  "example": "34",
1612
1616
  "member": "uint64",
1613
1617
  "name": "MinFaceSize",
@@ -1616,8 +1620,8 @@
1616
1620
  },
1617
1621
  {
1618
1622
  "disabled": false,
1619
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1620
- "example": "",
1623
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1624
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1621
1625
  "member": "string",
1622
1626
  "name": "Image",
1623
1627
  "required": false,
@@ -1625,7 +1629,7 @@
1625
1629
  },
1626
1630
  {
1627
1631
  "disabled": false,
1628
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1632
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1629
1633
  "example": "https://test.image.myqcloud.com/testB.jpg",
1630
1634
  "member": "string",
1631
1635
  "name": "Url",
@@ -1634,7 +1638,7 @@
1634
1638
  },
1635
1639
  {
1636
1640
  "disabled": false,
1637
- "document": "是否需要返回人脸属性信息(FaceAttributesInfo)。0 为不需要返回,1 为需要返回。默认为 0。 \n非 1 值均视为不需要返回,此时 FaceAttributesInfo 不具备参考意义。 \n最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 FaceAttributesInfo 不具备参考意义。 \n提取人脸属性信息较为耗时,如不需要人脸属性信息,建议关闭此项功能,加快人脸检测速度。",
1641
+ "document": "是否需要返回人脸属性信息(FaceAttributesInfo)。\n- 0 为不需要返回,1 为需要返回。\n- 默认为 0。 \n- 非 1 值均视为不需要返回,此时 FaceAttributesInfo 不具备参考意义。 \n- 最多返回面积最大的 5 张人脸属性信息,超过 5 张人脸(第 6 张及以后的人脸)的 FaceAttributesInfo 不具备参考意义。 \n- 提取人脸属性信息较为耗时,如不需要人脸属性信息,建议关闭此项功能,加快人脸检测速度。",
1638
1642
  "example": "0",
1639
1643
  "member": "uint64",
1640
1644
  "name": "NeedFaceAttributes",
@@ -1643,7 +1647,7 @@
1643
1647
  },
1644
1648
  {
1645
1649
  "disabled": false,
1646
- "document": "是否开启质量检测。0 为关闭,1 为开启。默认为 0。 \n非 1 值均视为不进行质量检测。\n最多返回面积最大的 30 张人脸质量分信息,超过 30 张人脸(第 31 张及以后的人脸)的 FaceQualityInfo不具备参考意义。 \n建议:人脸入库操作建议开启此功能。",
1650
+ "document": "是否开启质量检测。\n- 0 为关闭,1 为开启。\n- 默认为 0。 \n- 非 1 值均视为不进行质量检测。\n- 最多返回面积最大的 30 张人脸质量分信息,超过 30 张人脸(第 31 张及以后的人脸)的 FaceQualityInfo不具备参考意义。 \n- 建议:人脸入库操作建议开启此功能。",
1647
1651
  "example": "0",
1648
1652
  "member": "uint64",
1649
1653
  "name": "NeedQualityDetection",
@@ -1652,7 +1656,7 @@
1652
1656
  },
1653
1657
  {
1654
1658
  "disabled": false,
1655
- "document": "人脸识别服务所用的算法模型版本。\n目前入参支持 “2.0”和“3.0“ 两个输入。\n2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n2020年11月26日后开通服务的账号仅支持输入“3.0”。\n不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
1659
+ "document": "人脸识别服务所用的算法模型版本。\n- 目前入参支持 “2.0”和“3.0“ 两个输入。\n- 2020年4月2日开始,默认为“3.0”,之前使用过本接口的账号若未填写本参数默认为“2.0”。\n- 2020年11月26日后开通服务的账号仅支持输入“3.0”。\n- 不同算法模型版本对应的人脸识别算法不同,新版本的整体效果会优于旧版本,建议使用“3.0”版本。",
1656
1660
  "example": "3.0",
1657
1661
  "member": "string",
1658
1662
  "name": "FaceModelVersion",
@@ -1661,7 +1665,7 @@
1661
1665
  },
1662
1666
  {
1663
1667
  "disabled": false,
1664
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1668
+ "document": "是否开启图片旋转识别支持。\n- 0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
1665
1669
  "example": "0",
1666
1670
  "member": "uint64",
1667
1671
  "name": "NeedRotateDetection",
@@ -1696,7 +1700,7 @@
1696
1700
  },
1697
1701
  {
1698
1702
  "disabled": false,
1699
- "document": "人脸信息列表。包含人脸坐标信息、属性信息(若需要)、质量分信息(若需要)。",
1703
+ "document": "人脸信息列表。\n- 包含人脸坐标信息、属性信息(若需要)、质量分信息(若需要)。",
1700
1704
  "example": "无",
1701
1705
  "member": "FaceInfo",
1702
1706
  "name": "FaceInfos",
@@ -1728,8 +1732,8 @@
1728
1732
  "members": [
1729
1733
  {
1730
1734
  "disabled": false,
1731
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 \n图片的宽高比请接近 3:4,手机拍摄比例最佳。\n人脸尺寸大于100X100像素。\n图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1732
- "example": "base64",
1735
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。 \n- 图片的宽高比请接近 3:4,手机拍摄比例最佳。\n- 人脸尺寸大于100X100像素。\n- 图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1736
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
1733
1737
  "member": "string",
1734
1738
  "name": "Image",
1735
1739
  "required": false,
@@ -1737,7 +1741,7 @@
1737
1741
  },
1738
1742
  {
1739
1743
  "disabled": false,
1740
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片的宽高比请接近 3:4,手机拍摄比例最佳。\n人脸尺寸大于100X100像素。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。非腾讯云存储的Url速度和稳定性可能受一定影响。\n图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1744
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片的宽高比请接近 3:4,手机拍摄比例最佳。\n- 人脸尺寸大于100X100像素。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 图片格式支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
1741
1745
  "example": "http://test.image.myqcloud.com/testA.jpg",
1742
1746
  "member": "string",
1743
1747
  "name": "Url",
@@ -1761,11 +1765,11 @@
1761
1765
  "members": [
1762
1766
  {
1763
1767
  "disabled": false,
1764
- "document": "活体打分,取值范围 [0,100],根据活体分数对应的阈值区间来判断是否为翻拍。目前阈值可分为[5,10,40,70,90],其中推荐阈值为40。",
1768
+ "document": "活体打分。\n- 取值范围 [0,100]。\n- 根据活体分数对应的阈值区间来判断是否为翻拍。\n- 目前阈值可分为[5,10,40,70,90],其中推荐阈值为40。",
1765
1769
  "example": "99",
1766
1770
  "member": "float",
1767
1771
  "name": "Score",
1768
- "required": true,
1772
+ "output_required": true,
1769
1773
  "type": "float",
1770
1774
  "value_allowed_null": false
1771
1775
  },
@@ -1775,7 +1779,7 @@
1775
1779
  "example": "3.0",
1776
1780
  "member": "string",
1777
1781
  "name": "FaceModelVersion",
1778
- "required": true,
1782
+ "output_required": true,
1779
1783
  "type": "string",
1780
1784
  "value_allowed_null": false
1781
1785
  },
@@ -1868,41 +1872,41 @@
1868
1872
  "members": [
1869
1873
  {
1870
1874
  "disabled": false,
1871
- "document": "识别是否佩戴眼镜。\nAttributeItem对应的Type为 —— 0:无眼镜,1:普通眼镜,2:墨镜",
1872
- "example": "",
1875
+ "document": "识别是否佩戴眼镜。\n- AttributeItem对应的Type为 —— 0:无眼镜,1:普通眼镜,2:墨镜",
1876
+ "example": "",
1873
1877
  "member": "AttributeItem",
1874
1878
  "name": "Glass",
1875
- "required": true,
1879
+ "output_required": true,
1876
1880
  "type": "object",
1877
1881
  "value_allowed_null": false
1878
1882
  },
1879
1883
  {
1880
1884
  "disabled": false,
1881
- "document": "识别眼睛的睁开、闭合状态。\nAttributeItem对应的Type为 —— 0:睁开,1:闭眼",
1882
- "example": "",
1885
+ "document": "识别眼睛的睁开、闭合状态。\n- AttributeItem对应的Type为 —— 0:睁开,1:闭眼",
1886
+ "example": "",
1883
1887
  "member": "AttributeItem",
1884
1888
  "name": "EyeOpen",
1885
- "required": true,
1889
+ "output_required": true,
1886
1890
  "type": "object",
1887
1891
  "value_allowed_null": false
1888
1892
  },
1889
1893
  {
1890
1894
  "disabled": false,
1891
- "document": "识别是否双眼皮。\nAttributeItem对应的Type为 —— 0:无,1:有。",
1892
- "example": "",
1895
+ "document": "识别是否双眼皮。\n- AttributeItem对应的Type为 —— 0:无,1:有。",
1896
+ "example": "",
1893
1897
  "member": "AttributeItem",
1894
1898
  "name": "EyelidType",
1895
- "required": true,
1899
+ "output_required": true,
1896
1900
  "type": "object",
1897
1901
  "value_allowed_null": false
1898
1902
  },
1899
1903
  {
1900
1904
  "disabled": false,
1901
- "document": "眼睛大小。\nAttributeItem对应的Type为 —— 0:小眼睛,1:普通眼睛,2:大眼睛。",
1902
- "example": "",
1905
+ "document": "眼睛大小。\n- AttributeItem对应的Type为 —— 0:小眼睛,1:普通眼睛,2:大眼睛。",
1906
+ "example": "",
1903
1907
  "member": "AttributeItem",
1904
1908
  "name": "EyeSize",
1905
- "required": true,
1909
+ "output_required": true,
1906
1910
  "type": "object",
1907
1911
  "value_allowed_null": false
1908
1912
  }
@@ -1914,31 +1918,31 @@
1914
1918
  "members": [
1915
1919
  {
1916
1920
  "disabled": false,
1917
- "document": "眉毛浓密。\nAttributeItem对应的Type为 —— 0:淡眉,1:浓眉。",
1918
- "example": "",
1921
+ "document": "眉毛浓密。\n- AttributeItem对应的Type为 —— 0:淡眉,1:浓眉。",
1922
+ "example": "",
1919
1923
  "member": "AttributeItem",
1920
1924
  "name": "EyebrowDensity",
1921
- "required": true,
1925
+ "output_required": true,
1922
1926
  "type": "object",
1923
1927
  "value_allowed_null": false
1924
1928
  },
1925
1929
  {
1926
1930
  "disabled": false,
1927
- "document": "眉毛弯曲。\nAttributeItem对应的Type为 —— 0:不弯,1:弯眉。",
1928
- "example": "",
1931
+ "document": "眉毛弯曲。\n- AttributeItem对应的Type为 —— 0:不弯,1:弯眉。",
1932
+ "example": "",
1929
1933
  "member": "AttributeItem",
1930
1934
  "name": "EyebrowCurve",
1931
- "required": true,
1935
+ "output_required": true,
1932
1936
  "type": "object",
1933
1937
  "value_allowed_null": false
1934
1938
  },
1935
1939
  {
1936
1940
  "disabled": false,
1937
- "document": "眉毛长短。\nAttributeItem对应的Type为 —— 0:短眉毛,1:长眉毛。",
1938
- "example": "",
1941
+ "document": "眉毛长短。\n- AttributeItem对应的Type为 —— 0:短眉毛,1:长眉毛。",
1942
+ "example": "",
1939
1943
  "member": "AttributeItem",
1940
1944
  "name": "EyebrowLength",
1941
- "required": true,
1945
+ "output_required": true,
1942
1946
  "type": "object",
1943
1947
  "value_allowed_null": false
1944
1948
  }
@@ -1950,8 +1954,8 @@
1950
1954
  "members": [
1951
1955
  {
1952
1956
  "disabled": false,
1953
- "document": "性别[0~49]为女性,[50,100]为男性,越接近0和100表示置信度越高。NeedFaceAttributes 不为 1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1954
- "example": "",
1957
+ "document": "性别。\n- 取值说明:[0~49]为女性,[50,100]为男性,越接近0和100表示置信度越高。\n- NeedFaceAttributes 不为 1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1958
+ "example": "40",
1955
1959
  "member": "int64",
1956
1960
  "name": "Gender",
1957
1961
  "output_required": true,
@@ -1960,8 +1964,8 @@
1960
1964
  },
1961
1965
  {
1962
1966
  "disabled": false,
1963
- "document": "年龄 [0~100]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1964
- "example": "",
1967
+ "document": "年龄 。\n- 取值范围:[0~100]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1968
+ "example": "39",
1965
1969
  "member": "int64",
1966
1970
  "name": "Age",
1967
1971
  "output_required": true,
@@ -1970,8 +1974,8 @@
1970
1974
  },
1971
1975
  {
1972
1976
  "disabled": false,
1973
- "document": "微笑[0(normal,正常)~100(laugh,大笑)]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1974
- "example": "",
1977
+ "document": "微笑。\n- 取值说明:[0(normal,正常)~100(laugh,大笑)]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1978
+ "example": "13",
1975
1979
  "member": "int64",
1976
1980
  "name": "Expression",
1977
1981
  "output_required": true,
@@ -1980,8 +1984,8 @@
1980
1984
  },
1981
1985
  {
1982
1986
  "disabled": false,
1983
- "document": "是否有眼镜 [true,false]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1984
- "example": "",
1987
+ "document": "是否有眼镜。\n- 取值范围: [true,false]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
1988
+ "example": "true",
1985
1989
  "member": "bool",
1986
1990
  "name": "Glass",
1987
1991
  "output_required": true,
@@ -1990,8 +1994,8 @@
1990
1994
  },
1991
1995
  {
1992
1996
  "disabled": false,
1993
- "document": "上下偏移[-30,30],单位角度。NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n建议:人脸入库选择[-10,10]的图片。",
1994
- "example": "",
1997
+ "document": "上下偏移。\n- 取值范围:[-30,30],单位角度。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n- 建议:人脸入库选择[-10,10]的图片。",
1998
+ "example": "13",
1995
1999
  "member": "int64",
1996
2000
  "name": "Pitch",
1997
2001
  "output_required": true,
@@ -2000,8 +2004,8 @@
2000
2004
  },
2001
2005
  {
2002
2006
  "disabled": false,
2003
- "document": "左右偏移[-30,30],单位角度。 NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n建议:人脸入库选择[-10,10]的图片。",
2004
- "example": "",
2007
+ "document": "左右偏移。\n- 取值范围:[-30,30],单位角度。 \n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n- 建议:人脸入库选择[-10,10]的图片。",
2008
+ "example": "21",
2005
2009
  "member": "int64",
2006
2010
  "name": "Yaw",
2007
2011
  "output_required": true,
@@ -2010,8 +2014,8 @@
2010
2014
  },
2011
2015
  {
2012
2016
  "disabled": false,
2013
- "document": "平面旋转[-180,180],单位角度。 NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n建议:人脸入库选择[-20,20]的图片。",
2014
- "example": "",
2017
+ "document": "平面旋转。\n- 取值范围:[-180,180],单位角度。 \n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。 \n- 建议:人脸入库选择[-20,20]的图片。",
2018
+ "example": "54",
2015
2019
  "member": "int64",
2016
2020
  "name": "Roll",
2017
2021
  "output_required": true,
@@ -2020,8 +2024,8 @@
2020
2024
  },
2021
2025
  {
2022
2026
  "disabled": false,
2023
- "document": "魅力[0~100]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2024
- "example": "",
2027
+ "document": "魅力。\n- 取值范围:[0~100]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2028
+ "example": "50",
2025
2029
  "member": "int64",
2026
2030
  "name": "Beauty",
2027
2031
  "output_required": true,
@@ -2030,8 +2034,8 @@
2030
2034
  },
2031
2035
  {
2032
2036
  "disabled": false,
2033
- "document": "是否有帽子 [true,false]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2034
- "example": "",
2037
+ "document": "是否有帽子。\n- 取值范围: [true,false]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2038
+ "example": "true",
2035
2039
  "member": "bool",
2036
2040
  "name": "Hat",
2037
2041
  "output_required": true,
@@ -2040,8 +2044,8 @@
2040
2044
  },
2041
2045
  {
2042
2046
  "disabled": false,
2043
- "document": "是否有口罩 [true,false]NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2044
- "example": "",
2047
+ "document": "是否有口罩。\n- 取值范围: [true,false]。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2048
+ "example": "false",
2045
2049
  "member": "bool",
2046
2050
  "name": "Mask",
2047
2051
  "output_required": true,
@@ -2050,7 +2054,7 @@
2050
2054
  },
2051
2055
  {
2052
2056
  "disabled": false,
2053
- "document": "头发信息,包含头发长度(length)、有无刘海(bang)、头发颜色(color)。NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2057
+ "document": "头发信息,包含头发长度(length)、有无刘海(bang)、头发颜色(color)。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2054
2058
  "example": "无",
2055
2059
  "member": "FaceHairAttributesInfo",
2056
2060
  "name": "Hair",
@@ -2060,8 +2064,8 @@
2060
2064
  },
2061
2065
  {
2062
2066
  "disabled": false,
2063
- "document": "双眼是否睁开 [true,false]。只要有超过一只眼睛闭眼,就返回falseNeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2064
- "example": "",
2067
+ "document": "双眼是否睁开。\n- 取值范围: [true,false]。\n- 只要有超过一只眼睛闭眼,就返回false。\n- NeedFaceAttributes 不为1 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。\n注意:此字段可能返回 null,表示取不到有效值。",
2068
+ "example": "true",
2065
2069
  "member": "bool",
2066
2070
  "name": "EyeOpen",
2067
2071
  "output_required": true,
@@ -2076,8 +2080,8 @@
2076
2080
  "members": [
2077
2081
  {
2078
2082
  "disabled": false,
2079
- "document": "年龄 [0,65],其中65代表“65岁及以上”。 \nFaceAttributesType 不含Age 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2080
- "example": "",
2083
+ "document": "年龄。\n- 取值范围: [0,65],其中65代表“65岁及以上”。 \n- FaceAttributesType 不含Age 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2084
+ "example": "30",
2081
2085
  "member": "int64",
2082
2086
  "name": "Age",
2083
2087
  "output_required": true,
@@ -2086,7 +2090,7 @@
2086
2090
  },
2087
2091
  {
2088
2092
  "disabled": false,
2089
- "document": "美丑打分[0,100]。 \nFaceAttributesType 不含 Beauty 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2093
+ "document": "美丑打分。\n- 取值范围:[0,100]。 \n- FaceAttributesType 不含 Beauty 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2090
2094
  "example": "无",
2091
2095
  "member": "int64",
2092
2096
  "name": "Beauty",
@@ -2096,7 +2100,7 @@
2096
2100
  },
2097
2101
  {
2098
2102
  "disabled": false,
2099
- "document": "情绪,可识别自然、高兴、惊讶、生气、悲伤、厌恶、害怕。 \nAttributeItem对应的Type为 —— 0:自然,1:高兴,2:惊讶,3:生气,4:悲伤,5:厌恶,6:害怕\nFaceAttributesType 不含Emotion 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2103
+ "document": "情绪,可识别自然、高兴、惊讶、生气、悲伤、厌恶、害怕。 \n- AttributeItem对应的Type为 —— 0:自然,1:高兴,2:惊讶,3:生气,4:悲伤,5:厌恶,6:害怕。\n- FaceAttributesType 不含Emotion 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2100
2104
  "example": "无",
2101
2105
  "member": "AttributeItem",
2102
2106
  "name": "Emotion",
@@ -2106,7 +2110,7 @@
2106
2110
  },
2107
2111
  {
2108
2112
  "disabled": false,
2109
- "document": "眼睛相关信息,可识别是否戴眼镜、是否闭眼、是否双眼皮和眼睛大小。 \nFaceAttributesType 不含Eye 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2113
+ "document": "眼睛相关信息,可识别是否戴眼镜、是否闭眼、是否双眼皮和眼睛大小。 \n- FaceAttributesType 不含Eye 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2110
2114
  "example": "无",
2111
2115
  "member": "Eye",
2112
2116
  "name": "Eye",
@@ -2126,7 +2130,7 @@
2126
2130
  },
2127
2131
  {
2128
2132
  "disabled": false,
2129
- "document": "性别信息。 \nAttributeItem对应的Type为 —— \t0:男性,1:女性。\nFaceAttributesType 不含Gender 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2133
+ "document": "性别信息。 \n- AttributeItem对应的Type为 —— \t0:男性,1:女性。\n- FaceAttributesType 不含Gender 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2130
2134
  "example": "无",
2131
2135
  "member": "AttributeItem",
2132
2136
  "name": "Gender",
@@ -2136,7 +2140,7 @@
2136
2140
  },
2137
2141
  {
2138
2142
  "disabled": false,
2139
- "document": "头发信息,包含头发长度、有无刘海、头发颜色。 \nFaceAttributesType 不含Hair 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2143
+ "document": "头发信息,包含头发长度、有无刘海、头发颜色。 \n- FaceAttributesType 不含Hair 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2140
2144
  "example": "无",
2141
2145
  "member": "Hair",
2142
2146
  "name": "Hair",
@@ -2146,7 +2150,7 @@
2146
2150
  },
2147
2151
  {
2148
2152
  "disabled": false,
2149
- "document": "帽子信息,可识别是否佩戴帽子、帽子款式、帽子颜色。 \nFaceAttributesType 不含Hat 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2153
+ "document": "帽子信息,可识别是否佩戴帽子、帽子款式、帽子颜色。 \n- FaceAttributesType 不含Hat 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2150
2154
  "example": "无",
2151
2155
  "member": "Hat",
2152
2156
  "name": "Hat",
@@ -2156,7 +2160,7 @@
2156
2160
  },
2157
2161
  {
2158
2162
  "disabled": false,
2159
- "document": "姿态信息,包含人脸的上下偏移、左右偏移、平面旋转信息。 \nFaceAttributesType 不含Headpose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2163
+ "document": "姿态信息,包含人脸的上下偏移、左右偏移、平面旋转信息。 \n- FaceAttributesType 不含Headpose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2160
2164
  "example": "无",
2161
2165
  "member": "HeadPose",
2162
2166
  "name": "HeadPose",
@@ -2166,7 +2170,7 @@
2166
2170
  },
2167
2171
  {
2168
2172
  "disabled": false,
2169
- "document": "口罩佩戴信息。 \nAttributeItem对应的Type为 —— 0: 无口罩, 1: 有口罩不遮脸,2: 有口罩遮下巴,3: 有口罩遮嘴,4: 正确佩戴口罩。\nFaceAttributesType 不含Mask 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2173
+ "document": "口罩佩戴信息。 \n- AttributeItem对应的Type为 —— 0: 无口罩, 1: 有口罩不遮脸,2: 有口罩遮下巴,3: 有口罩遮嘴,4: 正确佩戴口罩。\n- FaceAttributesType 不含Mask 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2170
2174
  "example": "无",
2171
2175
  "member": "AttributeItem",
2172
2176
  "name": "Mask",
@@ -2176,7 +2180,7 @@
2176
2180
  },
2177
2181
  {
2178
2182
  "disabled": false,
2179
- "document": "嘴巴信息,可识别是否张嘴、嘴唇厚度。 \nFaceAttributesType 不含 Mouth 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2183
+ "document": "嘴巴信息,可识别是否张嘴、嘴唇厚度。 \n- FaceAttributesType 不含 Mouth 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2180
2184
  "example": "无",
2181
2185
  "member": "Mouth",
2182
2186
  "name": "Mouth",
@@ -2186,7 +2190,7 @@
2186
2190
  },
2187
2191
  {
2188
2192
  "disabled": false,
2189
- "document": "胡子信息。\nAttributeItem对应的Type为 —— 0:无胡子,1:有胡子。 \nFaceAttributesType 不含 Moustache 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2193
+ "document": "胡子信息。\n- AttributeItem对应的Type为 —— 0:无胡子,1:有胡子。 \n- FaceAttributesType 不含 Moustache 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2190
2194
  "example": "无",
2191
2195
  "member": "AttributeItem",
2192
2196
  "name": "Moustache",
@@ -2196,7 +2200,7 @@
2196
2200
  },
2197
2201
  {
2198
2202
  "disabled": false,
2199
- "document": "鼻子信息。 \nAttributeItem对应的Type为 —— 0:朝天鼻,1:鹰钩鼻,2:普通,3:圆鼻头\nFaceAttributesType 不含 Nose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2203
+ "document": "鼻子信息。 \n- AttributeItem对应的Type为 —— 0:朝天鼻,1:鹰钩鼻,2:普通,3:圆鼻头\n- FaceAttributesType 不含 Nose 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2200
2204
  "example": "无",
2201
2205
  "member": "AttributeItem",
2202
2206
  "name": "Nose",
@@ -2206,7 +2210,7 @@
2206
2210
  },
2207
2211
  {
2208
2212
  "disabled": false,
2209
- "document": "脸型信息。 \nAttributeItem对应的Type为 —— 0:方脸,1:三角脸,2:鹅蛋脸,3:心形脸,4:圆脸。\nFaceAttributesType 不含 Shape 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2213
+ "document": "脸型信息。 \n- AttributeItem对应的Type为 —— 0:方脸,1:三角脸,2:鹅蛋脸,3:心形脸,4:圆脸。\n- FaceAttributesType 不含 Shape 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2210
2214
  "example": "无",
2211
2215
  "member": "AttributeItem",
2212
2216
  "name": "Shape",
@@ -2216,7 +2220,7 @@
2216
2220
  },
2217
2221
  {
2218
2222
  "disabled": false,
2219
- "document": "肤色信息。 \nAttributeItem对应的Type为 —— 0:黄色皮肤,1:棕色皮肤,2:黑色皮肤,3:白色皮肤。\nFaceAttributesType 不含 Skin 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2223
+ "document": "肤色信息。 \n- AttributeItem对应的Type为 —— 0:黄色皮肤,1:棕色皮肤,2:黑色皮肤,3:白色皮肤。\n- FaceAttributesType 不含 Skin 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2220
2224
  "example": "无",
2221
2225
  "member": "AttributeItem",
2222
2226
  "name": "Skin",
@@ -2226,8 +2230,8 @@
2226
2230
  },
2227
2231
  {
2228
2232
  "disabled": false,
2229
- "document": "微笑程度,[0,100]。 \nFaceAttributesType 不含 Smile 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2230
- "example": "",
2233
+ "document": "微笑程度\n- 取值范围:[0,100]。 \n- FaceAttributesType 不含 Smile 或检测超过 5 张人脸时,此参数仍返回,但不具备参考意义。",
2234
+ "example": "20",
2231
2235
  "member": "int64",
2232
2236
  "name": "Smile",
2233
2237
  "output_required": true,
@@ -2252,7 +2256,7 @@
2252
2256
  },
2253
2257
  {
2254
2258
  "disabled": false,
2255
- "document": "人脸属性信息,根据 FaceAttributesType 输入的类型,返回年龄(Age)、颜值(Beauty) \n情绪(Emotion)、眼睛信息(Eye)、眉毛(Eyebrow)、性别(Gender) \n头发(Hair)、帽子(Hat)、姿态(Headpose)、口罩(Mask)、嘴巴(Mouth)、胡子(Moustache) \n鼻子(Nose)、脸型(Shape)、肤色(Skin)、微笑(Smile)等人脸属性信息。 \n若 FaceAttributesType 没有输入相关类型,则FaceDetaiAttributesInfo返回的细项不具备参考意义。",
2259
+ "document": "人脸属性信息。\n- 根据 FaceAttributesType 输入的类型,返回年龄(Age)、颜值(Beauty)、情绪(Emotion)、眼睛信息(Eye)、眉毛(Eyebrow)、性别(Gender)、头发(Hair)、帽子(Hat)、姿态(Headpose)、口罩(Mask)、嘴巴(Mouth)、胡子(Moustache) 、鼻子(Nose)、脸型(Shape)、肤色(Skin)、微笑(Smile)等人脸属性信息。 \n- 若 FaceAttributesType 没有输入相关类型,则FaceDetaiAttributesInfo返回的细项不具备参考意义。",
2256
2260
  "example": "无",
2257
2261
  "member": "FaceDetailAttributesInfo",
2258
2262
  "name": "FaceDetailAttributesInfo",
@@ -2268,31 +2272,31 @@
2268
2272
  "members": [
2269
2273
  {
2270
2274
  "disabled": false,
2271
- "document": "0:光头,1:短发,2:中发,3:长发,4:绑发\n注意:此字段可能返回 null,表示取不到有效值。",
2272
- "example": "",
2275
+ "document": "取值范围:0:光头,1:短发,2:中发,3:长发,4:绑发。\n注意:此字段可能返回 null,表示取不到有效值。",
2276
+ "example": "1",
2273
2277
  "member": "int64",
2274
2278
  "name": "Length",
2275
- "required": true,
2279
+ "output_required": true,
2276
2280
  "type": "int",
2277
2281
  "value_allowed_null": true
2278
2282
  },
2279
2283
  {
2280
2284
  "disabled": false,
2281
- "document": "0:有刘海,1:无刘海\n注意:此字段可能返回 null,表示取不到有效值。",
2282
- "example": "",
2285
+ "document": "取值范围:0:有刘海,1:无刘海。\n注意:此字段可能返回 null,表示取不到有效值。",
2286
+ "example": "0",
2283
2287
  "member": "int64",
2284
2288
  "name": "Bang",
2285
- "required": true,
2289
+ "output_required": true,
2286
2290
  "type": "int",
2287
2291
  "value_allowed_null": true
2288
2292
  },
2289
2293
  {
2290
2294
  "disabled": false,
2291
- "document": "0:黑色,1:金色,2:棕色,3:灰白色\n注意:此字段可能返回 null,表示取不到有效值。",
2292
- "example": "",
2295
+ "document": "取值范围:0:黑色,1:金色,2:棕色,3:灰白色。\n注意:此字段可能返回 null,表示取不到有效值。",
2296
+ "example": "1",
2293
2297
  "member": "int64",
2294
2298
  "name": "Color",
2295
- "required": true,
2299
+ "output_required": true,
2296
2300
  "type": "int",
2297
2301
  "value_allowed_null": true
2298
2302
  }
@@ -2304,61 +2308,61 @@
2304
2308
  "members": [
2305
2309
  {
2306
2310
  "disabled": false,
2307
- "document": "人脸框左上角横坐标。\n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2308
- "example": "",
2311
+ "document": "人脸框左上角横坐标。\n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2312
+ "example": "35",
2309
2313
  "member": "int64",
2310
2314
  "name": "X",
2311
- "required": true,
2315
+ "output_required": true,
2312
2316
  "type": "int",
2313
2317
  "value_allowed_null": false
2314
2318
  },
2315
2319
  {
2316
2320
  "disabled": false,
2317
- "document": "人脸框左上角纵坐标。 \n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2318
- "example": "",
2321
+ "document": "人脸框左上角纵坐标。 \n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completeness满足需求的情况下,将负值坐标取0。",
2322
+ "example": "61",
2319
2323
  "member": "int64",
2320
2324
  "name": "Y",
2321
- "required": true,
2325
+ "output_required": true,
2322
2326
  "type": "int",
2323
2327
  "value_allowed_null": false
2324
2328
  },
2325
2329
  {
2326
2330
  "disabled": false,
2327
2331
  "document": "人脸框宽度。",
2328
- "example": "",
2332
+ "example": "10",
2329
2333
  "member": "int64",
2330
2334
  "name": "Width",
2331
- "required": true,
2335
+ "output_required": true,
2332
2336
  "type": "int",
2333
2337
  "value_allowed_null": false
2334
2338
  },
2335
2339
  {
2336
2340
  "disabled": false,
2337
2341
  "document": "人脸框高度。",
2338
- "example": "",
2342
+ "example": "8",
2339
2343
  "member": "int64",
2340
2344
  "name": "Height",
2341
- "required": true,
2345
+ "output_required": true,
2342
2346
  "type": "int",
2343
2347
  "value_allowed_null": false
2344
2348
  },
2345
2349
  {
2346
2350
  "disabled": false,
2347
- "document": "人脸属性信息,包含性别( gender )、年龄( age )、表情( expression )、 \n魅力( beauty )、眼镜( glass )、口罩(mask)、头发(hair)和姿态 (pitch,roll,yaw )。只有当 NeedFaceAttributes 设为 1 时才返回有效信息。",
2348
- "example": "",
2351
+ "document": "人脸属性信息。\n- 包含性别( gender )、年龄( age )、表情( expression )、魅力( beauty )、眼镜( glass )、口罩(mask)、头发(hair)和姿态 (pitch,roll,yaw )。\n- 只有当 NeedFaceAttributes 设为 1 时才返回有效信息。",
2352
+ "example": "",
2349
2353
  "member": "FaceAttributesInfo",
2350
2354
  "name": "FaceAttributesInfo",
2351
- "required": true,
2355
+ "output_required": true,
2352
2356
  "type": "object",
2353
2357
  "value_allowed_null": false
2354
2358
  },
2355
2359
  {
2356
2360
  "disabled": false,
2357
- "document": "人脸质量信息,包含质量分(score)、模糊分(sharpness)、光照分(brightness)、遮挡分(completeness)。只有当NeedFaceDetection设为1时才返回有效信息。\n注意:此字段可能返回 null,表示取不到有效值。",
2358
- "example": "",
2361
+ "document": "人脸质量信息。\n- 包含质量分(score)、模糊分(sharpness)、光照分(brightness)、遮挡分(completeness)。\n- 只有当NeedFaceDetection设为1时才返回有效信息。\n注意:此字段可能返回 null,表示取不到有效值。",
2362
+ "example": "",
2359
2363
  "member": "FaceQualityInfo",
2360
2364
  "name": "FaceQualityInfo",
2361
- "required": true,
2365
+ "output_required": true,
2362
2366
  "type": "object",
2363
2367
  "value_allowed_null": true
2364
2368
  }
@@ -2370,61 +2374,61 @@
2370
2374
  "members": [
2371
2375
  {
2372
2376
  "disabled": false,
2373
- "document": "眉毛的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2374
- "example": "",
2377
+ "document": "眉毛的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2378
+ "example": "70",
2375
2379
  "member": "int64",
2376
2380
  "name": "Eyebrow",
2377
- "required": true,
2381
+ "output_required": true,
2378
2382
  "type": "int",
2379
2383
  "value_allowed_null": true
2380
2384
  },
2381
2385
  {
2382
2386
  "disabled": false,
2383
- "document": "眼睛的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2384
- "example": "",
2387
+ "document": "眼睛的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,80]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2388
+ "example": "60",
2385
2389
  "member": "int64",
2386
2390
  "name": "Eye",
2387
- "required": true,
2391
+ "output_required": true,
2388
2392
  "type": "int",
2389
2393
  "value_allowed_null": true
2390
2394
  },
2391
2395
  {
2392
2396
  "disabled": false,
2393
- "document": "鼻子的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,60]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2394
- "example": "",
2397
+ "document": "鼻子的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,60]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2398
+ "example": "30",
2395
2399
  "member": "int64",
2396
2400
  "name": "Nose",
2397
- "required": true,
2401
+ "output_required": true,
2398
2402
  "type": "int",
2399
2403
  "value_allowed_null": true
2400
2404
  },
2401
2405
  {
2402
2406
  "disabled": false,
2403
- "document": "脸颊的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2404
- "example": "",
2407
+ "document": "脸颊的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2408
+ "example": "10",
2405
2409
  "member": "int64",
2406
2410
  "name": "Cheek",
2407
- "required": true,
2411
+ "output_required": true,
2408
2412
  "type": "int",
2409
2413
  "value_allowed_null": true
2410
2414
  },
2411
2415
  {
2412
2416
  "disabled": false,
2413
- "document": "嘴巴的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,50]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2414
- "example": "",
2417
+ "document": "嘴巴的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,50]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2418
+ "example": "10",
2415
2419
  "member": "int64",
2416
2420
  "name": "Mouth",
2417
- "required": true,
2421
+ "output_required": true,
2418
2422
  "type": "int",
2419
2423
  "value_allowed_null": true
2420
2424
  },
2421
2425
  {
2422
2426
  "disabled": false,
2423
- "document": "下巴的遮挡分数[0,100],分数越高遮挡越少。 \n参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2424
- "example": "",
2427
+ "document": "下巴的遮挡分数。\n- 取值范围:[0,100],分数越高遮挡越少。 \n- 参考范围:[0,70]表示发生遮挡。\n注意:此字段可能返回 null,表示取不到有效值。",
2428
+ "example": "80",
2425
2429
  "member": "int64",
2426
2430
  "name": "Chin",
2427
- "required": true,
2431
+ "output_required": true,
2428
2432
  "type": "int",
2429
2433
  "value_allowed_null": true
2430
2434
  }
@@ -2436,41 +2440,41 @@
2436
2440
  "members": [
2437
2441
  {
2438
2442
  "disabled": false,
2439
- "document": "质量分: [0,100],综合评价图像质量是否适合人脸识别,分数越高质量越好。 \n正常情况,只需要使用Score作为质量分总体的判断标准即可。Sharpness、Brightness、Completeness等细项分仅供参考。\n参考范围:[0,40]较差,[40,60] 一般,[60,80]较好,[80,100]很好。 \n建议:人脸入库选取70以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2440
- "example": "",
2443
+ "document": "质量分。\n- 取值范围:[0,100],综合评价图像质量是否适合人脸识别,分数越高质量越好。 \n- 正常情况,只需要使用Score作为质量分总体的判断标准即可。Sharpness、Brightness、Completeness等细项分仅供参考。\n- 参考范围:[0,40]较差,[40,60] 一般,[60,80]较好,[80,100]很好。 \n- 建议:人脸入库选取70以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2444
+ "example": "80",
2441
2445
  "member": "int64",
2442
2446
  "name": "Score",
2443
- "required": true,
2447
+ "output_required": true,
2444
2448
  "type": "int",
2445
2449
  "value_allowed_null": true
2446
2450
  },
2447
2451
  {
2448
2452
  "disabled": false,
2449
- "document": "清晰分:[0,100],评价图片清晰程度,分数越高越清晰。 \n参考范围:[0,40]特别模糊,[40,60]模糊,[60,80]一般,[80,100]清晰。 \n建议:人脸入库选取80以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2450
- "example": "",
2453
+ "document": "清晰分。\n- 取值范围:[0,100],评价图片清晰程度,分数越高越清晰。 \n- 参考范围:[0,40]特别模糊,[40,60]模糊,[60,80]一般,[80,100]清晰。 \n- 建议:人脸入库选取80以上的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2454
+ "example": "100",
2451
2455
  "member": "int64",
2452
2456
  "name": "Sharpness",
2453
- "required": true,
2457
+ "output_required": true,
2454
2458
  "type": "int",
2455
2459
  "value_allowed_null": true
2456
2460
  },
2457
2461
  {
2458
2462
  "disabled": false,
2459
- "document": "光照分:[0,100],评价图片光照程度,分数越高越亮。 \n参考范围: [0,30]偏暗,[30,70]光照正常,[70,100]偏亮。 \n建议:人脸入库选取[30,70]的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2460
- "example": "",
2463
+ "document": "光照分。\n- 取值范围:[0,100],评价图片光照程度,分数越高越亮。 \n- 参考范围: [0,30]偏暗,[30,70]光照正常,[70,100]偏亮。 \n- 建议:人脸入库选取[30,70]的图片。\n注意:此字段可能返回 null,表示取不到有效值。",
2464
+ "example": "30",
2461
2465
  "member": "int64",
2462
2466
  "name": "Brightness",
2463
- "required": true,
2467
+ "output_required": true,
2464
2468
  "type": "int",
2465
2469
  "value_allowed_null": true
2466
2470
  },
2467
2471
  {
2468
2472
  "disabled": false,
2469
2473
  "document": "五官遮挡分,评价眉毛(Eyebrow)、眼睛(Eye)、鼻子(Nose)、脸颊(Cheek)、嘴巴(Mouth)、下巴(Chin)的被遮挡程度。\n注意:此字段可能返回 null,表示取不到有效值。",
2470
- "example": "",
2474
+ "example": "",
2471
2475
  "member": "FaceQualityCompleteness",
2472
2476
  "name": "Completeness",
2473
- "required": true,
2477
+ "output_required": true,
2474
2478
  "type": "object",
2475
2479
  "value_allowed_null": true
2476
2480
  }
@@ -2482,46 +2486,50 @@
2482
2486
  "members": [
2483
2487
  {
2484
2488
  "disabled": false,
2485
- "document": "人脸框左上角横坐标。 \n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2486
- "example": "",
2489
+ "document": "人脸框左上角横坐标。 \n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2490
+ "example": "253",
2487
2491
  "member": "int64",
2488
2492
  "name": "X",
2489
- "required": true,
2493
+ "output_required": true,
2494
+ "required": false,
2490
2495
  "type": "int",
2491
2496
  "value_allowed_null": false
2492
2497
  },
2493
2498
  {
2494
2499
  "disabled": false,
2495
- "document": "人脸框左上角纵坐标。 \n人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2496
- "example": "",
2500
+ "document": "人脸框左上角纵坐标。 \n- 人脸框包含人脸五官位置并在此基础上进行一定的扩展,若人脸框超出图片范围,会导致坐标负值。 \n- 若需截取完整人脸,可以在完整分completess满足需求的情况下,将负值坐标取0。",
2501
+ "example": "414",
2497
2502
  "member": "int64",
2498
2503
  "name": "Y",
2499
- "required": true,
2504
+ "output_required": true,
2505
+ "required": false,
2500
2506
  "type": "int",
2501
2507
  "value_allowed_null": false
2502
2508
  },
2503
2509
  {
2504
2510
  "disabled": false,
2505
- "document": "人脸宽度",
2506
- "example": "",
2511
+ "document": "人脸宽度。",
2512
+ "example": "180",
2507
2513
  "member": "uint64",
2508
2514
  "name": "Width",
2509
- "required": true,
2515
+ "output_required": true,
2516
+ "required": false,
2510
2517
  "type": "int",
2511
2518
  "value_allowed_null": false
2512
2519
  },
2513
2520
  {
2514
2521
  "disabled": false,
2515
- "document": "人脸高度",
2516
- "example": "",
2522
+ "document": "人脸高度。",
2523
+ "example": "90",
2517
2524
  "member": "uint64",
2518
2525
  "name": "Height",
2519
- "required": true,
2526
+ "output_required": true,
2527
+ "required": false,
2520
2528
  "type": "int",
2521
2529
  "value_allowed_null": false
2522
2530
  }
2523
2531
  ],
2524
- "usage": "out"
2532
+ "usage": "both"
2525
2533
  },
2526
2534
  "FaceShape": {
2527
2535
  "document": "五官定位(人脸关键点)具体信息。",
@@ -2624,8 +2632,8 @@
2624
2632
  "members": [
2625
2633
  {
2626
2634
  "disabled": false,
2627
- "document": "人员库 ID,取值为创建人员库接口中的GroupId",
2628
- "example": "ABC",
2635
+ "document": "人员库 ID,取值为创建人员库接口中的GroupId",
2636
+ "example": "32",
2629
2637
  "member": "string",
2630
2638
  "name": "GroupId",
2631
2639
  "required": true,
@@ -2639,8 +2647,8 @@
2639
2647
  "members": [
2640
2648
  {
2641
2649
  "disabled": false,
2642
- "document": "人员库名称",
2643
- "example": "ABC",
2650
+ "document": "人员库名称。",
2651
+ "example": "正式人员名单",
2644
2652
  "member": "string",
2645
2653
  "name": "GroupName",
2646
2654
  "output_required": true,
@@ -2649,8 +2657,8 @@
2649
2657
  },
2650
2658
  {
2651
2659
  "disabled": false,
2652
- "document": "人员库ID",
2653
- "example": "ABC",
2660
+ "document": "人员库ID",
2661
+ "example": "31",
2654
2662
  "member": "string",
2655
2663
  "name": "GroupId",
2656
2664
  "output_required": true,
@@ -2659,8 +2667,8 @@
2659
2667
  },
2660
2668
  {
2661
2669
  "disabled": false,
2662
- "document": "人员库自定义描述字段",
2663
- "example": "ABC",
2670
+ "document": "人员库自定义描述字段。",
2671
+ "example": "[\"年龄\"]",
2664
2672
  "member": "string",
2665
2673
  "name": "GroupExDescriptions",
2666
2674
  "output_required": true,
@@ -2669,8 +2677,8 @@
2669
2677
  },
2670
2678
  {
2671
2679
  "disabled": false,
2672
- "document": "人员库信息备注",
2673
- "example": "ABC",
2680
+ "document": "人员库信息备注。",
2681
+ "example": "无实习生",
2674
2682
  "member": "string",
2675
2683
  "name": "Tag",
2676
2684
  "output_required": true,
@@ -2767,8 +2775,8 @@
2767
2775
  "members": [
2768
2776
  {
2769
2777
  "disabled": false,
2770
- "document": "人员ID,创建人员接口中的PersonId",
2771
- "example": "",
2778
+ "document": "人员ID,创建人员接口中的PersonId",
2779
+ "example": "1002",
2772
2780
  "member": "string",
2773
2781
  "name": "PersonId",
2774
2782
  "required": true,
@@ -2782,28 +2790,31 @@
2782
2790
  "members": [
2783
2791
  {
2784
2792
  "disabled": false,
2785
- "document": "人员名称",
2786
- "example": "",
2793
+ "document": "人员名称。",
2794
+ "example": "韦小宝",
2787
2795
  "member": "string",
2788
2796
  "name": "PersonName",
2797
+ "output_required": true,
2789
2798
  "type": "string",
2790
2799
  "value_allowed_null": false
2791
2800
  },
2792
2801
  {
2793
2802
  "disabled": false,
2794
- "document": "人员性别,0代表未填写,1代表男性,2代表女性",
2795
- "example": "",
2803
+ "document": "人员性别。\n- 取值范围:0代表未填写,1代表男性,2代表女性。",
2804
+ "example": "2",
2796
2805
  "member": "int64",
2797
2806
  "name": "Gender",
2807
+ "output_required": true,
2798
2808
  "type": "int",
2799
2809
  "value_allowed_null": false
2800
2810
  },
2801
2811
  {
2802
2812
  "disabled": false,
2803
- "document": "包含的人脸 ID 列表",
2804
- "example": "",
2813
+ "document": "包含的人脸 ID 列表。",
2814
+ "example": "[ \"287364080202264488\"]",
2805
2815
  "member": "string",
2806
2816
  "name": "FaceIds",
2817
+ "output_required": true,
2807
2818
  "type": "list",
2808
2819
  "value_allowed_null": false
2809
2820
  },
@@ -2821,8 +2832,8 @@
2821
2832
  "members": [
2822
2833
  {
2823
2834
  "disabled": false,
2824
- "document": "人员ID,取值为创建人员接口中的PersonId",
2825
- "example": "",
2835
+ "document": "人员ID,取值为创建人员接口中的PersonId",
2836
+ "example": "1002",
2826
2837
  "member": "string",
2827
2838
  "name": "PersonId",
2828
2839
  "required": true,
@@ -2830,8 +2841,8 @@
2830
2841
  },
2831
2842
  {
2832
2843
  "disabled": false,
2833
- "document": "起始序号,默认值为0",
2834
- "example": "",
2844
+ "document": "起始序号,默认值为0",
2845
+ "example": "0",
2835
2846
  "member": "uint64",
2836
2847
  "name": "Offset",
2837
2848
  "required": false,
@@ -2839,8 +2850,8 @@
2839
2850
  },
2840
2851
  {
2841
2852
  "disabled": false,
2842
- "document": "返回数量,默认值为10,最大值为100",
2843
- "example": "",
2853
+ "document": "返回数量,默认值为10,最大值为100",
2854
+ "example": "10",
2844
2855
  "member": "uint64",
2845
2856
  "name": "Limit",
2846
2857
  "required": false,
@@ -2854,28 +2865,31 @@
2854
2865
  "members": [
2855
2866
  {
2856
2867
  "disabled": false,
2857
- "document": "包含此人员的人员库及描述字段内容列表",
2858
- "example": "",
2868
+ "document": "包含此人员的人员库及描述字段内容列表。",
2869
+ "example": "",
2859
2870
  "member": "PersonGroupInfo",
2860
2871
  "name": "PersonGroupInfos",
2872
+ "output_required": true,
2861
2873
  "type": "list",
2862
2874
  "value_allowed_null": false
2863
2875
  },
2864
2876
  {
2865
2877
  "disabled": false,
2866
- "document": "人员库总数量\n注意:此字段可能返回 null,表示取不到有效值。",
2867
- "example": "",
2878
+ "document": "人员库总数量。\n注意:此字段可能返回 null,表示取不到有效值。",
2879
+ "example": "30",
2868
2880
  "member": "uint64",
2869
2881
  "name": "GroupNum",
2882
+ "output_required": true,
2870
2883
  "type": "int",
2871
2884
  "value_allowed_null": true
2872
2885
  },
2873
2886
  {
2874
2887
  "disabled": false,
2875
2888
  "document": "人脸识别服务所用的算法模型版本。\n注意:此字段可能返回 null,表示取不到有效值。",
2876
- "example": "",
2889
+ "example": "3.0",
2877
2890
  "member": "string",
2878
2891
  "name": "FaceModelVersion",
2892
+ "output_required": true,
2879
2893
  "type": "string",
2880
2894
  "value_allowed_null": true
2881
2895
  },
@@ -2893,8 +2907,8 @@
2893
2907
  "members": [
2894
2908
  {
2895
2909
  "disabled": false,
2896
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
2897
- "example": "",
2910
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
2911
+ "example": "TencentShenZhenEmployee",
2898
2912
  "member": "string",
2899
2913
  "name": "GroupId",
2900
2914
  "required": true,
@@ -2908,19 +2922,21 @@
2908
2922
  "members": [
2909
2923
  {
2910
2924
  "disabled": false,
2911
- "document": "人员数量",
2912
- "example": "",
2925
+ "document": "人员数量。",
2926
+ "example": "10",
2913
2927
  "member": "uint64",
2914
2928
  "name": "PersonNum",
2929
+ "output_required": true,
2915
2930
  "type": "int",
2916
2931
  "value_allowed_null": false
2917
2932
  },
2918
2933
  {
2919
2934
  "disabled": false,
2920
- "document": "人脸数量",
2921
- "example": "",
2935
+ "document": "人脸数量。",
2936
+ "example": "10",
2922
2937
  "member": "uint64",
2923
2938
  "name": "FaceNum",
2939
+ "output_required": true,
2924
2940
  "type": "int",
2925
2941
  "value_allowed_null": false
2926
2942
  },
@@ -2938,8 +2954,8 @@
2938
2954
  "members": [
2939
2955
  {
2940
2956
  "disabled": false,
2941
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
2942
- "example": "",
2957
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
2958
+ "example": "ZhuYuanDormitory",
2943
2959
  "member": "string",
2944
2960
  "name": "GroupId",
2945
2961
  "required": true,
@@ -2947,8 +2963,8 @@
2947
2963
  },
2948
2964
  {
2949
2965
  "disabled": false,
2950
- "document": "起始序号,默认值为0",
2951
- "example": "",
2966
+ "document": "起始序号,默认值为0",
2967
+ "example": "0",
2952
2968
  "member": "uint64",
2953
2969
  "name": "Offset",
2954
2970
  "required": false,
@@ -2956,8 +2972,8 @@
2956
2972
  },
2957
2973
  {
2958
2974
  "disabled": false,
2959
- "document": "返回数量,默认值为10,最大值为1000",
2960
- "example": "",
2975
+ "document": "返回数量,默认值为10,最大值为1000",
2976
+ "example": "10",
2961
2977
  "member": "uint64",
2962
2978
  "name": "Limit",
2963
2979
  "required": false,
@@ -2971,37 +2987,41 @@
2971
2987
  "members": [
2972
2988
  {
2973
2989
  "disabled": false,
2974
- "document": "返回的人员信息",
2975
- "example": "",
2990
+ "document": "返回的人员信息。",
2991
+ "example": "",
2976
2992
  "member": "PersonInfo",
2977
2993
  "name": "PersonInfos",
2994
+ "output_required": true,
2978
2995
  "type": "list",
2979
2996
  "value_allowed_null": false
2980
2997
  },
2981
2998
  {
2982
2999
  "disabled": false,
2983
- "document": "该人员库的人员数量\n注意:此字段可能返回 null,表示取不到有效值。",
2984
- "example": "",
3000
+ "document": "该人员库的人员数量。\n注意:此字段可能返回 null,表示取不到有效值。",
3001
+ "example": "20",
2985
3002
  "member": "uint64",
2986
3003
  "name": "PersonNum",
3004
+ "output_required": true,
2987
3005
  "type": "int",
2988
3006
  "value_allowed_null": true
2989
3007
  },
2990
3008
  {
2991
3009
  "disabled": false,
2992
- "document": "该人员库的人脸数量\n注意:此字段可能返回 null,表示取不到有效值。",
2993
- "example": "",
3010
+ "document": "该人员库的人脸数量。\n注意:此字段可能返回 null,表示取不到有效值。",
3011
+ "example": "20",
2994
3012
  "member": "uint64",
2995
3013
  "name": "FaceNum",
3014
+ "output_required": true,
2996
3015
  "type": "int",
2997
3016
  "value_allowed_null": true
2998
3017
  },
2999
3018
  {
3000
3019
  "disabled": false,
3001
3020
  "document": "人脸识别所用的算法模型版本。\n注意:此字段可能返回 null,表示取不到有效值。",
3002
- "example": "",
3021
+ "example": "3.0",
3003
3022
  "member": "string",
3004
3023
  "name": "FaceModelVersion",
3024
+ "output_required": true,
3005
3025
  "type": "string",
3006
3026
  "value_allowed_null": true
3007
3027
  },
@@ -3181,10 +3201,10 @@
3181
3201
  {
3182
3202
  "disabled": false,
3183
3203
  "document": "人员库ID 。",
3184
- "example": "",
3204
+ "example": "1001",
3185
3205
  "member": "string",
3186
3206
  "name": "GroupId",
3187
- "required": true,
3207
+ "output_required": true,
3188
3208
  "type": "string",
3189
3209
  "value_allowed_null": false
3190
3210
  },
@@ -3194,7 +3214,7 @@
3194
3214
  "example": "无",
3195
3215
  "member": "Candidate",
3196
3216
  "name": "Candidates",
3197
- "required": true,
3217
+ "output_required": true,
3198
3218
  "type": "list",
3199
3219
  "value_allowed_null": false
3200
3220
  }
@@ -3206,23 +3226,21 @@
3206
3226
  "members": [
3207
3227
  {
3208
3228
  "disabled": false,
3209
- "document": "人员库自定义描述字段Index,从0开始",
3210
- "example": "",
3229
+ "document": "人员库自定义描述字段Index,从0开始。",
3230
+ "example": "",
3211
3231
  "member": "uint64",
3212
3232
  "name": "GroupExDescriptionIndex",
3213
3233
  "required": true,
3214
- "type": "int",
3215
- "value_allowed_null": true
3234
+ "type": "int"
3216
3235
  },
3217
3236
  {
3218
3237
  "disabled": false,
3219
- "document": "需要更新的人员库自定义描述字段内容",
3220
- "example": "",
3238
+ "document": "需要更新的人员库自定义描述字段内容。",
3239
+ "example": "年龄",
3221
3240
  "member": "string",
3222
3241
  "name": "GroupExDescription",
3223
3242
  "required": true,
3224
- "type": "string",
3225
- "value_allowed_null": false
3243
+ "type": "string"
3226
3244
  }
3227
3245
  ],
3228
3246
  "usage": "in"
@@ -3232,61 +3250,61 @@
3232
3250
  "members": [
3233
3251
  {
3234
3252
  "disabled": false,
3235
- "document": "人员库名称",
3236
- "example": "",
3253
+ "document": "人员库名称。",
3254
+ "example": "人员库",
3237
3255
  "member": "string",
3238
3256
  "name": "GroupName",
3239
- "required": true,
3257
+ "output_required": true,
3240
3258
  "type": "string",
3241
3259
  "value_allowed_null": false
3242
3260
  },
3243
3261
  {
3244
3262
  "disabled": false,
3245
- "document": "人员库ID",
3246
- "example": "",
3263
+ "document": "人员库ID",
3264
+ "example": "13",
3247
3265
  "member": "string",
3248
3266
  "name": "GroupId",
3249
- "required": true,
3267
+ "output_required": true,
3250
3268
  "type": "string",
3251
3269
  "value_allowed_null": false
3252
3270
  },
3253
3271
  {
3254
3272
  "disabled": false,
3255
- "document": "人员库自定义描述字段\n注意:此字段可能返回 null,表示取不到有效值。",
3256
- "example": "",
3273
+ "document": "人员库自定义描述字段。\n注意:此字段可能返回 null,表示取不到有效值。",
3274
+ "example": "[\"年龄\"]",
3257
3275
  "member": "string",
3258
3276
  "name": "GroupExDescriptions",
3259
- "required": true,
3277
+ "output_required": true,
3260
3278
  "type": "list",
3261
3279
  "value_allowed_null": true
3262
3280
  },
3263
3281
  {
3264
3282
  "disabled": false,
3265
- "document": "人员库信息备注\n注意:此字段可能返回 null,表示取不到有效值。",
3266
- "example": "",
3283
+ "document": "人员库信息备注。\n注意:此字段可能返回 null,表示取不到有效值。",
3284
+ "example": "无实习生",
3267
3285
  "member": "string",
3268
3286
  "name": "Tag",
3269
- "required": true,
3287
+ "output_required": true,
3270
3288
  "type": "string",
3271
3289
  "value_allowed_null": true
3272
3290
  },
3273
3291
  {
3274
3292
  "disabled": false,
3275
3293
  "document": "人脸识别所用的算法模型版本。\n注意:此字段可能返回 null,表示取不到有效值。",
3276
- "example": "",
3294
+ "example": "3.0",
3277
3295
  "member": "string",
3278
3296
  "name": "FaceModelVersion",
3279
- "required": true,
3297
+ "output_required": true,
3280
3298
  "type": "string",
3281
3299
  "value_allowed_null": true
3282
3300
  },
3283
3301
  {
3284
3302
  "disabled": false,
3285
- "document": "Group的创建时间和日期 CreationTimestampCreationTimestamp 的值是自 Unix 纪元时间到Group创建时间的毫秒数。 \nUnix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。有关更多信息,请参阅 Unix 时间。\n注意:此字段可能返回 null,表示取不到有效值。",
3286
- "example": "",
3303
+ "document": "Group的创建时间和日期 CreationTimestamp。\n- CreationTimestamp 的值是自 Unix 纪元时间到Group创建时间的毫秒数。 \n- Unix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。\n- 有关更多信息,请参阅 Unix 时间。\n注意:此字段可能返回 null,表示取不到有效值。",
3304
+ "example": "1694139227378",
3287
3305
  "member": "uint64",
3288
3306
  "name": "CreationTimestamp",
3289
- "required": true,
3307
+ "output_required": true,
3290
3308
  "type": "int",
3291
3309
  "value_allowed_null": true
3292
3310
  }
@@ -3361,30 +3379,30 @@
3361
3379
  {
3362
3380
  "disabled": false,
3363
3381
  "document": "上下偏移[-30,30]。",
3364
- "example": "",
3382
+ "example": "28",
3365
3383
  "member": "int64",
3366
3384
  "name": "Pitch",
3367
- "required": true,
3385
+ "output_required": true,
3368
3386
  "type": "int",
3369
3387
  "value_allowed_null": false
3370
3388
  },
3371
3389
  {
3372
3390
  "disabled": false,
3373
3391
  "document": "左右偏移[-30,30]。",
3374
- "example": "",
3392
+ "example": "10",
3375
3393
  "member": "int64",
3376
3394
  "name": "Yaw",
3377
- "required": true,
3395
+ "output_required": true,
3378
3396
  "type": "int",
3379
3397
  "value_allowed_null": false
3380
3398
  },
3381
3399
  {
3382
3400
  "disabled": false,
3383
3401
  "document": "平面旋转[-180,180]。",
3384
- "example": "",
3402
+ "example": "23",
3385
3403
  "member": "int64",
3386
3404
  "name": "Roll",
3387
- "required": true,
3405
+ "output_required": true,
3388
3406
  "type": "int",
3389
3407
  "value_allowed_null": false
3390
3408
  }
@@ -3396,8 +3414,8 @@
3396
3414
  "members": [
3397
3415
  {
3398
3416
  "disabled": false,
3399
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
3400
- "example": "",
3417
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
3418
+ "example": "32",
3401
3419
  "member": "string",
3402
3420
  "name": "GroupId",
3403
3421
  "required": true,
@@ -3405,8 +3423,8 @@
3405
3423
  },
3406
3424
  {
3407
3425
  "disabled": false,
3408
- "document": "人员库名称",
3409
- "example": "",
3426
+ "document": "人员库名称。",
3427
+ "example": "人员库名单",
3410
3428
  "member": "string",
3411
3429
  "name": "GroupName",
3412
3430
  "required": false,
@@ -3414,8 +3432,8 @@
3414
3432
  },
3415
3433
  {
3416
3434
  "disabled": false,
3417
- "document": "需要修改的人员库自定义描述字段,key-value",
3418
- "example": "",
3435
+ "document": "需要修改的人员库自定义描述字段,key-value",
3436
+ "example": "",
3419
3437
  "member": "GroupExDescriptionInfo",
3420
3438
  "name": "GroupExDescriptionInfos",
3421
3439
  "required": false,
@@ -3423,8 +3441,8 @@
3423
3441
  },
3424
3442
  {
3425
3443
  "disabled": false,
3426
- "document": "人员库信息备注",
3427
- "example": "",
3444
+ "document": "人员库信息备注。",
3445
+ "example": "无实习生",
3428
3446
  "member": "string",
3429
3447
  "name": "Tag",
3430
3448
  "required": false,
@@ -3450,7 +3468,7 @@
3450
3468
  "members": [
3451
3469
  {
3452
3470
  "disabled": false,
3453
- "document": "人员ID,取值为创建人员接口中的PersonId",
3471
+ "document": "人员ID,取值为创建人员接口中的PersonId",
3454
3472
  "example": "2001",
3455
3473
  "member": "string",
3456
3474
  "name": "PersonId",
@@ -3459,8 +3477,8 @@
3459
3477
  },
3460
3478
  {
3461
3479
  "disabled": false,
3462
- "document": "需要修改的人员名称",
3463
- "example": "JunlyWang",
3480
+ "document": "需要修改的人员名称。",
3481
+ "example": "韦小宝",
3464
3482
  "member": "string",
3465
3483
  "name": "PersonName",
3466
3484
  "required": false,
@@ -3468,7 +3486,7 @@
3468
3486
  },
3469
3487
  {
3470
3488
  "disabled": false,
3471
- "document": "需要修改的人员性别,1代表男性,2代表女性",
3489
+ "document": "需要修改的人员性别,1代表男性,2代表女性。",
3472
3490
  "example": "1",
3473
3491
  "member": "int64",
3474
3492
  "name": "Gender",
@@ -3495,8 +3513,8 @@
3495
3513
  "members": [
3496
3514
  {
3497
3515
  "disabled": false,
3498
- "document": "人员库ID,取值为创建人员库接口中的GroupId",
3499
- "example": "",
3516
+ "document": "人员库ID,取值为创建人员库接口中的GroupId",
3517
+ "example": "TencentShenZhenEmployee",
3500
3518
  "member": "string",
3501
3519
  "name": "GroupId",
3502
3520
  "required": true,
@@ -3504,8 +3522,8 @@
3504
3522
  },
3505
3523
  {
3506
3524
  "disabled": false,
3507
- "document": "人员ID,取值为创建人员接口中的PersonId",
3508
- "example": "",
3525
+ "document": "人员ID,取值为创建人员接口中的PersonId",
3526
+ "example": "1001",
3509
3527
  "member": "string",
3510
3528
  "name": "PersonId",
3511
3529
  "required": true,
@@ -3513,8 +3531,8 @@
3513
3531
  },
3514
3532
  {
3515
3533
  "disabled": false,
3516
- "document": "需要修改的人员描述字段内容,key-value",
3517
- "example": "",
3534
+ "document": "需要修改的人员描述字段内容,key-value",
3535
+ "example": "",
3518
3536
  "member": "PersonExDescriptionInfo",
3519
3537
  "name": "PersonExDescriptionInfos",
3520
3538
  "required": true,
@@ -3556,23 +3574,21 @@
3556
3574
  "members": [
3557
3575
  {
3558
3576
  "disabled": false,
3559
- "document": "人员描述字段Index,从0开始",
3560
- "example": "",
3577
+ "document": "人员描述字段Index,从0开始。",
3578
+ "example": "0",
3561
3579
  "member": "uint64",
3562
3580
  "name": "PersonExDescriptionIndex",
3563
3581
  "required": true,
3564
- "type": "int",
3565
- "value_allowed_null": true
3582
+ "type": "int"
3566
3583
  },
3567
3584
  {
3568
3585
  "disabled": false,
3569
- "document": "需要更新的人员描述字段内容",
3570
- "example": "",
3586
+ "document": "需要更新的人员描述字段内容。",
3587
+ "example": "年龄",
3571
3588
  "member": "string",
3572
3589
  "name": "PersonExDescription",
3573
3590
  "required": true,
3574
- "type": "string",
3575
- "value_allowed_null": false
3591
+ "type": "string"
3576
3592
  }
3577
3593
  ],
3578
3594
  "usage": "in"
@@ -3582,21 +3598,21 @@
3582
3598
  "members": [
3583
3599
  {
3584
3600
  "disabled": false,
3585
- "document": "包含此人员的人员库ID",
3586
- "example": "",
3601
+ "document": "包含此人员的人员库ID",
3602
+ "example": "1001",
3587
3603
  "member": "string",
3588
3604
  "name": "GroupId",
3589
- "required": true,
3605
+ "output_required": true,
3590
3606
  "type": "string",
3591
3607
  "value_allowed_null": false
3592
3608
  },
3593
3609
  {
3594
3610
  "disabled": false,
3595
- "document": "人员描述字段内容",
3596
- "example": "",
3611
+ "document": "人员描述字段内容。",
3612
+ "example": "[\"年龄\"]",
3597
3613
  "member": "string",
3598
3614
  "name": "PersonExDescriptions",
3599
- "required": true,
3615
+ "output_required": true,
3600
3616
  "type": "list",
3601
3617
  "value_allowed_null": false
3602
3618
  }
@@ -3608,61 +3624,61 @@
3608
3624
  "members": [
3609
3625
  {
3610
3626
  "disabled": false,
3611
- "document": "人员名称",
3612
- "example": "",
3627
+ "document": "人员名称。",
3628
+ "example": "韦小宝",
3613
3629
  "member": "string",
3614
3630
  "name": "PersonName",
3615
- "required": true,
3631
+ "output_required": true,
3616
3632
  "type": "string",
3617
3633
  "value_allowed_null": false
3618
3634
  },
3619
3635
  {
3620
3636
  "disabled": false,
3621
- "document": "人员Id",
3622
- "example": "",
3637
+ "document": "人员Id",
3638
+ "example": "1001",
3623
3639
  "member": "string",
3624
3640
  "name": "PersonId",
3625
- "required": true,
3641
+ "output_required": true,
3626
3642
  "type": "string",
3627
3643
  "value_allowed_null": false
3628
3644
  },
3629
3645
  {
3630
3646
  "disabled": false,
3631
- "document": "人员性别",
3632
- "example": "",
3647
+ "document": "人员性别。",
3648
+ "example": "0",
3633
3649
  "member": "int64",
3634
3650
  "name": "Gender",
3635
- "required": true,
3651
+ "output_required": true,
3636
3652
  "type": "int",
3637
3653
  "value_allowed_null": false
3638
3654
  },
3639
3655
  {
3640
3656
  "disabled": false,
3641
- "document": "人员描述字段内容",
3642
- "example": "",
3657
+ "document": "人员描述字段内容。",
3658
+ "example": "[\"年龄\"]",
3643
3659
  "member": "string",
3644
3660
  "name": "PersonExDescriptions",
3645
- "required": true,
3661
+ "output_required": true,
3646
3662
  "type": "list",
3647
3663
  "value_allowed_null": false
3648
3664
  },
3649
3665
  {
3650
3666
  "disabled": false,
3651
- "document": "包含的人脸照片列表",
3652
- "example": "",
3667
+ "document": "包含的人脸照片列表。",
3668
+ "example": "[\"2877244861637985315\"]",
3653
3669
  "member": "string",
3654
3670
  "name": "FaceIds",
3655
- "required": true,
3671
+ "output_required": true,
3656
3672
  "type": "list",
3657
3673
  "value_allowed_null": false
3658
3674
  },
3659
3675
  {
3660
3676
  "disabled": false,
3661
- "document": "人员的创建时间和日期 CreationTimestampCreationTimestamp 的值是自 Unix 纪元时间到Person创建时间的毫秒数。 \nUnix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。有关更多信息,请参阅 Unix 时间。",
3662
- "example": "",
3677
+ "document": "人员的创建时间和日期 CreationTimestamp。\n- CreationTimestamp 的值是自 Unix 纪元时间到Person创建时间的毫秒数。 \n- Unix 纪元时间是 1970 年 1 月 1 日星期四,协调世界时 (UTC) 00:00:00。\n- 有关更多信息,请参阅 Unix 时间。",
3678
+ "example": "1594642823572",
3663
3679
  "member": "uint64",
3664
3680
  "name": "CreationTimestamp",
3665
- "required": true,
3681
+ "output_required": true,
3666
3682
  "type": "int",
3667
3683
  "value_allowed_null": false
3668
3684
  }
@@ -3674,21 +3690,21 @@
3674
3690
  "members": [
3675
3691
  {
3676
3692
  "disabled": false,
3677
- "document": "x坐标",
3678
- "example": "",
3693
+ "document": "x坐标。",
3694
+ "example": "294",
3679
3695
  "member": "int64",
3680
3696
  "name": "X",
3681
- "required": true,
3697
+ "output_required": true,
3682
3698
  "type": "int",
3683
3699
  "value_allowed_null": false
3684
3700
  },
3685
3701
  {
3686
3702
  "disabled": false,
3687
- "document": "Y坐标",
3688
- "example": "",
3703
+ "document": "Y坐标。",
3704
+ "example": "137",
3689
3705
  "member": "int64",
3690
3706
  "name": "Y",
3691
- "required": true,
3707
+ "output_required": true,
3692
3708
  "type": "int",
3693
3709
  "value_allowed_null": false
3694
3710
  }
@@ -3700,31 +3716,31 @@
3700
3716
  "members": [
3701
3717
  {
3702
3718
  "disabled": false,
3703
- "document": "识别出的最相似候选人",
3704
- "example": "",
3719
+ "document": "识别出的最相似候选人。",
3720
+ "example": "",
3705
3721
  "member": "Candidate",
3706
3722
  "name": "Candidates",
3707
- "required": true,
3723
+ "output_required": true,
3708
3724
  "type": "list",
3709
3725
  "value_allowed_null": false
3710
3726
  },
3711
3727
  {
3712
3728
  "disabled": false,
3713
- "document": "检测出的人脸框位置",
3714
- "example": "",
3729
+ "document": "检测出的人脸框位置。",
3730
+ "example": "",
3715
3731
  "member": "FaceRect",
3716
3732
  "name": "FaceRect",
3717
- "required": true,
3733
+ "output_required": true,
3718
3734
  "type": "object",
3719
3735
  "value_allowed_null": false
3720
3736
  },
3721
3737
  {
3722
3738
  "disabled": false,
3723
- "document": "检测出的人脸图片状态返回码。0 表示正常。 \n-1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3724
- "example": "",
3739
+ "document": "检测出的人脸图片状态返回码。\n- 0 表示正常。 \n- -1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3740
+ "example": "0",
3725
3741
  "member": "int64",
3726
3742
  "name": "RetCode",
3727
- "required": true,
3743
+ "output_required": true,
3728
3744
  "type": "int",
3729
3745
  "value_allowed_null": false
3730
3746
  }
@@ -3732,35 +3748,35 @@
3732
3748
  "usage": "out"
3733
3749
  },
3734
3750
  "ResultsReturnsByGroup": {
3735
- "document": "识别结果。\n",
3751
+ "document": "识别结果。",
3736
3752
  "members": [
3737
3753
  {
3738
3754
  "disabled": false,
3739
3755
  "document": "检测出的人脸框位置。",
3740
- "example": "",
3756
+ "example": "",
3741
3757
  "member": "FaceRect",
3742
3758
  "name": "FaceRect",
3743
- "required": true,
3759
+ "output_required": true,
3744
3760
  "type": "object",
3745
3761
  "value_allowed_null": false
3746
3762
  },
3747
3763
  {
3748
3764
  "disabled": false,
3749
3765
  "document": "识别结果。",
3750
- "example": "",
3766
+ "example": "",
3751
3767
  "member": "GroupCandidate",
3752
3768
  "name": "GroupCandidates",
3753
- "required": true,
3769
+ "output_required": true,
3754
3770
  "type": "list",
3755
3771
  "value_allowed_null": false
3756
3772
  },
3757
3773
  {
3758
3774
  "disabled": false,
3759
- "document": "检测出的人脸图片状态返回码。0 表示正常。 \n-1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3760
- "example": "",
3775
+ "document": "检测出的人脸图片状态返回码。\n- 0 表示正常。 \n- -1601代表不符合图片质量控制要求,此时Candidate内容为空。",
3776
+ "example": "",
3761
3777
  "member": "int64",
3762
3778
  "name": "RetCode",
3763
- "required": true,
3779
+ "output_required": true,
3764
3780
  "type": "int",
3765
3781
  "value_allowed_null": false
3766
3782
  }
@@ -3799,7 +3815,7 @@
3799
3815
  "members": [
3800
3816
  {
3801
3817
  "disabled": false,
3802
- "document": "希望搜索的人员库列表,上限100个。数组元素取值为创建人员库接口中的GroupId。\n不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3818
+ "document": "希望搜索的人员库列表,上限100个。\n- 数组元素取值为创建人员库接口中的GroupId。\n- 不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3803
3819
  "example": "[\"TencentShenZhenEmployee\"]",
3804
3820
  "member": "string",
3805
3821
  "name": "GroupIds",
@@ -3808,8 +3824,8 @@
3808
3824
  },
3809
3825
  {
3810
3826
  "disabled": false,
3811
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3812
- "example": "",
3827
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3828
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
3813
3829
  "member": "string",
3814
3830
  "name": "Image",
3815
3831
  "required": false,
@@ -3817,7 +3833,7 @@
3817
3833
  },
3818
3834
  {
3819
3835
  "disabled": false,
3820
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3836
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3821
3837
  "example": "http://test.image.myqcloud.com/testA.jpg",
3822
3838
  "member": "string",
3823
3839
  "name": "Url",
@@ -3826,7 +3842,7 @@
3826
3842
  },
3827
3843
  {
3828
3844
  "disabled": false,
3829
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。 \nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。 \n例如:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3845
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。 \n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。 \n- 例如:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3830
3846
  "example": "1",
3831
3847
  "member": "uint64",
3832
3848
  "name": "MaxFaceNum",
@@ -3835,7 +3851,7 @@
3835
3851
  },
3836
3852
  {
3837
3853
  "disabled": false,
3838
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34的人脸图片无法被识别。建议设置为80。",
3854
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34的人脸图片无法被识别。\n- 建议设置为80。",
3839
3855
  "example": "40",
3840
3856
  "member": "uint64",
3841
3857
  "name": "MinFaceSize",
@@ -3844,7 +3860,7 @@
3844
3860
  },
3845
3861
  {
3846
3862
  "disabled": false,
3847
- "document": "单张被识别的人脸返回的最相似人员数量。默认值为5,最大值为100。 \n例如,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n值越大,需要处理的时间越长。建议不要超过10。",
3863
+ "document": "单张被识别的人脸返回的最相似人员数量。\n- 默认值为5,最大值为100。 \n- 例如,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n- 值越大,需要处理的时间越长。\n- 建议不要超过10。",
3848
3864
  "example": "5",
3849
3865
  "member": "uint64",
3850
3866
  "name": "MaxPersonNum",
@@ -3853,7 +3869,7 @@
3853
3869
  },
3854
3870
  {
3855
3871
  "disabled": false,
3856
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
3872
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
3857
3873
  "example": "0",
3858
3874
  "member": "int64",
3859
3875
  "name": "NeedPersonInfo",
@@ -3862,7 +3878,7 @@
3862
3878
  },
3863
3879
  {
3864
3880
  "disabled": false,
3865
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
3881
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
3866
3882
  "example": "0",
3867
3883
  "member": "uint64",
3868
3884
  "name": "QualityControl",
@@ -3880,7 +3896,7 @@
3880
3896
  },
3881
3897
  {
3882
3898
  "disabled": false,
3883
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
3899
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
3884
3900
  "example": "0",
3885
3901
  "member": "uint64",
3886
3902
  "name": "NeedRotateDetection",
@@ -3937,7 +3953,7 @@
3937
3953
  "members": [
3938
3954
  {
3939
3955
  "disabled": false,
3940
- "document": "希望搜索的人员库列表,上限60个。数组元素取值为创建人员库接口中的GroupId。\n不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3956
+ "document": "希望搜索的人员库列表,上限60个。\n- 数组元素取值为创建人员库接口中的GroupId。\n- 不可同时搜索不同算法模型版本(FaceModelVersion)的人员库。",
3941
3957
  "example": "[\"TencentShenZhenEmployee\\n\"]",
3942
3958
  "member": "string",
3943
3959
  "name": "GroupIds",
@@ -3946,8 +3962,8 @@
3946
3962
  },
3947
3963
  {
3948
3964
  "disabled": false,
3949
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3950
- "example": "",
3965
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3966
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
3951
3967
  "member": "string",
3952
3968
  "name": "Image",
3953
3969
  "required": false,
@@ -3955,7 +3971,7 @@
3955
3971
  },
3956
3972
  {
3957
3973
  "disabled": false,
3958
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3974
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
3959
3975
  "example": "http://test.image.myqcloud.com/testA.jpg",
3960
3976
  "member": "string",
3961
3977
  "name": "Url",
@@ -3964,7 +3980,7 @@
3964
3980
  },
3965
3981
  {
3966
3982
  "disabled": false,
3967
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3983
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n- 例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
3968
3984
  "example": "1",
3969
3985
  "member": "uint64",
3970
3986
  "name": "MaxFaceNum",
@@ -3973,7 +3989,7 @@
3973
3989
  },
3974
3990
  {
3975
3991
  "disabled": false,
3976
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34将影响搜索精度。建议设置为80。",
3992
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34将影响搜索精度。\n- 建议设置为80。",
3977
3993
  "example": "40",
3978
3994
  "member": "uint64",
3979
3995
  "name": "MinFaceSize",
@@ -3982,7 +3998,7 @@
3982
3998
  },
3983
3999
  {
3984
4000
  "disabled": false,
3985
- "document": "被检测到的人脸,对应最多返回的最相似人员数目。默认值为5,最大值为10。 \n例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
4001
+ "document": "被检测到的人脸,对应最多返回的最相似人员数目。\n- 默认值为5,最大值为10。 \n- 例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
3986
4002
  "example": "5",
3987
4003
  "member": "uint64",
3988
4004
  "name": "MaxPersonNumPerGroup",
@@ -3991,7 +4007,7 @@
3991
4007
  },
3992
4008
  {
3993
4009
  "disabled": false,
3994
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
4010
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
3995
4011
  "example": "0",
3996
4012
  "member": "int64",
3997
4013
  "name": "NeedPersonInfo",
@@ -4000,7 +4016,7 @@
4000
4016
  },
4001
4017
  {
4002
4018
  "disabled": false,
4003
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4019
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4004
4020
  "example": "0",
4005
4021
  "member": "uint64",
4006
4022
  "name": "QualityControl",
@@ -4009,7 +4025,7 @@
4009
4025
  },
4010
4026
  {
4011
4027
  "disabled": false,
4012
- "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。\n默认为0。\n取值范围[0.0,100.0) 。",
4028
+ "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。\n- 默认为0。\n- 取值范围:[0.0,100.0) 。",
4013
4029
  "example": "0",
4014
4030
  "member": "float",
4015
4031
  "name": "FaceMatchThreshold",
@@ -4018,7 +4034,7 @@
4018
4034
  },
4019
4035
  {
4020
4036
  "disabled": false,
4021
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4037
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4022
4038
  "example": "0",
4023
4039
  "member": "uint64",
4024
4040
  "name": "NeedRotateDetection",
@@ -4075,8 +4091,8 @@
4075
4091
  "members": [
4076
4092
  {
4077
4093
  "disabled": false,
4078
- "document": "希望搜索的人员库列表,上限100个。数组元素取值为创建人员库接口中的GroupId",
4079
- "example": "[\"TencentShenZhenEmployee\\r\\n\"]",
4094
+ "document": "希望搜索的人员库列表,上限100个。数组元素取值为创建人员库接口中的GroupId",
4095
+ "example": "[\"TencentShenZhenEmployee\"]",
4080
4096
  "member": "string",
4081
4097
  "name": "GroupIds",
4082
4098
  "required": true,
@@ -4084,8 +4100,8 @@
4084
4100
  },
4085
4101
  {
4086
4102
  "disabled": false,
4087
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4088
- "example": "",
4103
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4104
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4089
4105
  "member": "string",
4090
4106
  "name": "Image",
4091
4107
  "required": false,
@@ -4093,7 +4109,7 @@
4093
4109
  },
4094
4110
  {
4095
4111
  "disabled": false,
4096
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4112
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4097
4113
  "example": "http://test.image.myqcloud.com/testA.jpg",
4098
4114
  "member": "string",
4099
4115
  "name": "Url",
@@ -4102,7 +4118,7 @@
4102
4118
  },
4103
4119
  {
4104
4120
  "disabled": false,
4105
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4121
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n- 例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4106
4122
  "example": "1",
4107
4123
  "member": "uint64",
4108
4124
  "name": "MaxFaceNum",
@@ -4111,7 +4127,7 @@
4111
4127
  },
4112
4128
  {
4113
4129
  "disabled": false,
4114
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34将影响搜索精度。建议设置为80。",
4130
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34将影响搜索精度。\n- 建议设置为80。",
4115
4131
  "example": "40",
4116
4132
  "member": "uint64",
4117
4133
  "name": "MinFaceSize",
@@ -4120,7 +4136,7 @@
4120
4136
  },
4121
4137
  {
4122
4138
  "disabled": false,
4123
- "document": "单张被识别的人脸返回的最相似人员数量。默认值为5,最大值为100。\n例,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n值越大,需要处理的时间越长。建议不要超过10。",
4139
+ "document": "单张被识别的人脸返回的最相似人员数量。\n- 默认值为5,最大值为100。\n- 例,设MaxFaceNum为1,MaxPersonNum为8,则返回Top8相似的人员信息。\n- 值越大,需要处理的时间越长。建议不要超过10。",
4124
4140
  "example": "3",
4125
4141
  "member": "uint64",
4126
4142
  "name": "MaxPersonNum",
@@ -4129,7 +4145,7 @@
4129
4145
  },
4130
4146
  {
4131
4147
  "disabled": false,
4132
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4148
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4133
4149
  "example": "0",
4134
4150
  "member": "uint64",
4135
4151
  "name": "QualityControl",
@@ -4138,7 +4154,7 @@
4138
4154
  },
4139
4155
  {
4140
4156
  "disabled": false,
4141
- "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。默认为0。取值范围[0.0,100.0) 。",
4157
+ "document": "出参Score中,只有大于等于FaceMatchThreshold值的结果才会返回。\n- 默认为0。\n- 取值范围:[0.0,100.0) 。",
4142
4158
  "example": "0",
4143
4159
  "member": "float",
4144
4160
  "name": "FaceMatchThreshold",
@@ -4147,7 +4163,7 @@
4147
4163
  },
4148
4164
  {
4149
4165
  "disabled": false,
4150
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
4166
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
4151
4167
  "example": "0",
4152
4168
  "member": "int64",
4153
4169
  "name": "NeedPersonInfo",
@@ -4156,7 +4172,7 @@
4156
4172
  },
4157
4173
  {
4158
4174
  "disabled": false,
4159
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4175
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4160
4176
  "example": "0",
4161
4177
  "member": "uint64",
4162
4178
  "name": "NeedRotateDetection",
@@ -4213,8 +4229,8 @@
4213
4229
  "members": [
4214
4230
  {
4215
4231
  "disabled": false,
4216
- "document": "希望搜索的人员库列表,上限60个。数组元素取值为创建人员库接口中的GroupId",
4217
- "example": "TencentShenZhenEmployee",
4232
+ "document": "希望搜索的人员库列表,上限60个。数组元素取值为创建人员库接口中的GroupId",
4233
+ "example": "[\"TencentShenZhenEmployee\"]",
4218
4234
  "member": "string",
4219
4235
  "name": "GroupIds",
4220
4236
  "required": true,
@@ -4222,8 +4238,8 @@
4222
4238
  },
4223
4239
  {
4224
4240
  "disabled": false,
4225
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4226
- "example": "http://test.image.myqcloud.com/testB.jpg",
4241
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4242
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4227
4243
  "member": "string",
4228
4244
  "name": "Image",
4229
4245
  "required": false,
@@ -4231,7 +4247,7 @@
4231
4247
  },
4232
4248
  {
4233
4249
  "disabled": false,
4234
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。所有格式的图片短边像素不小于64。\nUrl、Image必须提供一个,如果都提供,只使用 Url。\n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n非腾讯云存储的Url速度和稳定性可能受一定影响。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4250
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。\n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。\n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4235
4251
  "example": "http://test.image.myqcloud.com/testB.jpg",
4236
4252
  "member": "string",
4237
4253
  "name": "Url",
@@ -4240,7 +4256,7 @@
4240
4256
  },
4241
4257
  {
4242
4258
  "disabled": false,
4243
- "document": "最多识别的人脸数目。默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\nMaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4259
+ "document": "最多识别的人脸数目。\n- 默认值为1(仅检测图片中面积最大的那张人脸),最大值为10。\n- MaxFaceNum用于,当输入的待识别图片包含多张人脸时,设定要搜索的人脸的数量。\n- 例:输入的Image或Url中的图片包含多张人脸,设MaxFaceNum=5,则会识别图片中面积最大的5张人脸。",
4244
4260
  "example": "1",
4245
4261
  "member": "uint64",
4246
4262
  "name": "MaxFaceNum",
@@ -4249,7 +4265,7 @@
4249
4265
  },
4250
4266
  {
4251
4267
  "disabled": false,
4252
- "document": "人脸长和宽的最小尺寸,单位为像素。默认为34。低于34将影响搜索精度。建议设置为80。",
4268
+ "document": "人脸长和宽的最小尺寸,单位为像素。\n- 默认为34。\n- 低于34将影响搜索精度。\n- 建议设置为80。",
4253
4269
  "example": "80",
4254
4270
  "member": "uint64",
4255
4271
  "name": "MinFaceSize",
@@ -4258,7 +4274,7 @@
4258
4274
  },
4259
4275
  {
4260
4276
  "disabled": false,
4261
- "document": "被检测到的人脸,对应最多返回的最相似人员数目。默认值为5,最大值为10。 \n例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
4277
+ "document": "被检测到的人脸,对应最多返回的最相似人员数目。\n- 默认值为5,最大值为10。 \n- 例,设MaxFaceNum为3,MaxPersonNumPerGroup为5,GroupIds长度为3,则最多可能返回3*5*3=45个人员。",
4262
4278
  "example": "5",
4263
4279
  "member": "uint64",
4264
4280
  "name": "MaxPersonNumPerGroup",
@@ -4267,7 +4283,7 @@
4267
4283
  },
4268
4284
  {
4269
4285
  "disabled": false,
4270
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4286
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4271
4287
  "example": "0",
4272
4288
  "member": "uint64",
4273
4289
  "name": "QualityControl",
@@ -4285,7 +4301,7 @@
4285
4301
  },
4286
4302
  {
4287
4303
  "disabled": false,
4288
- "document": "是否返回人员具体信息。0 为关闭,1 为开启。默认为 0。其他非0非1值默认为0",
4304
+ "document": "是否返回人员具体信息。\n- 取值范围:0 为关闭,1 为开启。\n- 默认为 0。\n- 其他非0非1值默认为0",
4289
4305
  "example": "0",
4290
4306
  "member": "int64",
4291
4307
  "name": "NeedPersonInfo",
@@ -4294,7 +4310,7 @@
4294
4310
  },
4295
4311
  {
4296
4312
  "disabled": false,
4297
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4313
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4298
4314
  "example": "0",
4299
4315
  "member": "uint64",
4300
4316
  "name": "NeedRotateDetection",
@@ -4464,7 +4480,7 @@
4464
4480
  {
4465
4481
  "disabled": false,
4466
4482
  "document": "待验证的人员ID。人员ID具体信息请参考人员库管理相关接口。",
4467
- "example": "11111111",
4483
+ "example": "1001",
4468
4484
  "member": "string",
4469
4485
  "name": "PersonId",
4470
4486
  "required": true,
@@ -4472,8 +4488,8 @@
4472
4488
  },
4473
4489
  {
4474
4490
  "disabled": false,
4475
- "document": "图片 base64 数据,base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4476
- "example": "",
4491
+ "document": "图片 base64 数据。\n- base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4492
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4477
4493
  "member": "string",
4478
4494
  "name": "Image",
4479
4495
  "required": false,
@@ -4481,7 +4497,7 @@
4481
4497
  },
4482
4498
  {
4483
4499
  "disabled": false,
4484
- "document": "图片的 Url 。对应图片 base64 编码后大小不可超过5M。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\nUrl、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4500
+ "document": "图片的 Url 。\n- 对应图片 base64 编码后大小不可超过5M。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4485
4501
  "example": "http://test.image.myqcloud.com/testA.jpg",
4486
4502
  "member": "string",
4487
4503
  "name": "Url",
@@ -4490,7 +4506,7 @@
4490
4506
  },
4491
4507
  {
4492
4508
  "disabled": false,
4493
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4509
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4494
4510
  "example": "0",
4495
4511
  "member": "uint64",
4496
4512
  "name": "QualityControl",
@@ -4499,7 +4515,7 @@
4499
4515
  },
4500
4516
  {
4501
4517
  "disabled": false,
4502
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4518
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4503
4519
  "example": "0",
4504
4520
  "member": "uint64",
4505
4521
  "name": "NeedRotateDetection",
@@ -4514,31 +4530,31 @@
4514
4530
  "members": [
4515
4531
  {
4516
4532
  "disabled": false,
4517
- "document": "给定的人脸图片与 PersonId 对应人脸的相似度。若 PersonId 下有多张人脸(Face),返回相似度最大的分数。\n\n不同算法版本返回的相似度分数不同。\n若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。\n2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。",
4533
+ "document": "给定的人脸图片与 PersonId 对应人脸的相似度。\n- PersonId 下有多张人脸(Face),返回相似度最大的分数。\n- 不同算法版本返回的相似度分数不同。\n- 若需要验证两张图片中人脸是否为同一人,3.0版本误识率千分之一对应分数为40分,误识率万分之一对应分数为50分,误识率十万分之一对应分数为60分。 一般超过50分则可认定为同一人。\n- 2.0版本误识率千分之一对应分数为70分,误识率万分之一对应分数为80分,误识率十万分之一对应分数为90分。 一般超过80分则可认定为同一人。",
4518
4534
  "example": "100",
4519
4535
  "member": "float",
4520
4536
  "name": "Score",
4521
- "required": true,
4537
+ "output_required": true,
4522
4538
  "type": "float",
4523
4539
  "value_allowed_null": false
4524
4540
  },
4525
4541
  {
4526
4542
  "disabled": false,
4527
- "document": "是否为同一人判断,固定阈值分数为60分,若想更灵活地调整阈值可取Score参数返回进行判断",
4543
+ "document": "是否为同一人判断,固定阈值分数为60分,若想更灵活地调整阈值可取Score参数返回进行判断。",
4528
4544
  "example": "1",
4529
4545
  "member": "bool",
4530
4546
  "name": "IsMatch",
4531
- "required": true,
4547
+ "output_required": true,
4532
4548
  "type": "bool",
4533
4549
  "value_allowed_null": false
4534
4550
  },
4535
4551
  {
4536
4552
  "disabled": false,
4537
- "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4553
+ "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。\n- 在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4538
4554
  "example": "3.0",
4539
4555
  "member": "string",
4540
4556
  "name": "FaceModelVersion",
4541
- "required": true,
4557
+ "output_required": true,
4542
4558
  "type": "string",
4543
4559
  "value_allowed_null": false
4544
4560
  },
@@ -4557,7 +4573,7 @@
4557
4573
  {
4558
4574
  "disabled": false,
4559
4575
  "document": "待验证的人员ID。人员ID具体信息请参考人员库管理相关接口。",
4560
- "example": "",
4576
+ "example": "2001",
4561
4577
  "member": "string",
4562
4578
  "name": "PersonId",
4563
4579
  "required": true,
@@ -4565,8 +4581,8 @@
4565
4581
  },
4566
4582
  {
4567
4583
  "disabled": false,
4568
- "document": "图片 base64 数据。\njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4569
- "example": "",
4584
+ "document": "图片 base64 数据。\n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4585
+ "example": "/9j/4AAQSkZJRg.....s97n//2Q==",
4570
4586
  "member": "string",
4571
4587
  "name": "Image",
4572
4588
  "required": false,
@@ -4574,8 +4590,8 @@
4574
4590
  },
4575
4591
  {
4576
4592
  "disabled": false,
4577
- "document": "图片的 Url \njpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。。\n 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n非腾讯云存储的Url速度和稳定性可能受一定影响。\n若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4578
- "example": "",
4593
+ "document": "图片的 Url \n- jpg格式长边像素不可超过4000,其他格式图片长边像素不可超2000。\n- 所有格式的图片短边像素不小于64。\n- 图片的 Url、Image必须提供一个,如果都提供,只使用 Url。 \n- 图片存储于腾讯云的Url可保障更高下载速度和稳定性,建议图片存储于腾讯云。 \n- 非腾讯云存储的Url速度和稳定性可能受一定影响。\n- 若图片中包含多张人脸,只选取其中人脸面积最大的人脸。\n- 支持PNG、JPG、JPEG、BMP,不支持 GIF 图片。",
4594
+ "example": "http://test.image.myqcloud.com/testA.jpg",
4579
4595
  "member": "string",
4580
4596
  "name": "Url",
4581
4597
  "required": false,
@@ -4583,8 +4599,8 @@
4583
4599
  },
4584
4600
  {
4585
4601
  "disabled": false,
4586
- "document": "图片质量控制。 \n0: 不进行控制; \n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况; \n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况; \n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况; \n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题; \n默认 0。 \n若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4587
- "example": "",
4602
+ "document": "图片质量控制。 \n- 取值范围:\n0: 不进行控制。\n1:较低的质量要求,图像存在非常模糊,眼睛鼻子嘴巴遮挡至少其中一种或多种的情况。\n2: 一般的质量要求,图像存在偏亮,偏暗,模糊或一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,至少其中三种的情况。\n3: 较高的质量要求,图像存在偏亮,偏暗,一般模糊,眉毛遮挡,脸颊遮挡,下巴遮挡,其中一到两种的情况。\n4: 很高的质量要求,各个维度均为最好或最多在某一维度上存在轻微问题。\n- 默认 0。 \n- 若图片质量不满足要求,则返回结果中会提示图片质量检测不符要求。",
4603
+ "example": "0",
4588
4604
  "member": "uint64",
4589
4605
  "name": "QualityControl",
4590
4606
  "required": false,
@@ -4592,8 +4608,8 @@
4592
4608
  },
4593
4609
  {
4594
4610
  "disabled": false,
4595
- "document": "是否开启图片旋转识别支持。0为不开启,1为开启。默认为0。本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4596
- "example": "",
4611
+ "document": "是否开启图片旋转识别支持。\n- 取值范围:0为不开启,1为开启。\n- 默认为0。\n- 本参数的作用为,当图片中的人脸被旋转且图片没有exif信息时,如果不开启图片旋转识别支持则无法正确检测、识别图片中的人脸。\n- 若您确认图片包含exif信息或者您确认输入图中人脸不会出现被旋转情况,请不要开启本参数。开启后,整体耗时将可能增加数百毫秒。",
4612
+ "example": "0",
4597
4613
  "member": "uint64",
4598
4614
  "name": "NeedRotateDetection",
4599
4615
  "required": false,
@@ -4608,27 +4624,30 @@
4608
4624
  {
4609
4625
  "disabled": false,
4610
4626
  "document": "给定的人脸照片与 PersonId 对应的相似度。若 PersonId 下有多张人脸(Face),会融合多张人脸信息进行验证。",
4611
- "example": "",
4627
+ "example": "100",
4612
4628
  "member": "float",
4613
4629
  "name": "Score",
4630
+ "output_required": true,
4614
4631
  "type": "float",
4615
4632
  "value_allowed_null": false
4616
4633
  },
4617
4634
  {
4618
4635
  "disabled": false,
4619
4636
  "document": "是否为同一人的判断。",
4620
- "example": "",
4637
+ "example": "false",
4621
4638
  "member": "bool",
4622
4639
  "name": "IsMatch",
4640
+ "output_required": true,
4623
4641
  "type": "bool",
4624
4642
  "value_allowed_null": false
4625
4643
  },
4626
4644
  {
4627
4645
  "disabled": false,
4628
- "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4629
- "example": "",
4646
+ "document": "人脸识别所用的算法模型版本,是该 Person 所在的人员库的算法模型版本。\n- 在创建人员库时设置,详情可参考[算法模型版本](https://cloud.tencent.com/document/product/867/40042)",
4647
+ "example": "3.0",
4630
4648
  "member": "string",
4631
4649
  "name": "FaceModelVersion",
4650
+ "output_required": true,
4632
4651
  "type": "string",
4633
4652
  "value_allowed_null": false
4634
4653
  },