tccli 3.0.1174.1__py2.py3-none-any.whl → 3.0.1175.1__py2.py3-none-any.whl

Sign up to get free protection for your applications and to get access to all the features.
@@ -819,6 +819,13 @@
819
819
  "output": "ModifyDatabaseMdfResponse",
820
820
  "status": "online"
821
821
  },
822
+ "ModifyDatabasePrivilege": {
823
+ "document": "本接口(ModifyDatabasePrivilege)用于修改实例数据库权限。",
824
+ "input": "ModifyDatabasePrivilegeRequest",
825
+ "name": "修改实例数据库权限",
826
+ "output": "ModifyDatabasePrivilegeResponse",
827
+ "status": "online"
828
+ },
822
829
  "ModifyDatabaseShrinkMDF": {
823
830
  "document": "本接口(ModifyDatabaseShrinkDMF)用于收缩数据库mdf(Shrink mdf)。",
824
831
  "input": "ModifyDatabaseShrinkMDFRequest",
@@ -1323,18 +1330,16 @@
1323
1330
  "member": "string",
1324
1331
  "name": "UserName",
1325
1332
  "required": true,
1326
- "type": "string",
1327
- "value_allowed_null": false
1333
+ "type": "string"
1328
1334
  },
1329
1335
  {
1330
1336
  "disabled": false,
1331
- "document": "账号权限变更信息",
1337
+ "document": "账号权限变更信息。参数DBPrivileges和AccAllDB只能二选一",
1332
1338
  "example": "无",
1333
1339
  "member": "DBPrivilegeModifyInfo",
1334
1340
  "name": "DBPrivileges",
1335
1341
  "required": true,
1336
- "type": "list",
1337
- "value_allowed_null": false
1342
+ "type": "list"
1338
1343
  },
1339
1344
  {
1340
1345
  "disabled": false,
@@ -1343,8 +1348,7 @@
1343
1348
  "member": "bool",
1344
1349
  "name": "IsAdmin",
1345
1350
  "required": false,
1346
- "type": "bool",
1347
- "value_allowed_null": false
1351
+ "type": "bool"
1348
1352
  },
1349
1353
  {
1350
1354
  "disabled": false,
@@ -1353,8 +1357,16 @@
1353
1357
  "member": "string",
1354
1358
  "name": "AccountType",
1355
1359
  "required": false,
1356
- "type": "string",
1357
- "value_allowed_null": false
1360
+ "type": "string"
1361
+ },
1362
+ {
1363
+ "disabled": false,
1364
+ "document": "全量修改指定账号下的所有DB权限,只支持特殊权限账号和普通权限账号。参数DBPrivileges和AccAllDB只能二选一",
1365
+ "example": "无",
1366
+ "member": "SelectAllDB",
1367
+ "name": "AccAllDB",
1368
+ "required": false,
1369
+ "type": "object"
1358
1370
  }
1359
1371
  ],
1360
1372
  "usage": "in"
@@ -5026,6 +5038,32 @@
5026
5038
  ],
5027
5039
  "usage": "in"
5028
5040
  },
5041
+ "DataBasePrivilegeModifyInfo": {
5042
+ "document": "数据库账号权限变更信息",
5043
+ "members": [
5044
+ {
5045
+ "disabled": false,
5046
+ "document": "数据库名称",
5047
+ "example": "",
5048
+ "member": "string",
5049
+ "name": "DataBaseName",
5050
+ "required": true,
5051
+ "type": "string",
5052
+ "value_allowed_null": false
5053
+ },
5054
+ {
5055
+ "disabled": false,
5056
+ "document": "数据库权限变更信息",
5057
+ "example": "",
5058
+ "member": "AccountPrivilege",
5059
+ "name": "AccountPrivileges",
5060
+ "required": true,
5061
+ "type": "list",
5062
+ "value_allowed_null": false
5063
+ }
5064
+ ],
5065
+ "usage": "in"
5066
+ },
5029
5067
  "DatabaseTuple": {
5030
5068
  "document": "该数据结构表示具有发布订阅关系的两个数据库。",
5031
5069
  "members": [
@@ -14134,6 +14172,52 @@
14134
14172
  ],
14135
14173
  "type": "object"
14136
14174
  },
14175
+ "ModifyDatabasePrivilegeRequest": {
14176
+ "document": "ModifyDatabasePrivilege请求参数结构体",
14177
+ "members": [
14178
+ {
14179
+ "disabled": false,
14180
+ "document": "数据库实例ID,形如mssql-njj2mtpl",
14181
+ "example": "mssql-njj2mtpl",
14182
+ "member": "string",
14183
+ "name": "InstanceId",
14184
+ "required": true,
14185
+ "type": "string"
14186
+ },
14187
+ {
14188
+ "disabled": false,
14189
+ "document": "数据库权限变更信息",
14190
+ "example": "无",
14191
+ "member": "DataBasePrivilegeModifyInfo",
14192
+ "name": "DataBaseSet",
14193
+ "required": true,
14194
+ "type": "list"
14195
+ }
14196
+ ],
14197
+ "type": "object"
14198
+ },
14199
+ "ModifyDatabasePrivilegeResponse": {
14200
+ "document": "ModifyDatabasePrivilege返回参数结构体",
14201
+ "members": [
14202
+ {
14203
+ "disabled": false,
14204
+ "document": "异步任务流程ID",
14205
+ "example": "30321",
14206
+ "member": "uint64",
14207
+ "name": "FlowId",
14208
+ "required": true,
14209
+ "type": "int",
14210
+ "value_allowed_null": false
14211
+ },
14212
+ {
14213
+ "document": "唯一请求 ID,由服务端生成,每次请求都会返回(若请求因其他原因未能抵达服务端,则该次请求不会获得 RequestId)。定位问题时需要提供该次请求的 RequestId。",
14214
+ "member": "string",
14215
+ "name": "RequestId",
14216
+ "type": "string"
14217
+ }
14218
+ ],
14219
+ "type": "object"
14220
+ },
14137
14221
  "ModifyDatabaseShrinkMDFRequest": {
14138
14222
  "document": "ModifyDatabaseShrinkMDF请求参数结构体",
14139
14223
  "members": [
@@ -16588,6 +16672,21 @@
16588
16672
  ],
16589
16673
  "usage": "out"
16590
16674
  },
16675
+ "SelectAllDB": {
16676
+ "document": "DB权限修改类型",
16677
+ "members": [
16678
+ {
16679
+ "disabled": false,
16680
+ "document": "权限变更信息。ReadWrite表示可读写,ReadOnly表示只读,Delete表示删除账号对该DB的权限,DBOwner所有者",
16681
+ "example": "ReadWrite",
16682
+ "member": "string",
16683
+ "name": "Privilege",
16684
+ "required": true,
16685
+ "type": "string"
16686
+ }
16687
+ ],
16688
+ "usage": "in"
16689
+ },
16591
16690
  "SlaveZones": {
16592
16691
  "document": "备可用区信息",
16593
16692
  "members": [
@@ -966,6 +966,14 @@
966
966
  "title": "收缩数据库mdf"
967
967
  }
968
968
  ],
969
+ "ModifyDatabasePrivilege": [
970
+ {
971
+ "document": "以数据库维度修改权限",
972
+ "input": "https://sqlserver.tencentcloudapi.com/?Action=ModifyDatabasePrivilege\n&InstanceId=mssql-njj2mtpl\n&DataBaseSet.0.DataBaseName=testuser\n&DataBaseSet.0.AccountPrivileges.0.UserName=testdb\n&DataBaseSet.0.AccountPrivileges.0.Privilege=ReadOnly\n&<公共请求参数>",
973
+ "output": "{\n \"Response\": {\n \"RequestId\": \"8a61e500-aa33-454c-9ec2-da2a368c39ab\",\n \"FlowId\": \"30321\"\n }\n}",
974
+ "title": "修改数据库的权限"
975
+ }
976
+ ],
969
977
  "ModifyDatabaseShrinkMDF": [
970
978
  {
971
979
  "document": "",
@@ -121,7 +121,7 @@ def doDescribeImages(args, parsed_globals):
121
121
  FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
122
122
 
123
123
 
124
- def doDetectProductBeta(args, parsed_globals):
124
+ def doDetectPet(args, parsed_globals):
125
125
  g_param = parse_global_arg(parsed_globals)
126
126
 
127
127
  if g_param[OptionsDefine.UseCVMRole.replace('-', '_')]:
@@ -150,11 +150,11 @@ def doDetectProductBeta(args, parsed_globals):
150
150
  client = mod.TiiaClient(cred, g_param[OptionsDefine.Region], profile)
151
151
  client._sdkVersion += ("_CLI_" + __version__)
152
152
  models = MODELS_MAP[g_param[OptionsDefine.Version]]
153
- model = models.DetectProductBetaRequest()
153
+ model = models.DetectPetRequest()
154
154
  model.from_json_string(json.dumps(args))
155
155
  start_time = time.time()
156
156
  while True:
157
- rsp = client.DetectProductBeta(model)
157
+ rsp = client.DetectPet(model)
158
158
  result = rsp.to_json_string()
159
159
  try:
160
160
  json_obj = json.loads(result)
@@ -1161,58 +1161,6 @@ def doUpdateImage(args, parsed_globals):
1161
1161
  FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
1162
1162
 
1163
1163
 
1164
- def doDetectPet(args, parsed_globals):
1165
- g_param = parse_global_arg(parsed_globals)
1166
-
1167
- if g_param[OptionsDefine.UseCVMRole.replace('-', '_')]:
1168
- cred = credential.CVMRoleCredential()
1169
- elif g_param[OptionsDefine.RoleArn.replace('-', '_')] and g_param[OptionsDefine.RoleSessionName.replace('-', '_')]:
1170
- cred = credential.STSAssumeRoleCredential(
1171
- g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.RoleArn.replace('-', '_')],
1172
- g_param[OptionsDefine.RoleSessionName.replace('-', '_')], endpoint=g_param["sts_cred_endpoint"]
1173
- )
1174
- elif os.getenv(OptionsDefine.ENV_TKE_REGION) and os.getenv(OptionsDefine.ENV_TKE_PROVIDER_ID) and os.getenv(OptionsDefine.ENV_TKE_WEB_IDENTITY_TOKEN_FILE) and os.getenv(OptionsDefine.ENV_TKE_ROLE_ARN):
1175
- cred = credential.DefaultTkeOIDCRoleArnProvider().get_credentials()
1176
- else:
1177
- cred = credential.Credential(
1178
- g_param[OptionsDefine.SecretId], g_param[OptionsDefine.SecretKey], g_param[OptionsDefine.Token]
1179
- )
1180
- http_profile = HttpProfile(
1181
- reqTimeout=60 if g_param[OptionsDefine.Timeout] is None else int(g_param[OptionsDefine.Timeout]),
1182
- reqMethod="POST",
1183
- endpoint=g_param[OptionsDefine.Endpoint],
1184
- proxy=g_param[OptionsDefine.HttpsProxy.replace('-', '_')]
1185
- )
1186
- profile = ClientProfile(httpProfile=http_profile, signMethod="HmacSHA256")
1187
- if g_param[OptionsDefine.Language]:
1188
- profile.language = g_param[OptionsDefine.Language]
1189
- mod = CLIENT_MAP[g_param[OptionsDefine.Version]]
1190
- client = mod.TiiaClient(cred, g_param[OptionsDefine.Region], profile)
1191
- client._sdkVersion += ("_CLI_" + __version__)
1192
- models = MODELS_MAP[g_param[OptionsDefine.Version]]
1193
- model = models.DetectPetRequest()
1194
- model.from_json_string(json.dumps(args))
1195
- start_time = time.time()
1196
- while True:
1197
- rsp = client.DetectPet(model)
1198
- result = rsp.to_json_string()
1199
- try:
1200
- json_obj = json.loads(result)
1201
- except TypeError as e:
1202
- json_obj = json.loads(result.decode('utf-8')) # python3.3
1203
- if not g_param[OptionsDefine.Waiter] or search(g_param['OptionsDefine.WaiterInfo']['expr'], json_obj) == g_param['OptionsDefine.WaiterInfo']['to']:
1204
- break
1205
- cur_time = time.time()
1206
- if cur_time - start_time >= g_param['OptionsDefine.WaiterInfo']['timeout']:
1207
- raise ClientError('Request timeout, wait `%s` to `%s` timeout, last request is %s' %
1208
- (g_param['OptionsDefine.WaiterInfo']['expr'], g_param['OptionsDefine.WaiterInfo']['to'],
1209
- search(g_param['OptionsDefine.WaiterInfo']['expr'], json_obj)))
1210
- else:
1211
- print('Inquiry result is %s.' % search(g_param['OptionsDefine.WaiterInfo']['expr'], json_obj))
1212
- time.sleep(g_param['OptionsDefine.WaiterInfo']['interval'])
1213
- FormatOutput.output("action", json_obj, g_param[OptionsDefine.Output], g_param[OptionsDefine.Filter])
1214
-
1215
-
1216
1164
  CLIENT_MAP = {
1217
1165
  "v20190529": tiia_client_v20190529,
1218
1166
 
@@ -1226,7 +1174,7 @@ MODELS_MAP = {
1226
1174
  ACTION_MAP = {
1227
1175
  "DetectEnvelope": doDetectEnvelope,
1228
1176
  "DescribeImages": doDescribeImages,
1229
- "DetectProductBeta": doDetectProductBeta,
1177
+ "DetectPet": doDetectPet,
1230
1178
  "CreateGroup": doCreateGroup,
1231
1179
  "DetectLabel": doDetectLabel,
1232
1180
  "DetectChefDress": doDetectChefDress,
@@ -1246,7 +1194,6 @@ ACTION_MAP = {
1246
1194
  "DetectLabelBeta": doDetectLabelBeta,
1247
1195
  "SearchImage": doSearchImage,
1248
1196
  "UpdateImage": doUpdateImage,
1249
- "DetectPet": doDetectPet,
1250
1197
 
1251
1198
  }
1252
1199
 
@@ -112,13 +112,6 @@
112
112
  "output": "DetectProductResponse",
113
113
  "status": "online"
114
114
  },
115
- "DetectProductBeta": {
116
- "document": "产品不再维护,准备下线。\n\n商品识别-微信识物版,基于人工智能技术、海量训练图片、亿级商品库,可以实现全覆盖、细粒度、高准确率的商品识别和商品推荐功能。\n本服务可以识别出图片中的主体位置、主体商品类型,覆盖亿级SKU,输出具体商品的价格、型号等详细信息。\n客户无需自建商品库,即可快速实现商品识别、拍照搜商品等功能。\n>? \n- 公共参数中的签名方式必须指定为V3版本,即配置SignatureMethod参数为TC3-HMAC-SHA256。",
117
- "input": "DetectProductBetaRequest",
118
- "name": "商品识别-微信识物版",
119
- "output": "DetectProductBetaResponse",
120
- "status": "deprecated"
121
- },
122
115
  "DetectSecurity": {
123
116
  "document": "安全属性识别可对图片中人体安全防护属性进行识别,支持识别安全帽,反光衣,护目镜,工服,手套,工地安全带,口罩,抽烟,玩手机等多种属性。\n\"被优选过滤\"标签值在人体优选开关开启时才会返回。\n\n|序号 | 标签名称 | 标签值 |\n| :-----| :---------- |:----------------- |\n| 1 | 安全帽识别<div style=\"width: 70pt\"> |无安全帽、有安全帽、被优选过滤|\n| 2 | 玩手机识别<div style=\"width: 70pt\"> |没有电话、打电话、玩手机、被优选过滤|\n| 3 | 抽烟识别<div style=\"width: 70pt\"> |没有抽烟、抽烟、被优选过滤\t|\n| 4 | 口罩识别<div style=\"width: 70pt\"> |无口罩、有口罩、口罩不确定、被优选过滤|\n| 5 | 工地安全带识别<div style=\"width: 70pt\"> |无工地安全带、工地安全带、被优选过滤\t|\n| 6 | 手套识别<div style=\"width: 70pt\"> |无手套、有手套、手套不确定、被优选过滤\t|\n| 7 | 工服识别<div style=\"width: 70pt\"> |无工服、有工服、被优选过滤|\n| 8 | 护目镜识别<div style=\"width: 70pt\"> |无护目镜、有护目镜、被优选过滤|\n| 9 | 反光衣识别<div style=\"width: 70pt\"> |无反光衣、有反光衣、被优选过滤|",
124
117
  "input": "DetectSecurityRequest",
@@ -1729,81 +1722,6 @@
1729
1722
  ],
1730
1723
  "type": "object"
1731
1724
  },
1732
- "DetectProductBetaRequest": {
1733
- "document": "DetectProductBeta请求参数结构体",
1734
- "members": [
1735
- {
1736
- "disabled": false,
1737
- "document": "图片限制:内测版仅支持jpg、jpeg,图片大小不超过1M,分辨率在25万到100万之间。 \n建议先对图片进行压缩,以便提升处理速度。",
1738
- "example": "https://test.jpg",
1739
- "member": "string",
1740
- "name": "ImageUrl",
1741
- "required": false,
1742
- "type": "string"
1743
- },
1744
- {
1745
- "disabled": false,
1746
- "document": "图片经过base64编码的内容。最大不超过1M,分辨率在25万到100万之间。 \n与ImageUrl同时存在时优先使用ImageUrl字段。",
1747
- "example": "base64",
1748
- "member": "string",
1749
- "name": "ImageBase64",
1750
- "required": false,
1751
- "type": "string"
1752
- },
1753
- {
1754
- "disabled": false,
1755
- "document": "是否需要百科信息 1:是,0: 否,默认是0",
1756
- "example": "1",
1757
- "member": "int64",
1758
- "name": "NeedLemma",
1759
- "required": false,
1760
- "type": "int"
1761
- }
1762
- ],
1763
- "type": "object"
1764
- },
1765
- "DetectProductBetaResponse": {
1766
- "document": "DetectProductBeta返回参数结构体",
1767
- "members": [
1768
- {
1769
- "disabled": false,
1770
- "document": "检测到的图片中的商品位置和品类预测。 \n当图片中存在多个商品时,输出多组坐标,按照__显著性__排序(综合考虑面积、是否在中心、检测算法置信度)。 \n最多可以输出__3组__检测结果。",
1771
- "example": "无",
1772
- "member": "RegionDetected",
1773
- "name": "RegionDetected",
1774
- "required": true,
1775
- "type": "list",
1776
- "value_allowed_null": false
1777
- },
1778
- {
1779
- "disabled": false,
1780
- "document": "图像识别出的商品的详细信息。 \n当图像中检测到多个物品时,会对显著性最高的进行识别。",
1781
- "example": "无",
1782
- "member": "ProductInfo",
1783
- "name": "ProductInfo",
1784
- "required": true,
1785
- "type": "object",
1786
- "value_allowed_null": false
1787
- },
1788
- {
1789
- "disabled": false,
1790
- "document": "相似商品信息列表\n注意:此字段可能返回 null,表示取不到有效值。",
1791
- "example": "[]",
1792
- "member": "ProductInfo",
1793
- "name": "ProductInfoList",
1794
- "required": true,
1795
- "type": "list",
1796
- "value_allowed_null": true
1797
- },
1798
- {
1799
- "document": "唯一请求 ID,由服务端生成,每次请求都会返回(若请求因其他原因未能抵达服务端,则该次请求不会获得 RequestId)。定位问题时需要提供该次请求的 RequestId。",
1800
- "member": "string",
1801
- "name": "RequestId",
1802
- "type": "string"
1803
- }
1804
- ],
1805
- "type": "object"
1806
- },
1807
1725
  "DetectProductRequest": {
1808
1726
  "document": "DetectProduct请求参数结构体",
1809
1727
  "members": [
@@ -2183,88 +2101,6 @@
2183
2101
  ],
2184
2102
  "usage": "out"
2185
2103
  },
2186
- "LemmaInfo": {
2187
- "document": "百科词条信息",
2188
- "members": [
2189
- {
2190
- "disabled": false,
2191
- "document": "词条\n注意:此字段可能返回 null,表示取不到有效值。",
2192
- "example": "string",
2193
- "member": "string",
2194
- "name": "LemmaTitle",
2195
- "required": true,
2196
- "type": "string",
2197
- "value_allowed_null": true
2198
- },
2199
- {
2200
- "disabled": false,
2201
- "document": "词条描述\n注意:此字段可能返回 null,表示取不到有效值。",
2202
- "example": "string",
2203
- "member": "string",
2204
- "name": "LemmaAbstract",
2205
- "required": true,
2206
- "type": "string",
2207
- "value_allowed_null": true
2208
- },
2209
- {
2210
- "disabled": false,
2211
- "document": "标签\n注意:此字段可能返回 null,表示取不到有效值。",
2212
- "example": "string",
2213
- "member": "string",
2214
- "name": "Tag",
2215
- "required": true,
2216
- "type": "string",
2217
- "value_allowed_null": true
2218
- }
2219
- ],
2220
- "usage": "out"
2221
- },
2222
- "Location": {
2223
- "document": "检测到的主体在图片中的矩形框位置(四个顶点坐标)",
2224
- "members": [
2225
- {
2226
- "disabled": false,
2227
- "document": "位置矩形框的左上角横坐标",
2228
- "example": "",
2229
- "member": "int64",
2230
- "name": "XMin",
2231
- "required": true,
2232
- "type": "int",
2233
- "value_allowed_null": false
2234
- },
2235
- {
2236
- "disabled": false,
2237
- "document": "位置矩形框的左上角纵坐标",
2238
- "example": "",
2239
- "member": "int64",
2240
- "name": "YMin",
2241
- "required": true,
2242
- "type": "int",
2243
- "value_allowed_null": false
2244
- },
2245
- {
2246
- "disabled": false,
2247
- "document": "位置矩形框的右下角横坐标",
2248
- "example": "",
2249
- "member": "int64",
2250
- "name": "XMax",
2251
- "required": true,
2252
- "type": "int",
2253
- "value_allowed_null": false
2254
- },
2255
- {
2256
- "disabled": false,
2257
- "document": "位置矩形框的右下角纵坐标",
2258
- "example": "",
2259
- "member": "int64",
2260
- "name": "YMax",
2261
- "required": true,
2262
- "type": "int",
2263
- "value_allowed_null": false
2264
- }
2265
- ],
2266
- "usage": "out"
2267
- },
2268
2104
  "ObjectInfo": {
2269
2105
  "document": "图像的主体信息。",
2270
2106
  "members": [
@@ -2433,102 +2269,6 @@
2433
2269
  ],
2434
2270
  "usage": "out"
2435
2271
  },
2436
- "ProductInfo": {
2437
- "document": "图像识别出的商品的详细信息。 \n当图像中检测到多个物品时,会对显著性最高的物品进行识别。",
2438
- "members": [
2439
- {
2440
- "disabled": false,
2441
- "document": "1表示找到同款商品,以下字段为同款商品信息; \n0表示未找到同款商品, 具体商品信息为空(参考价格、名称、品牌等),仅提供商品类目和参考图片(商品库中找到的最相似图片,供参考)。 \n是否找到同款的判断依据为Score分值,分值越大则同款的可能性越大。",
2442
- "example": "1",
2443
- "member": "int64",
2444
- "name": "FindSKU",
2445
- "required": true,
2446
- "type": "int",
2447
- "value_allowed_null": false
2448
- },
2449
- {
2450
- "disabled": false,
2451
- "document": "本商品在图片中的坐标,表示为矩形框的四个顶点坐标。",
2452
- "example": "{}",
2453
- "member": "Location",
2454
- "name": "Location",
2455
- "required": true,
2456
- "type": "object",
2457
- "value_allowed_null": false
2458
- },
2459
- {
2460
- "disabled": false,
2461
- "document": "商品名称",
2462
- "example": "string",
2463
- "member": "string",
2464
- "name": "Name",
2465
- "required": true,
2466
- "type": "string",
2467
- "value_allowed_null": false
2468
- },
2469
- {
2470
- "disabled": false,
2471
- "document": "商品品牌",
2472
- "example": "string",
2473
- "member": "string",
2474
- "name": "Brand",
2475
- "required": true,
2476
- "type": "string",
2477
- "value_allowed_null": false
2478
- },
2479
- {
2480
- "disabled": false,
2481
- "document": "参考价格,综合多个信息源,仅供参考。",
2482
- "example": "string",
2483
- "member": "string",
2484
- "name": "Price",
2485
- "required": true,
2486
- "type": "string",
2487
- "value_allowed_null": false
2488
- },
2489
- {
2490
- "disabled": false,
2491
- "document": "识别结果的商品类目。 \n包含:鞋、图书音像、箱包、美妆个护、服饰、家电数码、玩具乐器、食品饮料、珠宝、家居家装、药品、酒水、绿植园艺、其他商品、非商品等。 \n当类别为“非商品”时,除Location、Score和本字段之外的商品信息为空。",
2492
- "example": "string",
2493
- "member": "string",
2494
- "name": "ProductCategory",
2495
- "required": true,
2496
- "type": "string",
2497
- "value_allowed_null": false
2498
- },
2499
- {
2500
- "disabled": false,
2501
- "document": "输入图片中的主体物品和输出结果的相似度。分值越大,输出结果与输入图片是同款的可能性越高。",
2502
- "example": "1",
2503
- "member": "float",
2504
- "name": "Score",
2505
- "required": true,
2506
- "type": "float",
2507
- "value_allowed_null": false
2508
- },
2509
- {
2510
- "disabled": false,
2511
- "document": "搜索到的商品配图URL。",
2512
- "example": "string",
2513
- "member": "string",
2514
- "name": "Image",
2515
- "required": true,
2516
- "type": "string",
2517
- "value_allowed_null": false
2518
- },
2519
- {
2520
- "disabled": false,
2521
- "document": "百科词条列表\n注意:此字段可能返回 null,表示取不到有效值。",
2522
- "example": "[]",
2523
- "member": "LemmaInfo",
2524
- "name": "LemmaInfoList",
2525
- "required": true,
2526
- "type": "list",
2527
- "value_allowed_null": true
2528
- }
2529
- ],
2530
- "usage": "out"
2531
- },
2532
2272
  "RecognizeCarProRequest": {
2533
2273
  "document": "RecognizeCarPro请求参数结构体",
2534
2274
  "members": [
@@ -2685,42 +2425,6 @@
2685
2425
  ],
2686
2426
  "usage": "out"
2687
2427
  },
2688
- "RegionDetected": {
2689
- "document": "检测到的图片中的商品位置和品类预测。 \n当图片中存在多个商品时,输出多组坐标,按照__显著性__排序(综合考虑面积、是否在中心、检测算法置信度)。 \n最多可以输出__3组__检测结果。",
2690
- "members": [
2691
- {
2692
- "disabled": false,
2693
- "document": "商品的品类预测结果。 \n包含:鞋、图书音像、箱包、美妆个护、服饰、家电数码、玩具乐器、食品饮料、珠宝、家居家装、药品、酒水、绿植园艺、其他商品、非商品等。",
2694
- "example": "",
2695
- "member": "string",
2696
- "name": "Category",
2697
- "required": true,
2698
- "type": "string",
2699
- "value_allowed_null": false
2700
- },
2701
- {
2702
- "disabled": false,
2703
- "document": "商品品类预测的置信度",
2704
- "example": "",
2705
- "member": "float",
2706
- "name": "CategoryScore",
2707
- "required": true,
2708
- "type": "float",
2709
- "value_allowed_null": false
2710
- },
2711
- {
2712
- "disabled": false,
2713
- "document": "检测到的主体在图片中的坐标,表示为矩形框的四个顶点坐标",
2714
- "example": "",
2715
- "member": "Location",
2716
- "name": "Location",
2717
- "required": true,
2718
- "type": "object",
2719
- "value_allowed_null": false
2720
- }
2721
- ],
2722
- "usage": "out"
2723
- },
2724
2428
  "SearchImageRequest": {
2725
2429
  "document": "SearchImage请求参数结构体",
2726
2430
  "members": [
@@ -182,14 +182,6 @@
182
182
  "title": "商品识别检测请求成功"
183
183
  }
184
184
  ],
185
- "DetectProductBeta": [
186
- {
187
- "document": "",
188
- "input": "POST / HTTP/1.1\nHost: tiia.tencentcloudapi.com\nContent-Type: application/json\nX-TC-Action: DetectProductBeta\n<公共请求参数>\n\n{\n \"ImageUrl\": \"https://test.jpg\"\n}",
189
- "output": "{\n \"Response\": {\n \"RegionDetected\": [\n {\n \"Category\": \"家电数码\",\n \"CategoryScore\": 0.894864857197,\n \"Location\": {\n \"XMin\": 175,\n \"YMin\": 12,\n \"XMax\": 401,\n \"YMax\": 376\n }\n }\n ],\n \"ProductInfo\": {\n \"FindSKU\": 1,\n \"Location\": {\n \"XMin\": 175,\n \"YMin\": 12,\n \"XMax\": 401,\n \"YMax\": 376\n },\n \"Name\": \"手机\",\n \"Brand\": \"iphone\",\n \"Price\": \"¥7299\",\n \"ProductCategory\": \"家电数码\",\n \"Score\": 0.544267654419,\n \"Image\": \"https://wxamusic.wx.qq.com/wxasr/getminipic/MAnWZ-KslXfAMK4k0dIDv4lfYZQsAPG8r4MKYPL3fI1yDgRjXI68eyE2krz6ku0j?media-id=MAnWZ-KslXfAMK4k0dIDv4lfYZQsAPG8r4MKYPL3fI1yDgRjXI68eyE2krz6ku0j&appid=wx91d27dbf599dff74\",\n \"LemmaInfoList\": []\n },\n \"ProductInfoList\": [\n {\n \"FindSKU\": 1,\n \"Location\": {\n \"XMin\": 175,\n \"YMin\": 12,\n \"XMax\": 401,\n \"YMax\": 376\n },\n \"Name\": \"手机\",\n \"Brand\": \"iphone\",\n \"Price\": \"¥7299\",\n \"ProductCategory\": \"家电数码\",\n \"Score\": 0.544267654419,\n \"Image\": \"https://wxamusic.wx.qq.com/wxasr/getminipic/MAnWZ-KslXfAMK4k0dIDv4lfYZQsAPG8r4MKYPL3fI1yDgRjXI68eyE2krz6ku0j?media-id=MAnWZ-KslXfAMK4k0dIDv4lfYZQsAPG8r4MKYPL3fI1yDgRjXI68eyE2krz6ku0j&appid=wx91d27dbf599dff74\",\n \"LemmaInfoList\": []\n }\n ],\n \"RequestId\": \"2054720d-0c93-4028-9843-8fb9114ce2e2\"\n }\n}",
190
- "title": "商品识别-微信识物版接口调用成功"
191
- }
192
- ],
193
185
  "DetectSecurity": [
194
186
  {
195
187
  "document": "安全属性识别请求失败",