tbp-nightly 2.20.0a20250203__cp39-none-macosx_12_0_arm64.whl → 2.20.0a20250205__cp39-none-macosx_12_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: tbp-nightly
3
- Version: 2.20.0a20250203
3
+ Version: 2.20.0a20250205
4
4
  Summary: Profile Tensorboard Plugin
5
5
  Home-page: https://github.com/tensorflow/profiler
6
6
  Author: Google Inc.
@@ -1,15 +1,15 @@
1
1
  tensorboard_plugin_profile/__init__.py,sha256=9odmeTOiGoJv2r3-l3N3SnAllQMKVIw6rgX4BxOnB-4,923
2
2
  tensorboard_plugin_profile/profile_plugin.py,sha256=R4QwoYnqLxyU5NADaN0PZb2pYF3aj3mC4a7CGeVAvJo,34978
3
3
  tensorboard_plugin_profile/profile_plugin_loader.py,sha256=7EbITLel-uFo1ZB28Kv4CFxBeSRzzEeZL6FEf6SbUpQ,2873
4
- tensorboard_plugin_profile/version.py,sha256=I9BWoSph62dXu1J_anPm5sd8S2aSDnmLpNuQmkRaupw,780
5
- tensorboard_plugin_profile/convert/_pywrap_profiler_plugin.so,sha256=sEHe31vD-fsNpVILjAOgjL86niLU5j7spMAfefkYs6s,107139864
4
+ tensorboard_plugin_profile/version.py,sha256=DXSJ5HNlXncwjZCD7ENXxWHxYHdx8U-lFIqeMA8O2xA,780
5
+ tensorboard_plugin_profile/convert/_pywrap_profiler_plugin.so,sha256=1eqKZ5sR-T9ocvrRFEyKsfWY56qVuL-rtY_9XCQMjLA,107371080
6
6
  tensorboard_plugin_profile/convert/dcn_collective_stats_proto_to_gviz.py,sha256=o08xD3IfVOEqrtpywJA1PRTjdAKdi2TwItUY5y1keAI,4453
7
7
  tensorboard_plugin_profile/convert/diagnostics.py,sha256=Q7hKP60W5LLDiGBxefmKw9i2nZIFjOOHskQN4SCslsI,1515
8
8
  tensorboard_plugin_profile/convert/hlo_stats_proto_to_gviz.py,sha256=C3_NE7WsM8tIGv_F6RVRkwjBE2LuC5ByS4MQjUTZMtc,5434
9
9
  tensorboard_plugin_profile/convert/inference_stats_proto_to_gviz.py,sha256=28iUFcM-mslfRNMgR-G8U1-d-8fGROFzJbROJjK8u7A,11041
10
- tensorboard_plugin_profile/convert/input_pipeline_proto_to_gviz.py,sha256=fiD_eJQKPfLmVC9fZWF9B8GOpWNCH94LenH6Jh1P2gU,20981
10
+ tensorboard_plugin_profile/convert/input_pipeline_proto_to_gviz.py,sha256=eBBLCCk01RSAr71uj8zw7Eb13naLwXbiDAFbKwUxgR8,21171
11
11
  tensorboard_plugin_profile/convert/kernel_stats_proto_to_gviz.py,sha256=LChKWH8qfX0MoKGcb9XGCTKz7CbUnMEnJbIN6K_fBnQ,3851
12
- tensorboard_plugin_profile/convert/overview_page_proto_to_gviz.py,sha256=HoXLT6AXAPW1Nq9PLXixaPng3QJnqW4MEaNAxWa47qs,10513
12
+ tensorboard_plugin_profile/convert/overview_page_proto_to_gviz.py,sha256=KbFguCXII4RrxPq35eUNchQcTaIi10XfeyJK_B2luf4,11038
13
13
  tensorboard_plugin_profile/convert/raw_to_tool_data.py,sha256=qf4v0hKEso55stsjUT9PkvSQc0pyQ6o1x-LbM26Vov4,9598
14
14
  tensorboard_plugin_profile/convert/roofline_model_proto_to_gviz.py,sha256=KnQ0NuQm4Yl0hcwcCvTzBiTD0Z07GCXcjaOOqUE_9EU,14131
15
15
  tensorboard_plugin_profile/convert/tf_data_stats_proto_to_gviz.py,sha256=UFAjx3VBnCchxHP-i1PhLrnHG75lC33N3zY9qtWkRyQ,7584
@@ -31,7 +31,7 @@ tensorboard_plugin_profile/protobuf/tf_data_stats_pb2.py,sha256=o4OFhR9EhkCB77Ke
31
31
  tensorboard_plugin_profile/protobuf/tf_stats_pb2.py,sha256=k6qYc13yCFEQn0tjNydEjL6LackyPMkjlIg6D9dOBv8,3388
32
32
  tensorboard_plugin_profile/protobuf/tpu_input_pipeline_pb2.py,sha256=rt2w2ZoF2OFTjHS4U2p5C_lU-KejKoCQsJ9mDy4xdME,4641
33
33
  tensorboard_plugin_profile/protobuf/trace_events_pb2.py,sha256=_onaGF1Oe0Nbhb4pnA7aLammZ0RxcktvWo0vFGDufpg,3007
34
- tensorboard_plugin_profile/static/bundle.js,sha256=lUBKz0--Rwes3kxcsQoKTg6T4rcT4sLUFZHi4Q-T-l0,23252082
34
+ tensorboard_plugin_profile/static/bundle.js,sha256=XKdOLwxfjfVUGzsTF3LNfmHYMr42bEjaws4h3YbhilQ,23247041
35
35
  tensorboard_plugin_profile/static/index.html,sha256=D7kNoKIZ3Ntog_escZOXiDQOdY26-yZl5WLielNfrbo,1741
36
36
  tensorboard_plugin_profile/static/index.js,sha256=6k9xoStOyq8WLqAbeujc6RnudtedUiKSHgwGNg9_yPc,76
37
37
  tensorboard_plugin_profile/static/materialicons.woff2,sha256=RRfwo4kyIt8HMUExPBeMy8mTQ_OQP7EgIxc7DZ3nirk,60832
@@ -39,8 +39,8 @@ tensorboard_plugin_profile/static/styles.css,sha256=ZHVyDmih7JYJrs8kIXEdpqL-HreI
39
39
  tensorboard_plugin_profile/static/trace_viewer_index.html,sha256=LmV8aRsWN5dsZ38Y34duO7X6Rp_Qx8AWH7800VzyM8Q,136138
40
40
  tensorboard_plugin_profile/static/trace_viewer_index.js,sha256=UbduBE_PYghyLaEIJf73H12zcfSzq18kqa4em3LRLjI,3496391
41
41
  tensorboard_plugin_profile/static/zone.js,sha256=YMw-4VujXc6xhxsSyJ15ImBvBq2aKPlsCy5v82GTk20,572373
42
- tbp_nightly-2.20.0a20250203.dist-info/METADATA,sha256=IaMWrJrC5cRD9gLbZFV4ENBUx6bV_8_xCgntisI1GXM,5211
43
- tbp_nightly-2.20.0a20250203.dist-info/WHEEL,sha256=pdcOt3EQNRiL5D-9JaPMe9zIp_tCJXc4oXfoyrGIyzo,106
44
- tbp_nightly-2.20.0a20250203.dist-info/entry_points.txt,sha256=6jKbqx68mperaU0gjUeI7foBJwSl2tslwKII3q92hmA,101
45
- tbp_nightly-2.20.0a20250203.dist-info/top_level.txt,sha256=lhPzC2a84VfVAbBlTgLUSZwuuUl9uTj5R1zZMylY1g8,27
46
- tbp_nightly-2.20.0a20250203.dist-info/RECORD,,
42
+ tbp_nightly-2.20.0a20250205.dist-info/METADATA,sha256=Ddg7UvodfDCkhF28J-P6M4W7QdCrxYXwgD3-swmgx1o,5211
43
+ tbp_nightly-2.20.0a20250205.dist-info/WHEEL,sha256=pdcOt3EQNRiL5D-9JaPMe9zIp_tCJXc4oXfoyrGIyzo,106
44
+ tbp_nightly-2.20.0a20250205.dist-info/entry_points.txt,sha256=6jKbqx68mperaU0gjUeI7foBJwSl2tslwKII3q92hmA,101
45
+ tbp_nightly-2.20.0a20250205.dist-info/top_level.txt,sha256=lhPzC2a84VfVAbBlTgLUSZwuuUl9uTj5R1zZMylY1g8,27
46
+ tbp_nightly-2.20.0a20250205.dist-info/RECORD,,
@@ -104,7 +104,10 @@ def get_step_breakdown_table_args_for_tpu(ipa):
104
104
  data = []
105
105
  for step_details in ipa.step_details:
106
106
  details = tpu_input_pipeline_pb2.PerTpuStepDetails()
107
- step_details.Unpack(details)
107
+ if not step_details.Unpack(details):
108
+ warnings.warn("Could not unpack to PerTpuStepDetails")
109
+ continue
110
+
108
111
  tooltip = (
109
112
  "step {}: \nTime waiting for input data = {:.3f} ms, Step time ="
110
113
  " {:.3f} ms".format(
@@ -501,13 +504,20 @@ def generate_step_breakdown_table_for_tpu(ipa):
501
504
  return gviz_api.DataTable(table_description, data, custom_properties)
502
505
 
503
506
 
504
- def generate_step_breakdown_table(ipa):
507
+ def generate_step_breakdown_table_for_generic(ipa):
505
508
  (table_description, data, custom_properties) = get_step_breakdown_table_args(
506
509
  ipa
507
510
  )
508
511
  return gviz_api.DataTable(table_description, data, custom_properties)
509
512
 
510
513
 
514
+ def generate_step_breakdown_table(ipa):
515
+ if ipa.tag:
516
+ return generate_step_breakdown_table_for_tpu(ipa)
517
+ else:
518
+ return generate_step_breakdown_table_for_generic(ipa)
519
+
520
+
511
521
  def generate_input_op_table(ipa):
512
522
  (table_description, data, custom_properties) = get_input_op_table_args(ipa)
513
523
  return gviz_api.DataTable(table_description, data, custom_properties)
@@ -521,15 +531,12 @@ def generate_recommendation_table(ipa):
521
531
 
522
532
  def generate_all_chart_tables(ipa):
523
533
  """Generates a list of gviz tables from InputPipelineAnalysisResult."""
524
-
525
534
  tables = []
526
535
  if ipa.tag:
527
- tables.append(generate_step_breakdown_table_for_tpu(ipa))
528
536
  tables.append(generate_max_infeed_core_table(ipa))
529
- else:
530
- tables.append(generate_step_breakdown_table(ipa))
531
537
 
532
538
  return tables + [
539
+ generate_step_breakdown_table(ipa),
533
540
  generate_input_op_table(ipa),
534
541
  generate_recommendation_table(ipa),
535
542
  diag.generate_diagnostics_table(ipa.diagnostics),
@@ -180,23 +180,32 @@ def get_recommendation_table_args(overview_page_recommendation):
180
180
  table_description = [
181
181
  ("tip_type", "string", "tip_type"),
182
182
  ("link", "string", "link"),
183
+ ("description", "string", "description"),
183
184
  ]
184
185
 
185
186
  data = []
186
187
  for faq_tip in overview_page_recommendation.faq_tips:
187
- data.append(["faq", faq_tip.link])
188
+ data.append(["faq", faq_tip.link, "Tool troubleshooting / FAQ"])
188
189
 
189
190
  for host_tip in overview_page_recommendation.host_tips:
190
- data.append(["host", host_tip.link])
191
+ data.append([
192
+ "host",
193
+ host_tip.link,
194
+ "Next steps for reducing the Host time",
195
+ ])
191
196
 
192
197
  for device_tip in overview_page_recommendation.device_tips:
193
- data.append(["device", device_tip.link])
198
+ data.append(
199
+ ["device", device_tip.link, "Next steps for reducing the Device time"]
200
+ )
194
201
 
195
202
  for doc_tip in overview_page_recommendation.documentation_tips:
196
- data.append(["doc", doc_tip.link])
203
+ data.append(["doc", doc_tip.link, "Other useful resources"])
197
204
 
198
205
  for inference_tip in overview_page_recommendation.inference_tips:
199
- data.append(["inference", inference_tip.link])
206
+ data.append(
207
+ ["inference", inference_tip.link, "Recommendations for inference run"]
208
+ )
200
209
 
201
210
  bottleneck = overview_page_recommendation.bottleneck
202
211
  statement = overview_page_recommendation.statement
@@ -223,6 +232,11 @@ def get_recommendation_table_args(overview_page_recommendation):
223
232
  "precision_statement": precision_statement,
224
233
  }
225
234
 
235
+ # Prop used for data filtering in the frontend.
236
+ if bottleneck in ["host", "device"]:
237
+ non_bottleneck_tip_type = "device" if bottleneck == "host" else "host"
238
+ custom_properties["non_bottleneck_tip_types"] = non_bottleneck_tip_type
239
+
226
240
  return (table_description, data, custom_properties)
227
241
 
228
242