tbp-nightly 2.20.0a20250203__cp311-none-manylinux2014_x86_64.whl → 2.20.0a20250205__cp311-none-manylinux2014_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- {tbp_nightly-2.20.0a20250203.dist-info → tbp_nightly-2.20.0a20250205.dist-info}/METADATA +1 -1
- {tbp_nightly-2.20.0a20250203.dist-info → tbp_nightly-2.20.0a20250205.dist-info}/RECORD +10 -10
- tensorboard_plugin_profile/convert/_pywrap_profiler_plugin.so +0 -0
- tensorboard_plugin_profile/convert/input_pipeline_proto_to_gviz.py +13 -6
- tensorboard_plugin_profile/convert/overview_page_proto_to_gviz.py +19 -5
- tensorboard_plugin_profile/static/bundle.js +124 -155
- tensorboard_plugin_profile/version.py +1 -1
- {tbp_nightly-2.20.0a20250203.dist-info → tbp_nightly-2.20.0a20250205.dist-info}/WHEEL +0 -0
- {tbp_nightly-2.20.0a20250203.dist-info → tbp_nightly-2.20.0a20250205.dist-info}/entry_points.txt +0 -0
- {tbp_nightly-2.20.0a20250203.dist-info → tbp_nightly-2.20.0a20250205.dist-info}/top_level.txt +0 -0
@@ -1,15 +1,15 @@
|
|
1
1
|
tensorboard_plugin_profile/__init__.py,sha256=9odmeTOiGoJv2r3-l3N3SnAllQMKVIw6rgX4BxOnB-4,923
|
2
2
|
tensorboard_plugin_profile/profile_plugin.py,sha256=R4QwoYnqLxyU5NADaN0PZb2pYF3aj3mC4a7CGeVAvJo,34978
|
3
3
|
tensorboard_plugin_profile/profile_plugin_loader.py,sha256=7EbITLel-uFo1ZB28Kv4CFxBeSRzzEeZL6FEf6SbUpQ,2873
|
4
|
-
tensorboard_plugin_profile/version.py,sha256=
|
5
|
-
tensorboard_plugin_profile/convert/_pywrap_profiler_plugin.so,sha256=
|
4
|
+
tensorboard_plugin_profile/version.py,sha256=DXSJ5HNlXncwjZCD7ENXxWHxYHdx8U-lFIqeMA8O2xA,780
|
5
|
+
tensorboard_plugin_profile/convert/_pywrap_profiler_plugin.so,sha256=oDfO8d3hD_9xtOeJOiMnkDXjXjFl8WGDLdydgdczPtM,98978504
|
6
6
|
tensorboard_plugin_profile/convert/dcn_collective_stats_proto_to_gviz.py,sha256=o08xD3IfVOEqrtpywJA1PRTjdAKdi2TwItUY5y1keAI,4453
|
7
7
|
tensorboard_plugin_profile/convert/diagnostics.py,sha256=Q7hKP60W5LLDiGBxefmKw9i2nZIFjOOHskQN4SCslsI,1515
|
8
8
|
tensorboard_plugin_profile/convert/hlo_stats_proto_to_gviz.py,sha256=C3_NE7WsM8tIGv_F6RVRkwjBE2LuC5ByS4MQjUTZMtc,5434
|
9
9
|
tensorboard_plugin_profile/convert/inference_stats_proto_to_gviz.py,sha256=28iUFcM-mslfRNMgR-G8U1-d-8fGROFzJbROJjK8u7A,11041
|
10
|
-
tensorboard_plugin_profile/convert/input_pipeline_proto_to_gviz.py,sha256=
|
10
|
+
tensorboard_plugin_profile/convert/input_pipeline_proto_to_gviz.py,sha256=eBBLCCk01RSAr71uj8zw7Eb13naLwXbiDAFbKwUxgR8,21171
|
11
11
|
tensorboard_plugin_profile/convert/kernel_stats_proto_to_gviz.py,sha256=LChKWH8qfX0MoKGcb9XGCTKz7CbUnMEnJbIN6K_fBnQ,3851
|
12
|
-
tensorboard_plugin_profile/convert/overview_page_proto_to_gviz.py,sha256=
|
12
|
+
tensorboard_plugin_profile/convert/overview_page_proto_to_gviz.py,sha256=KbFguCXII4RrxPq35eUNchQcTaIi10XfeyJK_B2luf4,11038
|
13
13
|
tensorboard_plugin_profile/convert/raw_to_tool_data.py,sha256=qf4v0hKEso55stsjUT9PkvSQc0pyQ6o1x-LbM26Vov4,9598
|
14
14
|
tensorboard_plugin_profile/convert/roofline_model_proto_to_gviz.py,sha256=KnQ0NuQm4Yl0hcwcCvTzBiTD0Z07GCXcjaOOqUE_9EU,14131
|
15
15
|
tensorboard_plugin_profile/convert/tf_data_stats_proto_to_gviz.py,sha256=UFAjx3VBnCchxHP-i1PhLrnHG75lC33N3zY9qtWkRyQ,7584
|
@@ -31,7 +31,7 @@ tensorboard_plugin_profile/protobuf/tf_data_stats_pb2.py,sha256=o4OFhR9EhkCB77Ke
|
|
31
31
|
tensorboard_plugin_profile/protobuf/tf_stats_pb2.py,sha256=k6qYc13yCFEQn0tjNydEjL6LackyPMkjlIg6D9dOBv8,3388
|
32
32
|
tensorboard_plugin_profile/protobuf/tpu_input_pipeline_pb2.py,sha256=rt2w2ZoF2OFTjHS4U2p5C_lU-KejKoCQsJ9mDy4xdME,4641
|
33
33
|
tensorboard_plugin_profile/protobuf/trace_events_pb2.py,sha256=_onaGF1Oe0Nbhb4pnA7aLammZ0RxcktvWo0vFGDufpg,3007
|
34
|
-
tensorboard_plugin_profile/static/bundle.js,sha256=
|
34
|
+
tensorboard_plugin_profile/static/bundle.js,sha256=DPZTeSE7iQ9cvxg0Qqjll_EO_Cnd1HOaQ9-PnedIcGs,23243165
|
35
35
|
tensorboard_plugin_profile/static/index.html,sha256=D7kNoKIZ3Ntog_escZOXiDQOdY26-yZl5WLielNfrbo,1741
|
36
36
|
tensorboard_plugin_profile/static/index.js,sha256=6k9xoStOyq8WLqAbeujc6RnudtedUiKSHgwGNg9_yPc,76
|
37
37
|
tensorboard_plugin_profile/static/materialicons.woff2,sha256=RRfwo4kyIt8HMUExPBeMy8mTQ_OQP7EgIxc7DZ3nirk,60832
|
@@ -39,8 +39,8 @@ tensorboard_plugin_profile/static/styles.css,sha256=ZHVyDmih7JYJrs8kIXEdpqL-HreI
|
|
39
39
|
tensorboard_plugin_profile/static/trace_viewer_index.html,sha256=LmV8aRsWN5dsZ38Y34duO7X6Rp_Qx8AWH7800VzyM8Q,136138
|
40
40
|
tensorboard_plugin_profile/static/trace_viewer_index.js,sha256=UbduBE_PYghyLaEIJf73H12zcfSzq18kqa4em3LRLjI,3496391
|
41
41
|
tensorboard_plugin_profile/static/zone.js,sha256=YMw-4VujXc6xhxsSyJ15ImBvBq2aKPlsCy5v82GTk20,572373
|
42
|
-
tbp_nightly-2.20.
|
43
|
-
tbp_nightly-2.20.
|
44
|
-
tbp_nightly-2.20.
|
45
|
-
tbp_nightly-2.20.
|
46
|
-
tbp_nightly-2.20.
|
42
|
+
tbp_nightly-2.20.0a20250205.dist-info/METADATA,sha256=whrLH1GRoZ8S-mnYtYVOi03OKeiNQwYvbVjToq6H74U,4985
|
43
|
+
tbp_nightly-2.20.0a20250205.dist-info/WHEEL,sha256=fYnQWxCHvBJNxhGkg7OatEAocHdlLlyd_sulNRAgAtw,111
|
44
|
+
tbp_nightly-2.20.0a20250205.dist-info/entry_points.txt,sha256=6jKbqx68mperaU0gjUeI7foBJwSl2tslwKII3q92hmA,101
|
45
|
+
tbp_nightly-2.20.0a20250205.dist-info/top_level.txt,sha256=lhPzC2a84VfVAbBlTgLUSZwuuUl9uTj5R1zZMylY1g8,27
|
46
|
+
tbp_nightly-2.20.0a20250205.dist-info/RECORD,,
|
Binary file
|
@@ -104,7 +104,10 @@ def get_step_breakdown_table_args_for_tpu(ipa):
|
|
104
104
|
data = []
|
105
105
|
for step_details in ipa.step_details:
|
106
106
|
details = tpu_input_pipeline_pb2.PerTpuStepDetails()
|
107
|
-
step_details.Unpack(details)
|
107
|
+
if not step_details.Unpack(details):
|
108
|
+
warnings.warn("Could not unpack to PerTpuStepDetails")
|
109
|
+
continue
|
110
|
+
|
108
111
|
tooltip = (
|
109
112
|
"step {}: \nTime waiting for input data = {:.3f} ms, Step time ="
|
110
113
|
" {:.3f} ms".format(
|
@@ -501,13 +504,20 @@ def generate_step_breakdown_table_for_tpu(ipa):
|
|
501
504
|
return gviz_api.DataTable(table_description, data, custom_properties)
|
502
505
|
|
503
506
|
|
504
|
-
def
|
507
|
+
def generate_step_breakdown_table_for_generic(ipa):
|
505
508
|
(table_description, data, custom_properties) = get_step_breakdown_table_args(
|
506
509
|
ipa
|
507
510
|
)
|
508
511
|
return gviz_api.DataTable(table_description, data, custom_properties)
|
509
512
|
|
510
513
|
|
514
|
+
def generate_step_breakdown_table(ipa):
|
515
|
+
if ipa.tag:
|
516
|
+
return generate_step_breakdown_table_for_tpu(ipa)
|
517
|
+
else:
|
518
|
+
return generate_step_breakdown_table_for_generic(ipa)
|
519
|
+
|
520
|
+
|
511
521
|
def generate_input_op_table(ipa):
|
512
522
|
(table_description, data, custom_properties) = get_input_op_table_args(ipa)
|
513
523
|
return gviz_api.DataTable(table_description, data, custom_properties)
|
@@ -521,15 +531,12 @@ def generate_recommendation_table(ipa):
|
|
521
531
|
|
522
532
|
def generate_all_chart_tables(ipa):
|
523
533
|
"""Generates a list of gviz tables from InputPipelineAnalysisResult."""
|
524
|
-
|
525
534
|
tables = []
|
526
535
|
if ipa.tag:
|
527
|
-
tables.append(generate_step_breakdown_table_for_tpu(ipa))
|
528
536
|
tables.append(generate_max_infeed_core_table(ipa))
|
529
|
-
else:
|
530
|
-
tables.append(generate_step_breakdown_table(ipa))
|
531
537
|
|
532
538
|
return tables + [
|
539
|
+
generate_step_breakdown_table(ipa),
|
533
540
|
generate_input_op_table(ipa),
|
534
541
|
generate_recommendation_table(ipa),
|
535
542
|
diag.generate_diagnostics_table(ipa.diagnostics),
|
@@ -180,23 +180,32 @@ def get_recommendation_table_args(overview_page_recommendation):
|
|
180
180
|
table_description = [
|
181
181
|
("tip_type", "string", "tip_type"),
|
182
182
|
("link", "string", "link"),
|
183
|
+
("description", "string", "description"),
|
183
184
|
]
|
184
185
|
|
185
186
|
data = []
|
186
187
|
for faq_tip in overview_page_recommendation.faq_tips:
|
187
|
-
data.append(["faq", faq_tip.link])
|
188
|
+
data.append(["faq", faq_tip.link, "Tool troubleshooting / FAQ"])
|
188
189
|
|
189
190
|
for host_tip in overview_page_recommendation.host_tips:
|
190
|
-
data.append([
|
191
|
+
data.append([
|
192
|
+
"host",
|
193
|
+
host_tip.link,
|
194
|
+
"Next steps for reducing the Host time",
|
195
|
+
])
|
191
196
|
|
192
197
|
for device_tip in overview_page_recommendation.device_tips:
|
193
|
-
data.append(
|
198
|
+
data.append(
|
199
|
+
["device", device_tip.link, "Next steps for reducing the Device time"]
|
200
|
+
)
|
194
201
|
|
195
202
|
for doc_tip in overview_page_recommendation.documentation_tips:
|
196
|
-
data.append(["doc", doc_tip.link])
|
203
|
+
data.append(["doc", doc_tip.link, "Other useful resources"])
|
197
204
|
|
198
205
|
for inference_tip in overview_page_recommendation.inference_tips:
|
199
|
-
data.append(
|
206
|
+
data.append(
|
207
|
+
["inference", inference_tip.link, "Recommendations for inference run"]
|
208
|
+
)
|
200
209
|
|
201
210
|
bottleneck = overview_page_recommendation.bottleneck
|
202
211
|
statement = overview_page_recommendation.statement
|
@@ -223,6 +232,11 @@ def get_recommendation_table_args(overview_page_recommendation):
|
|
223
232
|
"precision_statement": precision_statement,
|
224
233
|
}
|
225
234
|
|
235
|
+
# Prop used for data filtering in the frontend.
|
236
|
+
if bottleneck in ["host", "device"]:
|
237
|
+
non_bottleneck_tip_type = "device" if bottleneck == "host" else "host"
|
238
|
+
custom_properties["non_bottleneck_tip_types"] = non_bottleneck_tip_type
|
239
|
+
|
226
240
|
return (table_description, data, custom_properties)
|
227
241
|
|
228
242
|
|