taxcalc 4.2.1__py3-none-any.whl → 4.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- taxcalc/__init__.py +1 -1
- taxcalc/assumptions/ASSUMPTIONS.md +53 -0
- taxcalc/assumptions/README.md +17 -0
- taxcalc/assumptions/economic_assumptions_template.json +77 -0
- taxcalc/calcfunctions.py +7 -4
- taxcalc/data.py +10 -5
- taxcalc/policy_current_law.json +2033 -184
- taxcalc/reforms/2017_law.json +125 -0
- taxcalc/reforms/2017_law.out.csv +10 -0
- taxcalc/reforms/ARPA.json +78 -0
- taxcalc/reforms/ARPA.out.csv +10 -0
- taxcalc/reforms/BrownKhanna.json +23 -0
- taxcalc/reforms/BrownKhanna.out.csv +10 -0
- taxcalc/reforms/CARES.json +40 -0
- taxcalc/reforms/CARES.out.csv +10 -0
- taxcalc/reforms/ConsolidatedAppropriationsAct2021.json +15 -0
- taxcalc/reforms/ConsolidatedAppropriationsAct2021.out.csv +10 -0
- taxcalc/reforms/Larson2019.json +36 -0
- taxcalc/reforms/Larson2019.out.csv +10 -0
- taxcalc/reforms/README.md +22 -0
- taxcalc/reforms/REFORMS.md +92 -0
- taxcalc/reforms/Renacci.json +61 -0
- taxcalc/reforms/Renacci.out.csv +10 -0
- taxcalc/reforms/SandersDeFazio.json +15 -0
- taxcalc/reforms/SandersDeFazio.out.csv +10 -0
- taxcalc/reforms/TCJA.json +160 -0
- taxcalc/reforms/TCJA.md +48 -0
- taxcalc/reforms/TCJA.out.csv +10 -0
- taxcalc/reforms/Trump2016.json +71 -0
- taxcalc/reforms/Trump2016.out.csv +10 -0
- taxcalc/reforms/Trump2017.json +51 -0
- taxcalc/reforms/Trump2017.out.csv +10 -0
- taxcalc/reforms/archive/Clinton2016.json +56 -0
- taxcalc/reforms/archive/RyanBrady.json +104 -0
- taxcalc/reforms/archive/TCJA_House.json +144 -0
- taxcalc/reforms/archive/TCJA_House_Amended.json +152 -0
- taxcalc/reforms/archive/TCJA_Reconciliation.json +187 -0
- taxcalc/reforms/archive/TCJA_Senate.json +116 -0
- taxcalc/reforms/archive/TCJA_Senate_111417.json +169 -0
- taxcalc/reforms/archive/TCJA_Senate_120117.json +174 -0
- taxcalc/reforms/cases.csv +10 -0
- taxcalc/reforms/clp.out.csv +10 -0
- taxcalc/reforms/ext.json +59 -0
- taxcalc/reforms/growfactors_ext.csv +65 -0
- taxcalc/reforms/ptaxes0.json +37 -0
- taxcalc/reforms/ptaxes0.out.csv +10 -0
- taxcalc/reforms/ptaxes1.json +21 -0
- taxcalc/reforms/ptaxes1.out.csv +10 -0
- taxcalc/reforms/ptaxes2.json +18 -0
- taxcalc/reforms/ptaxes2.out.csv +10 -0
- taxcalc/reforms/ptaxes3.json +28 -0
- taxcalc/reforms/ptaxes3.out.csv +10 -0
- taxcalc/reforms/rounding2022.json +153 -0
- taxcalc/reforms/rounding2022.out.csv +10 -0
- taxcalc/tests/benefits_expect.csv +169 -0
- taxcalc/tests/cmpi_cps_expect.txt +132 -0
- taxcalc/tests/cmpi_puf_expect.txt +132 -0
- taxcalc/tests/conftest.py +143 -0
- taxcalc/tests/cpscsv_agg_expect.csv +26 -0
- taxcalc/tests/puf_var_correl_coeffs_2016.csv +80 -0
- taxcalc/tests/puf_var_wght_means_by_year.csv +80 -0
- taxcalc/tests/pufcsv_agg_expect.csv +26 -0
- taxcalc/tests/pufcsv_mtr_expect.txt +63 -0
- taxcalc/tests/reforms.json +649 -0
- taxcalc/tests/reforms_expect.csv +65 -0
- taxcalc/tests/test_4package.py +67 -0
- taxcalc/tests/test_benefits.py +86 -0
- taxcalc/tests/test_calcfunctions.py +871 -0
- taxcalc/tests/test_calculator.py +1021 -0
- taxcalc/tests/test_compare.py +336 -0
- taxcalc/tests/test_compatible_data.py +338 -0
- taxcalc/tests/test_consumption.py +144 -0
- taxcalc/tests/test_cpscsv.py +163 -0
- taxcalc/tests/test_data.py +133 -0
- taxcalc/tests/test_decorators.py +332 -0
- taxcalc/tests/test_growdiff.py +102 -0
- taxcalc/tests/test_growfactors.py +94 -0
- taxcalc/tests/test_parameters.py +617 -0
- taxcalc/tests/test_policy.py +1575 -0
- taxcalc/tests/test_puf_var_stats.py +194 -0
- taxcalc/tests/test_pufcsv.py +385 -0
- taxcalc/tests/test_records.py +234 -0
- taxcalc/tests/test_reforms.py +385 -0
- taxcalc/tests/test_responses.py +41 -0
- taxcalc/tests/test_taxcalcio.py +755 -0
- taxcalc/tests/test_tmdcsv.py +38 -0
- taxcalc/tests/test_utils.py +792 -0
- taxcalc/tmd_growfactors.csv +54 -54
- taxcalc/tmd_weights.csv.gz +0 -0
- taxcalc/validation/CSV_INPUT_VARS.md +29 -0
- taxcalc/validation/CSV_OUTPUT_VARS.md +63 -0
- taxcalc/validation/README.md +68 -0
- taxcalc/validation/taxsim35/Differences_Explained.md +54 -0
- taxcalc/validation/taxsim35/README.md +139 -0
- taxcalc/validation/taxsim35/expected_differences/a17-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/a18-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/a19-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/a20-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/a21-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/b17-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/b18-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/b19-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/b20-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/b21-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/c17-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/c18-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/expected_differences/c19-taxdiffs-expect.csv +25 -0
- taxcalc/validation/taxsim35/input_setup.py +67 -0
- taxcalc/validation/taxsim35/main_comparison.py +183 -0
- taxcalc/validation/taxsim35/prepare_taxcalc_input.py +161 -0
- taxcalc/validation/taxsim35/process_taxcalc_output.py +140 -0
- taxcalc/validation/taxsim35/taxsim_emulation.json +49 -0
- taxcalc/validation/taxsim35/taxsim_input.py +321 -0
- taxcalc/validation/taxsim35/tc_sims.py +98 -0
- taxcalc/validation/taxsim35/tests_35.py +80 -0
- taxcalc/validation/tests_35.sh +13 -0
- {taxcalc-4.2.1.dist-info → taxcalc-4.2.2.dist-info}/METADATA +3 -4
- taxcalc-4.2.2.dist-info/RECORD +144 -0
- {taxcalc-4.2.1.dist-info → taxcalc-4.2.2.dist-info}/WHEEL +1 -1
- taxcalc-4.2.1.dist-info/RECORD +0 -34
- {taxcalc-4.2.1.dist-info → taxcalc-4.2.2.dist-info}/LICENSE +0 -0
- {taxcalc-4.2.1.dist-info → taxcalc-4.2.2.dist-info}/entry_points.txt +0 -0
- {taxcalc-4.2.1.dist-info → taxcalc-4.2.2.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1021 @@
|
|
1
|
+
"""
|
2
|
+
Tests of Calculator class.
|
3
|
+
"""
|
4
|
+
# CODING-STYLE CHECKS:
|
5
|
+
# pycodestyle test_calculator.py
|
6
|
+
# pylint --disable=locally-disabled test_calculator.py
|
7
|
+
#
|
8
|
+
# pylint: disable=too-many-lines,invalid-name
|
9
|
+
|
10
|
+
import os
|
11
|
+
from io import StringIO
|
12
|
+
import copy
|
13
|
+
import pytest
|
14
|
+
import numpy as np
|
15
|
+
import pandas as pd
|
16
|
+
from taxcalc import Policy, Records, Calculator, Consumption
|
17
|
+
|
18
|
+
|
19
|
+
def test_make_calculator(cps_subsample):
|
20
|
+
"""
|
21
|
+
Test Calculator class ctor.
|
22
|
+
"""
|
23
|
+
start_year = Policy.JSON_START_YEAR
|
24
|
+
sim_year = 2018
|
25
|
+
pol = Policy()
|
26
|
+
assert pol.current_year == start_year
|
27
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
28
|
+
consump = Consumption()
|
29
|
+
consump.update_consumption({'MPC_e20400': {sim_year: 0.05}})
|
30
|
+
assert consump.current_year == start_year
|
31
|
+
calc = Calculator(policy=pol, records=rec,
|
32
|
+
consumption=consump, verbose=True)
|
33
|
+
assert calc.data_year == Records.CPSCSV_YEAR
|
34
|
+
assert calc.current_year == Records.CPSCSV_YEAR
|
35
|
+
# test incorrect Calculator instantiation:
|
36
|
+
with pytest.raises(ValueError):
|
37
|
+
Calculator(policy=None, records=rec)
|
38
|
+
with pytest.raises(ValueError):
|
39
|
+
Calculator(policy=pol, records=None)
|
40
|
+
with pytest.raises(ValueError):
|
41
|
+
Calculator(policy=pol, records=rec, consumption=list())
|
42
|
+
|
43
|
+
|
44
|
+
def test_make_calculator_deepcopy(cps_subsample):
|
45
|
+
"""
|
46
|
+
Test deepcopy of Calculator object.
|
47
|
+
"""
|
48
|
+
pol = Policy()
|
49
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
50
|
+
calc1 = Calculator(policy=pol, records=rec)
|
51
|
+
calc2 = copy.deepcopy(calc1)
|
52
|
+
assert isinstance(calc2, Calculator)
|
53
|
+
|
54
|
+
|
55
|
+
def test_make_calculator_with_policy_reform(cps_subsample):
|
56
|
+
"""
|
57
|
+
Test Calculator class ctor with policy reform.
|
58
|
+
"""
|
59
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
60
|
+
year = rec.current_year
|
61
|
+
# create a Policy object and apply a policy reform
|
62
|
+
pol = Policy()
|
63
|
+
reform = {
|
64
|
+
'II_em': {2013: 4000},
|
65
|
+
'II_em-indexed': {2013: False},
|
66
|
+
'STD_Aged': {2013: [1600, 1300, 1300, 1600, 1600]},
|
67
|
+
'STD_Aged-indexed': {2013: False}
|
68
|
+
}
|
69
|
+
pol.implement_reform(reform)
|
70
|
+
# create a Calculator object using this policy reform
|
71
|
+
calc = Calculator(policy=pol, records=rec)
|
72
|
+
assert calc.reform_warnings == {}
|
73
|
+
# check that Policy object embedded in Calculator object is correct
|
74
|
+
assert calc.current_year == year
|
75
|
+
assert calc.policy_param('II_em') == 4000
|
76
|
+
assert np.allclose(calc.policy_param('_II_em'),
|
77
|
+
np.array([4000] * Policy.DEFAULT_NUM_YEARS))
|
78
|
+
exp_STD_Aged = [[1600, 1300, 1300,
|
79
|
+
1600, 1600]] * Policy.DEFAULT_NUM_YEARS
|
80
|
+
assert np.allclose(calc.policy_param('_STD_Aged'),
|
81
|
+
np.array(exp_STD_Aged))
|
82
|
+
assert np.allclose(calc.policy_param('STD_Aged'),
|
83
|
+
np.array([1600, 1300, 1300, 1600, 1600]))
|
84
|
+
|
85
|
+
|
86
|
+
def test_make_calculator_with_multiyear_reform(cps_subsample):
|
87
|
+
"""
|
88
|
+
Test Calculator class ctor with multi-year policy reform.
|
89
|
+
"""
|
90
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
91
|
+
year = rec.current_year
|
92
|
+
# create a Policy object and apply a policy reform
|
93
|
+
pol = Policy()
|
94
|
+
reform = {
|
95
|
+
'II_em': {2015: 5000, 2016: 6000},
|
96
|
+
'II_em-indexed': {2015: False},
|
97
|
+
'STD_Aged': {2016: [1600, 1300, 1600, 1300, 1600]}
|
98
|
+
}
|
99
|
+
pol.implement_reform(reform)
|
100
|
+
# create a Calculator object using this policy-reform
|
101
|
+
calc = Calculator(policy=pol, records=rec)
|
102
|
+
# check that Policy object embedded in Calculator object is correct
|
103
|
+
assert pol.num_years == Policy.DEFAULT_NUM_YEARS
|
104
|
+
assert calc.current_year == year
|
105
|
+
assert calc.policy_param('II_em') == 3950
|
106
|
+
exp_II_em = [3900, 3950, 5000] + [6000] * (Policy.DEFAULT_NUM_YEARS - 3)
|
107
|
+
assert np.allclose(calc.policy_param('_II_em'),
|
108
|
+
np.array(exp_II_em))
|
109
|
+
calc.increment_year()
|
110
|
+
calc.increment_year()
|
111
|
+
assert calc.current_year == 2016
|
112
|
+
assert np.allclose(calc.policy_param('STD_Aged'),
|
113
|
+
np.array([1600, 1300, 1600, 1300, 1600]))
|
114
|
+
|
115
|
+
|
116
|
+
def test_calculator_advance_to_year(cps_subsample):
|
117
|
+
"""
|
118
|
+
Test Calculator advance_to_year method.
|
119
|
+
"""
|
120
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
121
|
+
pol = Policy()
|
122
|
+
calc = Calculator(policy=pol, records=rec)
|
123
|
+
calc.advance_to_year(2016)
|
124
|
+
assert calc.current_year == 2016
|
125
|
+
with pytest.raises(ValueError):
|
126
|
+
calc.advance_to_year(2015)
|
127
|
+
|
128
|
+
|
129
|
+
def test_make_calculator_raises_on_no_policy(cps_subsample):
|
130
|
+
"""
|
131
|
+
Test Calculator ctor error with no policy argument.
|
132
|
+
"""
|
133
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
134
|
+
with pytest.raises(ValueError):
|
135
|
+
Calculator(records=rec)
|
136
|
+
|
137
|
+
|
138
|
+
def test_calculator_mtr(cps_subsample):
|
139
|
+
"""
|
140
|
+
Test Calculator mtr method.
|
141
|
+
"""
|
142
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
143
|
+
calcx = Calculator(policy=Policy(), records=rec)
|
144
|
+
calcx.calc_all()
|
145
|
+
combinedx = calcx.array('combined')
|
146
|
+
c00100x = calcx.array('c00100')
|
147
|
+
calc = Calculator(policy=Policy(), records=rec)
|
148
|
+
recs_pre_e00200p = copy.deepcopy(calc.array('e00200p'))
|
149
|
+
(mtr_ptx, mtr_itx, mtr_cmb) = calc.mtr(variable_str='e00200p',
|
150
|
+
zero_out_calculated_vars=True)
|
151
|
+
recs_post_e00200p = calc.array('e00200p')
|
152
|
+
assert np.allclose(recs_post_e00200p, recs_pre_e00200p)
|
153
|
+
assert np.allclose(calc.array('combined'), combinedx)
|
154
|
+
assert np.allclose(calc.array('c00100'), c00100x)
|
155
|
+
assert np.array_equal(mtr_cmb, mtr_ptx) is False
|
156
|
+
assert np.array_equal(mtr_ptx, mtr_itx) is False
|
157
|
+
with pytest.raises(ValueError):
|
158
|
+
calc.mtr(variable_str='bad_income_type')
|
159
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='e00200s',
|
160
|
+
calc_all_already_called=True)
|
161
|
+
assert isinstance(mtr_combined, np.ndarray)
|
162
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='e00650',
|
163
|
+
negative_finite_diff=True,
|
164
|
+
calc_all_already_called=True)
|
165
|
+
assert isinstance(mtr_combined, np.ndarray)
|
166
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='e00900p',
|
167
|
+
calc_all_already_called=True)
|
168
|
+
assert isinstance(mtr_combined, np.ndarray)
|
169
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='e01700',
|
170
|
+
calc_all_already_called=True)
|
171
|
+
assert isinstance(mtr_combined, np.ndarray)
|
172
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='e26270',
|
173
|
+
calc_all_already_called=True)
|
174
|
+
assert isinstance(mtr_combined, np.ndarray)
|
175
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='k1bx14p',
|
176
|
+
calc_all_already_called=True)
|
177
|
+
assert isinstance(mtr_combined, np.ndarray)
|
178
|
+
(_, _, mtr_combined) = calc.mtr(variable_str='e00200p',
|
179
|
+
calc_all_already_called=True)
|
180
|
+
assert np.allclose(mtr_combined, mtr_cmb)
|
181
|
+
assert np.allclose(calc.array('combined'), combinedx)
|
182
|
+
assert np.allclose(calc.array('c00100'), c00100x)
|
183
|
+
|
184
|
+
|
185
|
+
def test_calculator_mtr_when_PT_rates_differ():
|
186
|
+
"""
|
187
|
+
Test Calculator mtr method in special case.
|
188
|
+
"""
|
189
|
+
reform = {
|
190
|
+
'II_rt1': {2013: 0.40},
|
191
|
+
'II_rt2': {2013: 0.40},
|
192
|
+
'II_rt3': {2013: 0.40},
|
193
|
+
'II_rt4': {2013: 0.40},
|
194
|
+
'II_rt5': {2013: 0.40},
|
195
|
+
'II_rt6': {2013: 0.40},
|
196
|
+
'II_rt7': {2013: 0.40},
|
197
|
+
'PT_rt1': {2013: 0.30},
|
198
|
+
'PT_rt2': {2013: 0.30},
|
199
|
+
'PT_rt3': {2013: 0.30},
|
200
|
+
'PT_rt4': {2013: 0.30},
|
201
|
+
'PT_rt5': {2013: 0.30},
|
202
|
+
'PT_rt6': {2013: 0.30},
|
203
|
+
'PT_rt7': {2013: 0.30}
|
204
|
+
}
|
205
|
+
funit = (
|
206
|
+
'RECID,MARS,FLPDYR,e00200,e00200p,e00900,e00900p,extraneous\n'
|
207
|
+
'1, 1, 2009, 200000,200000, 100000,100000, 9999999999\n'
|
208
|
+
)
|
209
|
+
rec = Records(pd.read_csv(StringIO(funit)))
|
210
|
+
pol = Policy()
|
211
|
+
calc1 = Calculator(policy=pol, records=rec)
|
212
|
+
(_, mtr1, _) = calc1.mtr(variable_str='p23250')
|
213
|
+
pol.implement_reform(reform)
|
214
|
+
calc2 = Calculator(policy=pol, records=rec)
|
215
|
+
(_, mtr2, _) = calc2.mtr(variable_str='p23250')
|
216
|
+
assert np.allclose(mtr1, mtr2, rtol=0.0, atol=1e-06)
|
217
|
+
|
218
|
+
|
219
|
+
def test_make_calculator_increment_years_first(cps_subsample):
|
220
|
+
"""
|
221
|
+
Test Calculator inflation indexing of policy parameters.
|
222
|
+
"""
|
223
|
+
# pylint: disable=too-many-locals
|
224
|
+
# create Policy object with policy reform
|
225
|
+
pol = Policy()
|
226
|
+
std5 = 2000
|
227
|
+
reform = {
|
228
|
+
'STD_Aged': {2015: [std5, std5, std5, std5, std5]},
|
229
|
+
'II_em': {2015: 5000,
|
230
|
+
2016: 6000},
|
231
|
+
'II_em-indexed': {2016: False}
|
232
|
+
}
|
233
|
+
pol.implement_reform(reform)
|
234
|
+
# create Calculator object with Policy object as modified by reform
|
235
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
236
|
+
calc = Calculator(policy=pol, records=rec)
|
237
|
+
# compare expected policy parameter values with those embedded in calc
|
238
|
+
irates = pol.inflation_rates()
|
239
|
+
syr = Policy.JSON_START_YEAR
|
240
|
+
irate2015 = irates[2015 - syr]
|
241
|
+
irate2016 = irates[2016 - syr]
|
242
|
+
std6 = std5 * (1.0 + irate2015)
|
243
|
+
std7 = std6 * (1.0 + irate2016)
|
244
|
+
exp_STD_Aged = np.array([[1500, 1200, 1200, 1500, 1200],
|
245
|
+
[1550, 1200, 1200, 1550, 1200],
|
246
|
+
[std5, std5, std5, std5, std5],
|
247
|
+
[std6, std6, std6, std6, std6],
|
248
|
+
[std7, std7, std7, std7, std7]])
|
249
|
+
act_STD_Aged = calc.policy_param('_STD_Aged')
|
250
|
+
assert np.allclose(act_STD_Aged[:5], exp_STD_Aged)
|
251
|
+
exp_II_em = np.array([3900, 3950, 5000, 6000, 6000])
|
252
|
+
act_II_em = calc.policy_param('_II_em')
|
253
|
+
assert np.allclose(act_II_em[:5], exp_II_em)
|
254
|
+
|
255
|
+
|
256
|
+
def test_ID_HC_vs_BS(cps_subsample):
|
257
|
+
"""
|
258
|
+
Test that complete haircut of itemized deductions produces same
|
259
|
+
results as a 100% benefit surtax with no benefit deduction.
|
260
|
+
"""
|
261
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
262
|
+
# specify complete-haircut reform policy and Calculator object
|
263
|
+
hc_policy = Policy()
|
264
|
+
hc_reform = {
|
265
|
+
'ID_Medical_hc': {2013: 1.0},
|
266
|
+
'ID_StateLocalTax_hc': {2013: 1.0},
|
267
|
+
'ID_RealEstate_hc': {2013: 1.0},
|
268
|
+
'ID_Casualty_hc': {2013: 1.0},
|
269
|
+
'ID_Miscellaneous_hc': {2013: 1.0},
|
270
|
+
'ID_InterestPaid_hc': {2013: 1.0},
|
271
|
+
'ID_Charity_hc': {2013: 1.0}
|
272
|
+
}
|
273
|
+
hc_policy.implement_reform(hc_reform)
|
274
|
+
hc_calc = Calculator(policy=hc_policy, records=recs)
|
275
|
+
hc_calc.calc_all()
|
276
|
+
hc_taxes = hc_calc.dataframe(['iitax', 'payrolltax'])
|
277
|
+
del hc_calc
|
278
|
+
# specify benefit-surtax reform policy and Calculator object
|
279
|
+
bs_policy = Policy()
|
280
|
+
bs_reform = {
|
281
|
+
'ID_BenefitSurtax_crt': {2013: 0.0},
|
282
|
+
'ID_BenefitSurtax_trt': {2013: 1.0}
|
283
|
+
}
|
284
|
+
bs_policy.implement_reform(bs_reform)
|
285
|
+
bs_calc = Calculator(policy=bs_policy, records=recs)
|
286
|
+
bs_calc.calc_all()
|
287
|
+
bs_taxes = bs_calc.dataframe([], all_vars=True)
|
288
|
+
del bs_calc
|
289
|
+
# compare calculated taxes generated by the two reforms
|
290
|
+
assert np.allclose(hc_taxes['payrolltax'], bs_taxes['payrolltax'])
|
291
|
+
assert np.allclose(hc_taxes['iitax'], bs_taxes['iitax'])
|
292
|
+
|
293
|
+
|
294
|
+
def test_ID_StateLocal_HC_vs_CRT(cps_subsample):
|
295
|
+
"""
|
296
|
+
Test that a cap on state/local income and sales tax deductions at 0 percent
|
297
|
+
of AGI is equivalent to a complete haircut on the same state/local tax
|
298
|
+
deductions.
|
299
|
+
"""
|
300
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
301
|
+
# specify state/local complete haircut reform policy and Calculator object
|
302
|
+
hc_policy = Policy()
|
303
|
+
hc_reform = {'ID_StateLocalTax_hc': {2013: 1.0}}
|
304
|
+
hc_policy.implement_reform(hc_reform)
|
305
|
+
hc_calc = Calculator(policy=hc_policy, records=rec)
|
306
|
+
hc_calc.calc_all()
|
307
|
+
# specify AGI cap reform policy and Calculator object
|
308
|
+
crt_policy = Policy()
|
309
|
+
crt_reform = {'ID_StateLocalTax_crt': {2013: 0.0}}
|
310
|
+
crt_policy.implement_reform(crt_reform)
|
311
|
+
crt_calc = Calculator(policy=crt_policy, records=rec)
|
312
|
+
crt_calc.calc_all()
|
313
|
+
# compare calculated tax results generated by the two reforms
|
314
|
+
assert np.allclose(hc_calc.array('payrolltax'),
|
315
|
+
crt_calc.array('payrolltax'))
|
316
|
+
assert np.allclose(hc_calc.array('iitax'),
|
317
|
+
crt_calc.array('iitax'))
|
318
|
+
|
319
|
+
|
320
|
+
def test_ID_RealEstate_HC_vs_CRT(cps_subsample):
|
321
|
+
"""
|
322
|
+
Test that a cap on all state, local, and foreign real estate tax deductions
|
323
|
+
at 0 percent of AGI is equivalent to a complete haircut on the same real
|
324
|
+
estate tax deductions.
|
325
|
+
"""
|
326
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
327
|
+
# specify real estate complete haircut reform policy and Calculator object
|
328
|
+
hc_policy = Policy()
|
329
|
+
hc_reform = {'ID_RealEstate_hc': {2013: 1.0}}
|
330
|
+
hc_policy.implement_reform(hc_reform)
|
331
|
+
hc_calc = Calculator(policy=hc_policy, records=rec)
|
332
|
+
hc_calc.calc_all()
|
333
|
+
# specify AGI cap reform policy and Calculator object
|
334
|
+
crt_policy = Policy()
|
335
|
+
crt_reform = {'ID_RealEstate_crt': {2013: 0.0}}
|
336
|
+
crt_policy.implement_reform(crt_reform)
|
337
|
+
crt_calc = Calculator(policy=crt_policy, records=rec)
|
338
|
+
crt_calc.calc_all()
|
339
|
+
# compare calculated tax results generated by the two reforms
|
340
|
+
assert np.allclose(hc_calc.array('payrolltax'),
|
341
|
+
crt_calc.array('payrolltax'))
|
342
|
+
assert np.allclose(hc_calc.array('iitax'),
|
343
|
+
crt_calc.array('iitax'))
|
344
|
+
|
345
|
+
|
346
|
+
RAWINPUT_FUNITS = 4
|
347
|
+
RAWINPUT_YEAR = 2015
|
348
|
+
RAWINPUT_CONTENTS = (
|
349
|
+
'RECID,MARS,unknown\n'
|
350
|
+
' 1, 2, 9\n'
|
351
|
+
' 2, 1, 9\n'
|
352
|
+
' 3, 4, 9\n'
|
353
|
+
' 4, 3, 9\n'
|
354
|
+
)
|
355
|
+
|
356
|
+
|
357
|
+
def test_calculator_using_nonstd_input():
|
358
|
+
"""
|
359
|
+
Test Calculator using non-standard input records.
|
360
|
+
"""
|
361
|
+
# check Calculator handling of raw, non-standard input data with no aging
|
362
|
+
pol = Policy()
|
363
|
+
pol.set_year(RAWINPUT_YEAR) # set policy params to input data year
|
364
|
+
nonstd = Records(data=pd.read_csv(StringIO(RAWINPUT_CONTENTS)),
|
365
|
+
start_year=RAWINPUT_YEAR, # set raw input data year
|
366
|
+
gfactors=None, # keeps raw data unchanged
|
367
|
+
weights=None)
|
368
|
+
assert nonstd.array_length == RAWINPUT_FUNITS
|
369
|
+
calc = Calculator(policy=pol, records=nonstd,
|
370
|
+
sync_years=False) # keeps raw data unchanged
|
371
|
+
assert calc.current_year == RAWINPUT_YEAR
|
372
|
+
calc.calc_all()
|
373
|
+
assert calc.weighted_total('e00200') == 0
|
374
|
+
assert calc.total_weight() == 0
|
375
|
+
varlist = ['RECID', 'MARS']
|
376
|
+
dframe = calc.dataframe(varlist)
|
377
|
+
assert isinstance(dframe, pd.DataFrame)
|
378
|
+
assert dframe.shape == (RAWINPUT_FUNITS, len(varlist))
|
379
|
+
mars = calc.array('MARS')
|
380
|
+
assert isinstance(mars, np.ndarray)
|
381
|
+
assert mars.shape == (RAWINPUT_FUNITS,)
|
382
|
+
exp_iitax = np.zeros((nonstd.array_length,))
|
383
|
+
assert np.allclose(calc.array('iitax'), exp_iitax)
|
384
|
+
mtr_ptax, _, _ = calc.mtr(wrt_full_compensation=False)
|
385
|
+
exp_mtr_ptax = np.zeros((nonstd.array_length,))
|
386
|
+
exp_mtr_ptax.fill(0.153)
|
387
|
+
assert np.allclose(mtr_ptax, exp_mtr_ptax)
|
388
|
+
|
389
|
+
|
390
|
+
def test_bad_json_names(tests_path):
|
391
|
+
"""
|
392
|
+
Test that ValueError raised with assump or reform do not end in '.json'
|
393
|
+
"""
|
394
|
+
test_url = (
|
395
|
+
'https://raw.githubusercontent.com/PSLmodels/'
|
396
|
+
'Tax-Calculator/master/taxcalc/reforms/'
|
397
|
+
'2017_law.out.csv'
|
398
|
+
)
|
399
|
+
csvname = os.path.join(tests_path, '..', 'growfactors.csv')
|
400
|
+
with pytest.raises(ValueError):
|
401
|
+
Calculator.read_json_param_objects(csvname, None)
|
402
|
+
with pytest.raises(ValueError):
|
403
|
+
Calculator.read_json_param_objects(test_url, None)
|
404
|
+
with pytest.raises(ValueError):
|
405
|
+
Calculator.read_json_param_objects(None, csvname)
|
406
|
+
with pytest.raises(ValueError):
|
407
|
+
Calculator.read_json_param_objects(None, test_url)
|
408
|
+
|
409
|
+
|
410
|
+
def test_json_assump_url():
|
411
|
+
"""
|
412
|
+
Test reading JSON assumption file using URL.
|
413
|
+
"""
|
414
|
+
assump_str = """
|
415
|
+
{
|
416
|
+
"consumption": {
|
417
|
+
// all BEN_*_value parameters have a default value of one
|
418
|
+
"BEN_housing_value": {"2017": 1.0},
|
419
|
+
"BEN_snap_value": {"2017": 1.0},
|
420
|
+
"BEN_tanf_value": {"2017": 1.0},
|
421
|
+
"BEN_vet_value": {"2017": 1.0},
|
422
|
+
"BEN_wic_value": {"2017": 1.0},
|
423
|
+
"BEN_mcare_value": {"2017": 1.0},
|
424
|
+
"BEN_mcaid_value": {"2017": 1.0},
|
425
|
+
"BEN_other_value": {"2017": 1.0},
|
426
|
+
// all MPC_* parameters have a default value of zero
|
427
|
+
"MPC_e17500": {"2017": 0.0},
|
428
|
+
"MPC_e18400": {"2017": 0.0},
|
429
|
+
"MPC_e19800": {"2017": 0.0},
|
430
|
+
"MPC_e20400": {"2017": 0.0}
|
431
|
+
},
|
432
|
+
"growdiff_baseline": {
|
433
|
+
// all growdiff_baseline parameters have a default value of zero
|
434
|
+
"ABOOK": {"2017": 0.0},
|
435
|
+
"ACGNS": {"2017": 0.0},
|
436
|
+
"ACPIM": {"2017": 0.0},
|
437
|
+
"ACPIU": {"2017": 0.0},
|
438
|
+
"ADIVS": {"2017": 0.0},
|
439
|
+
"AINTS": {"2017": 0.0},
|
440
|
+
"AIPD": {"2017": 0.0},
|
441
|
+
"ASCHCI": {"2017": 0.0},
|
442
|
+
"ASCHCL": {"2017": 0.0},
|
443
|
+
"ASCHEI": {"2017": 0.0},
|
444
|
+
"ASCHEL": {"2017": 0.0},
|
445
|
+
"ASCHF": {"2017": 0.0},
|
446
|
+
"ASOCSEC": {"2017": 0.0},
|
447
|
+
"ATXPY": {"2017": 0.0},
|
448
|
+
"AUCOMP": {"2017": 0.0},
|
449
|
+
"AWAGE": {"2017": 0.0},
|
450
|
+
"ABENOTHER": {"2017": 0.0},
|
451
|
+
"ABENMCARE": {"2017": 0.0},
|
452
|
+
"ABENMCAID": {"2017": 0.0},
|
453
|
+
"ABENSSI": {"2017": 0.0},
|
454
|
+
"ABENSNAP": {"2017": 0.0},
|
455
|
+
"ABENWIC": {"2017": 0.0},
|
456
|
+
"ABENHOUSING": {"2017": 0.0},
|
457
|
+
"ABENTANF": {"2017": 0.0},
|
458
|
+
"ABENVET": {"2017": 0.0}
|
459
|
+
},
|
460
|
+
"growdiff_response": {
|
461
|
+
// all growdiff_response parameters have a default value of zero
|
462
|
+
"ABOOK": {"2017": 0.0},
|
463
|
+
"ACGNS": {"2017": 0.0},
|
464
|
+
"ACPIM": {"2017": 0.0},
|
465
|
+
"ACPIU": {"2017": 0.0},
|
466
|
+
"ADIVS": {"2017": 0.0},
|
467
|
+
"AINTS": {"2017": 0.0},
|
468
|
+
"AIPD": {"2017": 0.0},
|
469
|
+
"ASCHCI": {"2017": 0.0},
|
470
|
+
"ASCHCL": {"2017": 0.0},
|
471
|
+
"ASCHEI": {"2017": 0.0},
|
472
|
+
"ASCHEL": {"2017": 0.0},
|
473
|
+
"ASCHF": {"2017": 0.0},
|
474
|
+
"ASOCSEC": {"2017": 0.0},
|
475
|
+
"ATXPY": {"2017": 0.0},
|
476
|
+
"AUCOMP": {"2017": 0.0},
|
477
|
+
"AWAGE": {"2017": 0.0},
|
478
|
+
"ABENOTHER": {"2017": 0.0},
|
479
|
+
"ABENMCARE": {"2017": 0.0},
|
480
|
+
"ABENMCAID": {"2017": 0.0},
|
481
|
+
"ABENSSI": {"2017": 0.0},
|
482
|
+
"ABENSNAP": {"2017": 0.0},
|
483
|
+
"ABENWIC": {"2017": 0.0},
|
484
|
+
"ABENHOUSING": {"2017": 0.0},
|
485
|
+
"ABENTANF": {"2017": 0.0},
|
486
|
+
"ABENVET": {"2017": 0.0}
|
487
|
+
}
|
488
|
+
}
|
489
|
+
"""
|
490
|
+
assump_url = ('https://raw.githubusercontent.com/PSLmodels/'
|
491
|
+
'Tax-Calculator/master/taxcalc/assumptions/'
|
492
|
+
'economic_assumptions_template.json')
|
493
|
+
params_str = Calculator.read_json_param_objects(None, assump_str)
|
494
|
+
assert params_str
|
495
|
+
params_url = Calculator.read_json_param_objects(None, assump_url)
|
496
|
+
assert params_url
|
497
|
+
assert params_url == params_str
|
498
|
+
|
499
|
+
assump_gh_url = (
|
500
|
+
"github://PSLmodels:Tax-Calculator@master/taxcalc/assumptions/"
|
501
|
+
"economic_assumptions_template.json"
|
502
|
+
)
|
503
|
+
params_gh_url = Calculator.read_json_param_objects(None, assump_gh_url)
|
504
|
+
assert params_gh_url
|
505
|
+
assert params_gh_url == params_str
|
506
|
+
|
507
|
+
|
508
|
+
def test_read_bad_json_assump_file():
|
509
|
+
"""
|
510
|
+
Test invalid JSON assumption files.
|
511
|
+
"""
|
512
|
+
badassump1 = """
|
513
|
+
{
|
514
|
+
"consumption": { // example of incorrect JSON because 'x' must be "x"
|
515
|
+
'x': {"2014": 0.25}
|
516
|
+
},
|
517
|
+
"growdiff_baseline": {},
|
518
|
+
"growdiff_response": {}
|
519
|
+
}
|
520
|
+
"""
|
521
|
+
with pytest.raises(ValueError):
|
522
|
+
Calculator.read_json_param_objects(None, badassump1)
|
523
|
+
with pytest.raises(ValueError):
|
524
|
+
Calculator.read_json_param_objects(None, 'unknown_file_name')
|
525
|
+
with pytest.raises(TypeError):
|
526
|
+
Calculator.read_json_param_objects(None, list())
|
527
|
+
|
528
|
+
|
529
|
+
def test_json_doesnt_exist():
|
530
|
+
"""
|
531
|
+
Test JSON file which doesn't exist
|
532
|
+
"""
|
533
|
+
with pytest.raises(ValueError):
|
534
|
+
Calculator.read_json_param_objects(None, './reforms/doesnt_exist.json')
|
535
|
+
with pytest.raises(ValueError):
|
536
|
+
Calculator.read_json_param_objects('./reforms/doesnt_exist.json', None)
|
537
|
+
|
538
|
+
|
539
|
+
def test_calc_all():
|
540
|
+
"""
|
541
|
+
Test calc_all method.
|
542
|
+
"""
|
543
|
+
cyr = 2016
|
544
|
+
pol = Policy()
|
545
|
+
pol.set_year(cyr)
|
546
|
+
nonstd = Records(data=pd.read_csv(StringIO(RAWINPUT_CONTENTS)),
|
547
|
+
start_year=cyr, gfactors=None, weights=None)
|
548
|
+
assert nonstd.array_length == RAWINPUT_FUNITS
|
549
|
+
calc = Calculator(policy=pol, records=nonstd,
|
550
|
+
sync_years=False) # keeps raw data unchanged
|
551
|
+
assert calc.current_year == cyr
|
552
|
+
|
553
|
+
|
554
|
+
def test_noreform_documentation():
|
555
|
+
"""
|
556
|
+
Test automatic documentation creation.
|
557
|
+
"""
|
558
|
+
reform_json = """
|
559
|
+
{
|
560
|
+
}
|
561
|
+
"""
|
562
|
+
assump_json = """
|
563
|
+
{
|
564
|
+
"consumption": {},
|
565
|
+
"growdiff_baseline": {},
|
566
|
+
"growdiff_response": {}
|
567
|
+
}
|
568
|
+
"""
|
569
|
+
params = Calculator.read_json_param_objects(reform_json, assump_json)
|
570
|
+
assert isinstance(params, dict)
|
571
|
+
actual_doc = Calculator.reform_documentation(params)
|
572
|
+
expected_doc = (
|
573
|
+
'REFORM DOCUMENTATION\n'
|
574
|
+
'Baseline Growth-Difference Assumption Values by Year:\n'
|
575
|
+
'none: no baseline GrowDiff assumptions specified\n'
|
576
|
+
'Response Growth-Difference Assumption Values by Year:\n'
|
577
|
+
'none: no response GrowDiff assumptions specified\n'
|
578
|
+
'Policy Reform Parameter Values by Year:\n'
|
579
|
+
'none: using current-law policy parameters\n'
|
580
|
+
)
|
581
|
+
assert actual_doc == expected_doc
|
582
|
+
|
583
|
+
|
584
|
+
def test_reform_documentation():
|
585
|
+
"""
|
586
|
+
Test automatic documentation creation.
|
587
|
+
"""
|
588
|
+
reform_json = """
|
589
|
+
{
|
590
|
+
"II_em-indexed": {
|
591
|
+
"2016": false,
|
592
|
+
"2018": true
|
593
|
+
},
|
594
|
+
"II_em": {
|
595
|
+
"2016": 5000,
|
596
|
+
"2018": 6000,
|
597
|
+
"2020": 7000
|
598
|
+
},
|
599
|
+
"EITC_indiv": {
|
600
|
+
"2017": true
|
601
|
+
},
|
602
|
+
"STD_Aged-indexed": {
|
603
|
+
"2016": false
|
604
|
+
},
|
605
|
+
"STD_Aged": {
|
606
|
+
"2016": [1600, 1300, 1300, 1600, 1600],
|
607
|
+
"2020": [2000, 2000, 2000, 2000, 2000]
|
608
|
+
},
|
609
|
+
"ID_BenefitCap_Switch": {
|
610
|
+
"2020": [false, false, false, false, false, false, false]
|
611
|
+
}
|
612
|
+
}
|
613
|
+
"""
|
614
|
+
assump_json = """
|
615
|
+
{
|
616
|
+
"consumption": {},
|
617
|
+
// increase baseline inflation rate by one percentage point in 2014+
|
618
|
+
// (has no effect on known policy parameter values)
|
619
|
+
"growdiff_baseline": {"ACPIU": {"2014": 0.010}},
|
620
|
+
"growdiff_response": {"ACPIU": {"2014": 0.015}}
|
621
|
+
}
|
622
|
+
"""
|
623
|
+
params = Calculator.read_json_param_objects(reform_json, assump_json)
|
624
|
+
assert isinstance(params, dict)
|
625
|
+
second_reform = {'II_em': {2019: 6500}}
|
626
|
+
doc = Calculator.reform_documentation(params, [second_reform])
|
627
|
+
assert isinstance(doc, str)
|
628
|
+
dump = False # set to True to print documentation and force test failure
|
629
|
+
if dump:
|
630
|
+
print(doc)
|
631
|
+
assert 1 == 2
|
632
|
+
|
633
|
+
|
634
|
+
def test_distribution_tables(cps_subsample):
|
635
|
+
"""
|
636
|
+
Test distribution_tables method.
|
637
|
+
"""
|
638
|
+
pol = Policy()
|
639
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
640
|
+
calc1 = Calculator(policy=pol, records=recs)
|
641
|
+
assert calc1.current_year == 2014
|
642
|
+
calc1.calc_all()
|
643
|
+
dt1, dt2 = calc1.distribution_tables(None, 'weighted_deciles')
|
644
|
+
assert isinstance(dt1, pd.DataFrame)
|
645
|
+
assert dt2 is None
|
646
|
+
dt1, dt2 = calc1.distribution_tables(calc1, 'weighted_deciles')
|
647
|
+
assert isinstance(dt1, pd.DataFrame)
|
648
|
+
assert isinstance(dt2, pd.DataFrame)
|
649
|
+
reform = {
|
650
|
+
'UBI_u18': {2014: 1000},
|
651
|
+
'UBI_1820': {2014: 1000},
|
652
|
+
'UBI_21': {2014: 1000}
|
653
|
+
}
|
654
|
+
pol.implement_reform(reform)
|
655
|
+
assert not pol.parameter_errors
|
656
|
+
calc2 = Calculator(policy=pol, records=recs)
|
657
|
+
calc2.calc_all()
|
658
|
+
dt1, dt2 = calc1.distribution_tables(calc2, 'weighted_deciles')
|
659
|
+
assert isinstance(dt1, pd.DataFrame)
|
660
|
+
assert isinstance(dt2, pd.DataFrame)
|
661
|
+
|
662
|
+
|
663
|
+
def test_difference_table(cps_subsample):
|
664
|
+
"""
|
665
|
+
Test difference_table method.
|
666
|
+
"""
|
667
|
+
cyr = 2014
|
668
|
+
pol = Policy()
|
669
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
670
|
+
calc1 = Calculator(policy=pol, records=recs)
|
671
|
+
assert calc1.current_year == cyr
|
672
|
+
reform = {'SS_Earnings_c': {cyr: 9e99}}
|
673
|
+
pol.implement_reform(reform)
|
674
|
+
calc2 = Calculator(policy=pol, records=recs)
|
675
|
+
assert calc2.current_year == cyr
|
676
|
+
calc1.calc_all()
|
677
|
+
calc2.calc_all()
|
678
|
+
diff = calc1.difference_table(calc2, 'weighted_deciles', 'iitax')
|
679
|
+
assert isinstance(diff, pd.DataFrame)
|
680
|
+
|
681
|
+
|
682
|
+
def test_diagnostic_table(cps_subsample):
|
683
|
+
"""
|
684
|
+
Test diagnostic_table method.
|
685
|
+
"""
|
686
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
687
|
+
calc = Calculator(policy=Policy(), records=recs)
|
688
|
+
adt = calc.diagnostic_table(3)
|
689
|
+
assert isinstance(adt, pd.DataFrame)
|
690
|
+
|
691
|
+
|
692
|
+
def test_mtr_graph(cps_subsample):
|
693
|
+
"""
|
694
|
+
Test mtr_graph method.
|
695
|
+
"""
|
696
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
697
|
+
calc = Calculator(policy=Policy(), records=recs)
|
698
|
+
fig = calc.mtr_graph(calc,
|
699
|
+
mars=2,
|
700
|
+
income_measure='wages',
|
701
|
+
mtr_measure='ptax',
|
702
|
+
pop_quantiles=False)
|
703
|
+
assert fig
|
704
|
+
fig = calc.mtr_graph(calc,
|
705
|
+
income_measure='agi',
|
706
|
+
mtr_measure='itax',
|
707
|
+
pop_quantiles=True)
|
708
|
+
assert fig
|
709
|
+
|
710
|
+
|
711
|
+
def test_atr_graph(cps_subsample):
|
712
|
+
"""
|
713
|
+
Test atr_graph method.
|
714
|
+
"""
|
715
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
716
|
+
calc = Calculator(policy=Policy(), records=recs)
|
717
|
+
fig = calc.atr_graph(calc, mars=2, atr_measure='itax')
|
718
|
+
assert fig
|
719
|
+
fig = calc.atr_graph(calc, atr_measure='ptax')
|
720
|
+
assert fig
|
721
|
+
|
722
|
+
|
723
|
+
def test_privacy_of_embedded_objects(cps_subsample):
|
724
|
+
"""
|
725
|
+
Test privacy of objects embedded in Calculator object.
|
726
|
+
"""
|
727
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
728
|
+
calc = Calculator(policy=Policy(), records=recs)
|
729
|
+
var1 = var2 = var3 = 0
|
730
|
+
# pylint: disable=protected-access
|
731
|
+
with pytest.raises(AttributeError):
|
732
|
+
var1 = calc.__policy.current_year
|
733
|
+
with pytest.raises(AttributeError):
|
734
|
+
var2 = calc.__records.s006
|
735
|
+
with pytest.raises(AttributeError):
|
736
|
+
var3 = calc.__consumption.current_year
|
737
|
+
assert var1 == var2 == var3
|
738
|
+
|
739
|
+
|
740
|
+
def test_n65(cps_subsample):
|
741
|
+
"""
|
742
|
+
Test n65 method.
|
743
|
+
"""
|
744
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
745
|
+
calc = Calculator(policy=Policy(), records=recs)
|
746
|
+
assert calc.n65().sum() > 600
|
747
|
+
|
748
|
+
|
749
|
+
def test_ce_aftertax_income(cps_subsample):
|
750
|
+
"""
|
751
|
+
Test ce_aftertax_income method.
|
752
|
+
"""
|
753
|
+
rec = Records.cps_constructor(data=cps_subsample)
|
754
|
+
pol = Policy()
|
755
|
+
calc1 = Calculator(policy=pol, records=rec)
|
756
|
+
pol.implement_reform({'SS_Earnings_c': {2013: 9e99}})
|
757
|
+
calc2 = Calculator(policy=pol, records=rec)
|
758
|
+
res = calc1.ce_aftertax_income(calc2)
|
759
|
+
assert isinstance(res, dict)
|
760
|
+
|
761
|
+
|
762
|
+
@pytest.mark.itmded_vars
|
763
|
+
@pytest.mark.pre_release
|
764
|
+
@pytest.mark.requires_pufcsv
|
765
|
+
@pytest.mark.parametrize('year, cvname, hcname',
|
766
|
+
[(2018, 'c17000', 'ID_Medical_hc'),
|
767
|
+
(2018, 'c18300', 'ID_AllTaxes_hc'),
|
768
|
+
(2018, 'c19200', 'ID_InterestPaid_hc'),
|
769
|
+
(2018, 'c19700', 'ID_Charity_hc'),
|
770
|
+
(2018, 'c20500', 'ID_Casualty_hc'),
|
771
|
+
(2018, 'c20800', 'ID_Miscellaneous_hc'),
|
772
|
+
(2017, 'c17000', 'ID_Medical_hc'),
|
773
|
+
(2017, 'c18300', 'ID_AllTaxes_hc'),
|
774
|
+
(2017, 'c19200', 'ID_InterestPaid_hc'),
|
775
|
+
(2017, 'c19700', 'ID_Charity_hc'),
|
776
|
+
(2017, 'c20500', 'ID_Casualty_hc'),
|
777
|
+
(2017, 'c20800', 'ID_Miscellaneous_hc')])
|
778
|
+
def test_itemded_component_amounts(year, cvname, hcname, puf_fullsample):
|
779
|
+
"""
|
780
|
+
Check that all c04470 components are adjusted to reflect the filing
|
781
|
+
unit's standard-vs-itemized-deduction decision. Check for 2018
|
782
|
+
(when current law has no Pease phaseout of itemized deductions and
|
783
|
+
already has complete haircuts for Casualty and Miscellaneous deductions)
|
784
|
+
and 2017 (when current law has a Pease phaseout of itemized deductions
|
785
|
+
and has no haircuts). The calcfunctions.py code makes no attempt to
|
786
|
+
adjust the components for the effects of Pease-like phaseout or any other
|
787
|
+
type of limitation on total itemized deductions, so the pre-2018 tests
|
788
|
+
here use c21060, instead of c04470, as the itemized deductions total.
|
789
|
+
"""
|
790
|
+
# pylint: disable=too-many-locals
|
791
|
+
recs = Records(data=puf_fullsample)
|
792
|
+
# policy1 such that everybody itemizes deductions and all are allowed
|
793
|
+
policy1 = Policy()
|
794
|
+
reform1 = {
|
795
|
+
'STD_Aged': {year: [0.0, 0.0, 0.0, 0.0, 0.0]},
|
796
|
+
'STD': {year: [0.0, 0.0, 0.0, 0.0, 0.0]}
|
797
|
+
}
|
798
|
+
policy1.implement_reform(reform1)
|
799
|
+
assert not policy1.parameter_errors
|
800
|
+
# policy2 such that everybody itemizes deductions but one is disallowed
|
801
|
+
policy2 = Policy()
|
802
|
+
reform2 = {
|
803
|
+
'STD_Aged': {year: [0.0, 0.0, 0.0, 0.0, 0.0]},
|
804
|
+
'STD': {year: [0.0, 0.0, 0.0, 0.0, 0.0]},
|
805
|
+
hcname: {year: 1.0}
|
806
|
+
}
|
807
|
+
policy2.implement_reform(reform2)
|
808
|
+
assert not policy2.parameter_errors
|
809
|
+
# compute tax liability in specified year
|
810
|
+
calc1 = Calculator(policy=policy1, records=recs, verbose=False)
|
811
|
+
calc1.advance_to_year(year)
|
812
|
+
calc1.calc_all()
|
813
|
+
calc2 = Calculator(policy=policy2, records=recs, verbose=False)
|
814
|
+
calc2.advance_to_year(year)
|
815
|
+
calc2.calc_all()
|
816
|
+
# confirm that nobody is taking the standard deduction
|
817
|
+
assert np.allclose(calc1.array('standard'), 0.)
|
818
|
+
assert np.allclose(calc2.array('standard'), 0.)
|
819
|
+
# calculate different in total itemized deductions
|
820
|
+
if year == 2017:
|
821
|
+
# pre-Pease limitation total itemized deductions
|
822
|
+
itmded1 = calc1.weighted_total('c21060') * 1e-9
|
823
|
+
itmded2 = calc2.weighted_total('c21060') * 1e-9
|
824
|
+
elif year == 2018:
|
825
|
+
# total itemized deductions (no Pease-like limitation)
|
826
|
+
itmded1 = calc1.weighted_total('c04470') * 1e-9
|
827
|
+
itmded2 = calc2.weighted_total('c04470') * 1e-9
|
828
|
+
else:
|
829
|
+
raise ValueError('illegal year value = {}'.format(year))
|
830
|
+
difference_in_total_itmded = itmded1 - itmded2
|
831
|
+
# calculate itemized component amount
|
832
|
+
component_amt = calc1.weighted_total(cvname) * 1e-9
|
833
|
+
# confirm that component amount is equal to difference in total deductions
|
834
|
+
if year == 2017 and cvname == 'c19700':
|
835
|
+
atol = 0.016
|
836
|
+
elif year == 2017 and cvname == 'c19200':
|
837
|
+
atol = 0.010
|
838
|
+
elif year == 2017 and cvname == 'c18300':
|
839
|
+
atol = 0.009
|
840
|
+
else:
|
841
|
+
atol = 0.00001
|
842
|
+
if not np.allclose(component_amt, difference_in_total_itmded, atol=atol):
|
843
|
+
txt = '\n{}={:.3f} != {:.3f}=difference_in_total_itemized_deductions'
|
844
|
+
msg = txt.format(cvname, component_amt, difference_in_total_itmded)
|
845
|
+
raise ValueError(msg)
|
846
|
+
|
847
|
+
|
848
|
+
def test_qbid_calculation():
|
849
|
+
"""
|
850
|
+
Test Calculator's QBID calculations using the six example filing units
|
851
|
+
specified in Table 1 of this TPC publication: "Navigating the New
|
852
|
+
Pass-Through Provisions: A Technical Explanation" by William G. Gale
|
853
|
+
and Aaron Krupkin (January 31, 2018), which is available at this URL:
|
854
|
+
https://www.taxpolicycenter.org/publications/
|
855
|
+
navigating-new-pass-through-provisions-technical-explanation/full
|
856
|
+
"""
|
857
|
+
# In constructing the TPC example filing units, assume that the taxpayer
|
858
|
+
# has business income in the form of e26270/e02000 income and no earnings,
|
859
|
+
# and that the spouse has no business income and only earnings.
|
860
|
+
TPC_YEAR = 2018
|
861
|
+
TPC_VARS = (
|
862
|
+
'RECID,MARS,e00200s,e00200,e26270,e02000,PT_SSTB_income,'
|
863
|
+
'PT_binc_w2_wages,PT_ubia_property,pre_qbid_taxinc,qbid\n'
|
864
|
+
)
|
865
|
+
TPC_FUNITS = (
|
866
|
+
'1,2, 99000, 99000,75000,75000,1,20000,90000,150000,15000.00\n'
|
867
|
+
'2,2,349000,349000,75000,75000,1,20000,90000,400000, 1612.50\n'
|
868
|
+
'3,2,524000,524000,75000,75000,1,20000,90000,575000, 0.00\n'
|
869
|
+
'4,2, 99000, 99000,75000,75000,0,20000,90000,150000,15000.00\n'
|
870
|
+
'5,2,349000,349000,75000,75000,0,20000,90000,400000,10750.00\n'
|
871
|
+
'6,2,524000,524000,75000,75000,0,20000,90000,575000,10000.00\n'
|
872
|
+
)
|
873
|
+
# generate actual Calculator pre-qbid taxinc and qbid amounts
|
874
|
+
tpc_df = pd.read_csv(StringIO(TPC_VARS + TPC_FUNITS))
|
875
|
+
recs = Records(data=tpc_df, start_year=TPC_YEAR,
|
876
|
+
gfactors=None, weights=None)
|
877
|
+
calc = Calculator(policy=Policy(), records=recs)
|
878
|
+
assert calc.current_year == TPC_YEAR
|
879
|
+
calc.calc_all()
|
880
|
+
varlist = ['RECID', 'c00100', 'standard', 'c04470', 'qbided']
|
881
|
+
tc_df = calc.dataframe(varlist)
|
882
|
+
# compare actual amounts with expected amounts from TPC publication
|
883
|
+
act_taxinc = tc_df.c00100 - np.maximum(tc_df.standard, tc_df.c04470)
|
884
|
+
exp_taxinc = tpc_df.pre_qbid_taxinc
|
885
|
+
assert np.allclose(act_taxinc, exp_taxinc)
|
886
|
+
assert np.allclose(tc_df.qbided, tpc_df.qbid)
|
887
|
+
|
888
|
+
|
889
|
+
def test_qbid_limit_switch():
|
890
|
+
"""
|
891
|
+
Test Calculator's switch to implement wage/capital limitations
|
892
|
+
on QBI deduction.
|
893
|
+
"""
|
894
|
+
cy = 2019
|
895
|
+
ref = {"PT_qbid_limit_switch": {2019: False}}
|
896
|
+
|
897
|
+
# filing unit has $500,000 in wages and $100,000 in QBI. Since
|
898
|
+
# the household is above the taxable income limitation threshold,
|
899
|
+
# with full wage/capital limitations, it does not receive a QBI
|
900
|
+
# deduction. With sufficent wage/capital to avoid the limitation,
|
901
|
+
# the filing unit receives a deduction of:
|
902
|
+
# $100,000 * 20% = $20,000.
|
903
|
+
VARS = 'RECID,MARS,e00200s,e00200p,e00200,e26270,e02000\n'
|
904
|
+
FUNIT = '1,2,250000,250000,500000,100000,100000'
|
905
|
+
|
906
|
+
funit_df = pd.read_csv(StringIO(VARS + FUNIT))
|
907
|
+
recs = Records(data=funit_df, start_year=cy,
|
908
|
+
gfactors=None, weights=None)
|
909
|
+
|
910
|
+
calc_base = Calculator(policy=Policy(), records=recs)
|
911
|
+
calc_base.calc_all()
|
912
|
+
|
913
|
+
qbid_base = calc_base.array('qbided')
|
914
|
+
assert np.equal(qbid_base, 0)
|
915
|
+
|
916
|
+
pol_ref = Policy()
|
917
|
+
pol_ref.implement_reform(ref)
|
918
|
+
calc_ref = Calculator(policy=pol_ref, records=recs)
|
919
|
+
calc_ref.calc_all()
|
920
|
+
|
921
|
+
qbid_ref = calc_ref.array('qbided')
|
922
|
+
assert np.equal(qbid_ref, 20000)
|
923
|
+
|
924
|
+
|
925
|
+
def test_calc_all_benefits_amounts(cps_subsample):
|
926
|
+
'''
|
927
|
+
Testing how benefits are handled in the calc_all method
|
928
|
+
'''
|
929
|
+
# set a reform with a positive UBI amount
|
930
|
+
ubi_ref = {'UBI_21': {2020: 1000}}
|
931
|
+
|
932
|
+
# create baseline calculator
|
933
|
+
pol = Policy()
|
934
|
+
recs = Records.cps_constructor(data=cps_subsample)
|
935
|
+
calc_base = Calculator(pol, recs)
|
936
|
+
calc_base.advance_to_year(2020)
|
937
|
+
calc_base.calc_all()
|
938
|
+
|
939
|
+
# create reform calculator
|
940
|
+
pol_ubi = Policy()
|
941
|
+
pol_ubi.implement_reform(ubi_ref)
|
942
|
+
calc_ubi = Calculator(pol_ubi, recs)
|
943
|
+
calc_ubi.advance_to_year(2020)
|
944
|
+
calc_ubi.calc_all()
|
945
|
+
|
946
|
+
# check that differences in benefits totals are equal to diffs in
|
947
|
+
# UBI
|
948
|
+
ubi_diff = (calc_ubi.weighted_total('ubi') -
|
949
|
+
calc_base.weighted_total('ubi')) / 1e9
|
950
|
+
benefit_cost_diff = (
|
951
|
+
calc_ubi.weighted_total('benefit_cost_total') -
|
952
|
+
calc_base.weighted_total('benefit_cost_total')) / 1e9
|
953
|
+
benefit_value_diff = (
|
954
|
+
calc_ubi.weighted_total('benefit_cost_total') -
|
955
|
+
calc_base.weighted_total('benefit_cost_total')) / 1e9
|
956
|
+
|
957
|
+
assert np.allclose(ubi_diff, benefit_cost_diff)
|
958
|
+
assert np.allclose(ubi_diff, benefit_value_diff)
|
959
|
+
|
960
|
+
|
961
|
+
def test_cg_top_rate():
|
962
|
+
"""
|
963
|
+
Test top CG bracket and rate.
|
964
|
+
"""
|
965
|
+
cy = 2019
|
966
|
+
|
967
|
+
# set NIIT and STD to zero to isolate CG tax rates
|
968
|
+
base = {"NIIT_rt": {2019: 0},
|
969
|
+
"STD": {2019: [0, 0, 0, 0, 0]}}
|
970
|
+
|
971
|
+
# create additional top CG bracket and rate
|
972
|
+
ref = {"CG_brk3": {2019: [1000000, 1000000, 1000000, 1000000, 1000000]},
|
973
|
+
"CG_rt4": {2019: 0.4},
|
974
|
+
"NIIT_rt": {2019: 0},
|
975
|
+
"STD": {2019: [0, 0, 0, 0, 0]}}
|
976
|
+
|
977
|
+
# create one record just below the top CG bracket and one just above
|
978
|
+
VARS = 'RECID,MARS,p23250\n'
|
979
|
+
FUNITS = '1,2,999999\n2,2,1000001\n'
|
980
|
+
|
981
|
+
pol_base = Policy()
|
982
|
+
pol_base.implement_reform(base)
|
983
|
+
|
984
|
+
pol_ref = Policy()
|
985
|
+
pol_ref.implement_reform(ref)
|
986
|
+
|
987
|
+
funit_df = pd.read_csv(StringIO(VARS + FUNITS))
|
988
|
+
recs = Records(data=funit_df, start_year=cy,
|
989
|
+
gfactors=None, weights=None)
|
990
|
+
|
991
|
+
calc_base = Calculator(policy=pol_base, records=recs)
|
992
|
+
calc_base.calc_all()
|
993
|
+
|
994
|
+
calc_ref = Calculator(policy=pol_ref, records=recs)
|
995
|
+
calc_ref.calc_all()
|
996
|
+
|
997
|
+
# calculate MTRs wrt long term gains
|
998
|
+
mtr_base = calc_base.mtr(variable_str='p23250',
|
999
|
+
calc_all_already_called=True,
|
1000
|
+
wrt_full_compensation=False)
|
1001
|
+
mtr_itax_base = mtr_base[1]
|
1002
|
+
|
1003
|
+
cg_rt3 = pol_base.to_array('CG_rt3', year=2019)
|
1004
|
+
# check that MTR for both records is equal to CG_rt3
|
1005
|
+
assert np.allclose(mtr_itax_base, cg_rt3)
|
1006
|
+
|
1007
|
+
# calculate MTRs under reform
|
1008
|
+
mtr_ref = calc_ref.mtr(variable_str='p23250',
|
1009
|
+
calc_all_already_called=True,
|
1010
|
+
wrt_full_compensation=False)
|
1011
|
+
mtr_itax_ref = mtr_ref[1]
|
1012
|
+
|
1013
|
+
cg_rt3_ref = pol_ref.to_array('CG_rt3', year=2019)
|
1014
|
+
cg_rt4_ref = pol_ref.to_array(param='CG_rt4', year=2019)
|
1015
|
+
|
1016
|
+
# check that MTR of houshold below top threshold is equal to
|
1017
|
+
# CG_rt3
|
1018
|
+
assert np.allclose(mtr_itax_ref[0], cg_rt3_ref)
|
1019
|
+
# check that MTR of household above top threshold is equal to
|
1020
|
+
# CG_rt4
|
1021
|
+
assert np.allclose(mtr_itax_ref[1], cg_rt4_ref)
|