tamar-model-client 0.1.19__py3-none-any.whl → 0.1.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,273 +1,180 @@
1
+ """
2
+ Tamar Model Client 异步客户端实现
3
+
4
+ 本模块实现了异步的 gRPC 客户端,用于与 Model Manager Server 进行通信。
5
+ 支持单个请求、批量请求、流式响应等功能,并提供了完整的错误处理和重试机制。
6
+
7
+ 主要功能:
8
+ - 异步 gRPC 通信
9
+ - JWT 认证
10
+ - 自动重试和错误处理
11
+ - 流式响应支持
12
+ - 连接池管理
13
+ - 详细的日志记录
14
+
15
+ 使用示例:
16
+ async with AsyncTamarModelClient() as client:
17
+ request = ModelRequest(...)
18
+ response = await client.invoke(request)
19
+ """
20
+
1
21
  import asyncio
2
22
  import atexit
3
- import base64
4
23
  import json
5
24
  import logging
6
- import os
7
25
  import time
8
- import uuid
9
- from contextvars import ContextVar
26
+ from typing import Optional, AsyncIterator, Union
10
27
 
11
28
  import grpc
12
- from typing import Optional, AsyncIterator, Union, Iterable
13
-
14
- from openai import NOT_GIVEN
15
- from pydantic import BaseModel
16
-
17
- from .auth import JWTAuthHandler
29
+ from grpc import RpcError
30
+
31
+ from .core import (
32
+ generate_request_id,
33
+ set_request_id,
34
+ setup_logger,
35
+ MAX_MESSAGE_LENGTH
36
+ )
37
+ from .core.base_client import BaseClient
38
+ from .core.request_builder import RequestBuilder
39
+ from .core.response_handler import ResponseHandler
18
40
  from .enums import ProviderType, InvokeType
19
- from .exceptions import ConnectionError
41
+ from .exceptions import ConnectionError, TamarModelException
42
+ from .error_handler import EnhancedRetryHandler
20
43
  from .schemas import ModelRequest, ModelResponse, BatchModelRequest, BatchModelResponse
21
44
  from .generated import model_service_pb2, model_service_pb2_grpc
22
- from .schemas.inputs import GoogleGenAiInput, OpenAIResponsesInput, OpenAIChatCompletionsInput, \
23
- GoogleVertexAIImagesInput, OpenAIImagesInput, OpenAIImagesEditInput
24
- from .json_formatter import JSONFormatter
25
-
26
- logger = logging.getLogger(__name__)
27
-
28
- # 使用 contextvars 管理请求ID
29
- _request_id: ContextVar[str] = ContextVar('request_id', default='-')
30
-
31
-
32
- class RequestIdFilter(logging.Filter):
33
- """自定义日志过滤器,向日志中添加 request_id"""
34
-
35
- def filter(self, record):
36
- # 从 ContextVar 中获取当前的 request_id
37
- record.request_id = _request_id.get()
38
- return True
39
-
40
-
41
- if not logger.hasHandlers():
42
- # 创建日志处理器,输出到控制台
43
- console_handler = logging.StreamHandler()
44
-
45
- # 使用 JSON 格式化器
46
- formatter = JSONFormatter()
47
- console_handler.setFormatter(formatter)
48
-
49
- # 为当前记录器添加处理器
50
- logger.addHandler(console_handler)
51
-
52
- # 设置日志级别
53
- logger.setLevel(logging.INFO)
54
-
55
- # 将自定义的 RequestIdFilter 添加到 logger 中
56
- logger.addFilter(RequestIdFilter())
57
45
 
58
- MAX_MESSAGE_LENGTH = 2 ** 31 - 1 # 对于32位系统
46
+ # 配置日志记录器
47
+ logger = setup_logger(__name__)
59
48
 
60
49
 
61
- def is_effective_value(value) -> bool:
50
+ class AsyncTamarModelClient(BaseClient):
62
51
  """
63
- 递归判断value是否是有意义的有效值
52
+ Tamar Model Client 异步客户端
53
+
54
+ 提供与 Model Manager Server 的异步通信能力,支持:
55
+ - 单个和批量模型调用
56
+ - 流式和非流式响应
57
+ - 自动重试和错误恢复
58
+ - JWT 认证
59
+ - 连接池管理
60
+
61
+ 使用示例:
62
+ # 基本用法
63
+ client = AsyncTamarModelClient()
64
+ await client.connect()
65
+
66
+ request = ModelRequest(...)
67
+ response = await client.invoke(request)
68
+
69
+ # 上下文管理器用法(推荐)
70
+ async with AsyncTamarModelClient() as client:
71
+ response = await client.invoke(request)
72
+
73
+ 环境变量配置:
74
+ MODEL_MANAGER_SERVER_ADDRESS: gRPC 服务器地址
75
+ MODEL_MANAGER_SERVER_JWT_SECRET_KEY: JWT 密钥
76
+ MODEL_MANAGER_SERVER_GRPC_USE_TLS: 是否使用 TLS
77
+ MODEL_MANAGER_SERVER_GRPC_MAX_RETRIES: 最大重试次数
78
+ MODEL_MANAGER_SERVER_GRPC_RETRY_DELAY: 重试延迟
64
79
  """
65
- if value is None or value is NOT_GIVEN:
66
- return False
67
-
68
- if isinstance(value, str):
69
- return value.strip() != ""
70
-
71
- if isinstance(value, bytes):
72
- return len(value) > 0
73
-
74
- if isinstance(value, dict):
75
- for v in value.values():
76
- if is_effective_value(v):
77
- return True
78
- return False
79
-
80
- if isinstance(value, list):
81
- for item in value:
82
- if is_effective_value(item):
83
- return True
84
- return False
85
-
86
- return True # 其他类型(int/float/bool)只要不是None就算有效
87
80
 
81
+ def __init__(self, **kwargs):
82
+ """
83
+ 初始化异步客户端
84
+
85
+ 参数继承自 BaseClient,包括:
86
+ - server_address: gRPC 服务器地址
87
+ - jwt_secret_key: JWT 签名密钥
88
+ - jwt_token: 预生成的 JWT 令牌
89
+ - default_payload: JWT 令牌的默认载荷
90
+ - token_expires_in: JWT 令牌过期时间
91
+ - max_retries: 最大重试次数
92
+ - retry_delay: 初始重试延迟
93
+ """
94
+ super().__init__(logger_name=__name__, **kwargs)
95
+
96
+ # === gRPC 通道和连接管理 ===
97
+ self.channel: Optional[grpc.aio.Channel] = None
98
+ self.stub: Optional[model_service_pb2_grpc.ModelServiceStub] = None
99
+
100
+ # === 增强的重试处理器 ===
101
+ self.retry_handler = EnhancedRetryHandler(
102
+ max_retries=self.max_retries,
103
+ base_delay=self.retry_delay
104
+ )
105
+
106
+ # 注册退出时的清理函数
107
+ atexit.register(self._cleanup_atexit)
88
108
 
89
- def serialize_value(value):
90
- """递归处理单个值,处理BaseModel, dict, list, bytes"""
91
- if not is_effective_value(value):
92
- return None
93
- if isinstance(value, BaseModel):
94
- return serialize_value(value.model_dump())
95
- if hasattr(value, "dict") and callable(value.dict):
96
- return serialize_value(value.dict())
97
- if isinstance(value, dict):
98
- return {k: serialize_value(v) for k, v in value.items()}
99
- if isinstance(value, list) or (isinstance(value, Iterable) and not isinstance(value, (str, bytes))):
100
- return [serialize_value(v) for v in value]
101
- if isinstance(value, bytes):
102
- return f"bytes:{base64.b64encode(value).decode('utf-8')}"
103
- return value
109
+ def _cleanup_atexit(self):
110
+ """程序退出时的清理函数"""
111
+ if self.channel and not self._closed:
112
+ try:
113
+ asyncio.create_task(self.close())
114
+ except RuntimeError:
115
+ # 如果事件循环已经关闭,忽略错误
116
+ pass
104
117
 
118
+ async def close(self):
119
+ """
120
+ 关闭客户端连接
121
+
122
+ 优雅地关闭 gRPC 通道并清理资源。
123
+ 建议在程序结束前调用此方法,或使用上下文管理器自动管理。
124
+ """
125
+ if self.channel and not self._closed:
126
+ await self.channel.close()
127
+ self._closed = True
128
+ logger.info("🔒 gRPC channel closed",
129
+ extra={"log_type": "info", "data": {"status": "closed"}})
105
130
 
106
- from typing import Any
131
+ async def __aenter__(self):
132
+ """异步上下文管理器入口"""
133
+ await self.connect()
134
+ return self
107
135
 
136
+ async def __aexit__(self, exc_type, exc_val, exc_tb):
137
+ """异步上下文管理器出口"""
138
+ await self.close()
108
139
 
109
- def remove_none_from_dict(data: Any) -> Any:
110
- """
111
- 遍历 dict/list,递归删除 value None 的字段
112
- """
113
- if isinstance(data, dict):
114
- new_dict = {}
115
- for key, value in data.items():
116
- if value is None:
117
- continue
118
- cleaned_value = remove_none_from_dict(value)
119
- new_dict[key] = cleaned_value
120
- return new_dict
121
- elif isinstance(data, list):
122
- return [remove_none_from_dict(item) for item in data]
123
- else:
124
- return data
125
-
126
-
127
- def generate_request_id():
128
- """生成一个唯一的request_id"""
129
- return str(uuid.uuid4())
130
-
131
-
132
- def set_request_id(request_id: str):
133
- """设置当前请求的 request_id"""
134
- _request_id.set(request_id)
135
-
136
-
137
- class AsyncTamarModelClient:
138
- def __init__(
139
- self,
140
- server_address: Optional[str] = None,
141
- jwt_secret_key: Optional[str] = None,
142
- jwt_token: Optional[str] = None,
143
- default_payload: Optional[dict] = None,
144
- token_expires_in: int = 3600,
145
- max_retries: Optional[int] = None, # 最大重试次数
146
- retry_delay: Optional[float] = None, # 初始重试延迟(秒)
147
- ):
148
- # 服务端地址
149
- self.server_address = server_address or os.getenv("MODEL_MANAGER_SERVER_ADDRESS")
150
- if not self.server_address:
151
- raise ValueError("Server address must be provided via argument or environment variable.")
152
- self.default_invoke_timeout = float(os.getenv("MODEL_MANAGER_SERVER_INVOKE_TIMEOUT", 30.0))
153
-
154
- # JWT 配置
155
- self.jwt_secret_key = jwt_secret_key or os.getenv("MODEL_MANAGER_SERVER_JWT_SECRET_KEY")
156
- self.jwt_handler = JWTAuthHandler(self.jwt_secret_key)
157
- self.jwt_token = jwt_token # 用户传入的 Token(可选)
158
- self.default_payload = default_payload
159
- self.token_expires_in = token_expires_in
160
-
161
- # === TLS/Authority 配置 ===
162
- self.use_tls = os.getenv("MODEL_MANAGER_SERVER_GRPC_USE_TLS", "true").lower() == "true"
163
- self.default_authority = os.getenv("MODEL_MANAGER_SERVER_GRPC_DEFAULT_AUTHORITY")
164
-
165
- # === 重试配置 ===
166
- self.max_retries = max_retries if max_retries is not None else int(
167
- os.getenv("MODEL_MANAGER_SERVER_GRPC_MAX_RETRIES", 3))
168
- self.retry_delay = retry_delay if retry_delay is not None else float(
169
- os.getenv("MODEL_MANAGER_SERVER_GRPC_RETRY_DELAY", 1.0))
170
-
171
- # === gRPC 通道相关 ===
172
- self.channel: Optional[grpc.aio.Channel] = None
173
- self.stub: Optional[model_service_pb2_grpc.ModelServiceStub] = None
174
- self._closed = False
175
- atexit.register(self._safe_sync_close) # 注册进程退出自动关闭
140
+ def __enter__(self):
141
+ """同步上下文管理器入口(不支持)"""
142
+ raise TypeError("Use 'async with' for AsyncTamarModelClient")
176
143
 
177
- async def _retry_request(self, func, *args, **kwargs):
178
- retry_count = 0
179
- while retry_count < self.max_retries:
180
- try:
181
- return await func(*args, **kwargs)
182
- except (grpc.aio.AioRpcError, grpc.RpcError) as e:
183
- # 对于取消的情况进行指数退避重试
184
- if isinstance(e, grpc.aio.AioRpcError) and e.code() == grpc.StatusCode.CANCELLED:
185
- retry_count += 1
186
- logger.warning(f"⚠️ RPC cancelled, retrying {retry_count}/{self.max_retries}...",
187
- extra={"log_type": "info", "data": {"retry_count": retry_count, "max_retries": self.max_retries, "error_code": "CANCELLED"}})
188
- if retry_count < self.max_retries:
189
- delay = self.retry_delay * (2 ** (retry_count - 1))
190
- await asyncio.sleep(delay)
191
- else:
192
- logger.error("❌ Max retry reached for CANCELLED",
193
- extra={"log_type": "info", "data": {"error_code": "CANCELLED", "max_retries_reached": True}})
194
- raise
195
- # 针对其他 RPC 错误类型,如暂时的连接问题、服务器超时等
196
- elif isinstance(e, grpc.RpcError) and e.code() in {grpc.StatusCode.UNAVAILABLE,
197
- grpc.StatusCode.DEADLINE_EXCEEDED}:
198
- retry_count += 1
199
- logger.warning(f"⚠️ gRPC error {e.code()}, retrying {retry_count}/{self.max_retries}...",
200
- extra={"log_type": "info", "data": {"retry_count": retry_count, "max_retries": self.max_retries, "error_code": str(e.code())}})
201
- if retry_count < self.max_retries:
202
- delay = self.retry_delay * (2 ** (retry_count - 1))
203
- await asyncio.sleep(delay)
204
- else:
205
- logger.error(f"❌ Max retry reached for {e.code()}",
206
- extra={"log_type": "info", "data": {"error_code": str(e.code()), "max_retries_reached": True}})
207
- raise
208
- else:
209
- logger.error(f"❌ Non-retryable gRPC error: {e}", exc_info=True,
210
- extra={"log_type": "info", "data": {"error_code": str(e.code()) if hasattr(e, 'code') else None, "retryable": False}})
211
- raise
144
+ def __exit__(self, exc_type, exc_val, exc_tb):
145
+ """同步上下文管理器出口(不支持)"""
146
+ pass
212
147
 
213
- async def _retry_request_stream(self, func, *args, **kwargs):
214
- retry_count = 0
215
- while retry_count < self.max_retries:
216
- try:
217
- return func(*args, **kwargs)
218
- except (grpc.aio.AioRpcError, grpc.RpcError) as e:
219
- # 对于取消的情况进行指数退避重试
220
- if isinstance(e, grpc.aio.AioRpcError) and e.code() == grpc.StatusCode.CANCELLED:
221
- retry_count += 1
222
- logger.warning(f"⚠️ RPC cancelled, retrying {retry_count}/{self.max_retries}...",
223
- extra={"log_type": "info", "data": {"retry_count": retry_count, "max_retries": self.max_retries, "error_code": "CANCELLED"}})
224
- if retry_count < self.max_retries:
225
- delay = self.retry_delay * (2 ** (retry_count - 1))
226
- await asyncio.sleep(delay)
227
- else:
228
- logger.error("❌ Max retry reached for CANCELLED",
229
- extra={"log_type": "info", "data": {"error_code": "CANCELLED", "max_retries_reached": True}})
230
- raise
231
- # 针对其他 RPC 错误类型,如暂时的连接问题、服务器超时等
232
- elif isinstance(e, grpc.RpcError) and e.code() in {grpc.StatusCode.UNAVAILABLE,
233
- grpc.StatusCode.DEADLINE_EXCEEDED}:
234
- retry_count += 1
235
- logger.warning(f"⚠️ gRPC error {e.code()}, retrying {retry_count}/{self.max_retries}...",
236
- extra={"log_type": "info", "data": {"retry_count": retry_count, "max_retries": self.max_retries, "error_code": str(e.code())}})
237
- if retry_count < self.max_retries:
238
- delay = self.retry_delay * (2 ** (retry_count - 1))
239
- await asyncio.sleep(delay)
240
- else:
241
- logger.error(f"❌ Max retry reached for {e.code()}",
242
- extra={"log_type": "info", "data": {"error_code": str(e.code()), "max_retries_reached": True}})
243
- raise
244
- else:
245
- logger.error(f"❌ Non-retryable gRPC error: {e}", exc_info=True,
246
- extra={"log_type": "info", "data": {"error_code": str(e.code()) if hasattr(e, 'code') else None, "retryable": False}})
247
- raise
248
-
249
- def _build_auth_metadata(self, request_id: str) -> list:
250
- # if not self.jwt_token and self.jwt_handler:
251
- # 更改为每次请求都生成一次token
252
- metadata = [("x-request-id", request_id)] # 将 request_id 添加到 headers
253
- if self.jwt_handler:
254
- self.jwt_token = self.jwt_handler.encode_token(self.default_payload, expires_in=self.token_expires_in)
255
- metadata.append(("authorization", f"Bearer {self.jwt_token}"))
256
- return metadata
148
+ async def connect(self):
149
+ """
150
+ 显式连接到服务器
151
+
152
+ 建立与 gRPC 服务器的连接。通常不需要手动调用,
153
+ 因为 invoke 方法会自动确保连接已建立。
154
+ """
155
+ await self._ensure_initialized()
257
156
 
258
157
  async def _ensure_initialized(self):
259
- """初始化 gRPC 通道,支持 TLS 与重试机制"""
158
+ """
159
+ 初始化gRPC通道
160
+
161
+ 确保gRPC通道和存根已正确初始化。如果初始化失败,
162
+ 会进行重试,支持TLS配置和完整的keepalive选项。
163
+
164
+ 连接配置包括:
165
+ - 消息大小限制
166
+ - Keepalive设置(30秒ping间隔,10秒超时)
167
+ - 连接生命周期管理(1小时最大连接时间)
168
+ - 性能优化选项(带宽探测、内置重试)
169
+
170
+ Raises:
171
+ ConnectionError: 当达到最大重试次数仍无法连接时
172
+ """
260
173
  if self.channel and self.stub:
261
174
  return
262
175
 
263
176
  retry_count = 0
264
- options = [
265
- ('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
266
- ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH),
267
- ('grpc.keepalive_permit_without_calls', True) # 即使没有活跃请求也保持连接
268
- ]
269
- if self.default_authority:
270
- options.append(("grpc.default_authority", self.default_authority))
177
+ options = self.build_channel_options()
271
178
 
272
179
  while retry_count <= self.max_retries:
273
180
  try:
@@ -279,60 +186,152 @@ class AsyncTamarModelClient:
279
186
  options=options
280
187
  )
281
188
  logger.info("🔐 Using secure gRPC channel (TLS enabled)",
282
- extra={"log_type": "info", "data": {"tls_enabled": True, "server_address": self.server_address}})
189
+ extra={"log_type": "info",
190
+ "data": {"tls_enabled": True, "server_address": self.server_address}})
283
191
  else:
284
192
  self.channel = grpc.aio.insecure_channel(
285
193
  self.server_address,
286
194
  options=options
287
195
  )
288
196
  logger.info("🔓 Using insecure gRPC channel (TLS disabled)",
289
- extra={"log_type": "info", "data": {"tls_enabled": False, "server_address": self.server_address}})
197
+ extra={"log_type": "info",
198
+ "data": {"tls_enabled": False, "server_address": self.server_address}})
199
+
290
200
  await self.channel.channel_ready()
291
201
  self.stub = model_service_pb2_grpc.ModelServiceStub(self.channel)
292
202
  logger.info(f"✅ gRPC channel initialized to {self.server_address}",
293
- extra={"log_type": "info", "data": {"status": "success", "server_address": self.server_address}})
203
+ extra={"log_type": "info",
204
+ "data": {"status": "success", "server_address": self.server_address}})
294
205
  return
206
+
295
207
  except grpc.FutureTimeoutError as e:
296
208
  logger.error(f"❌ gRPC channel initialization timed out: {str(e)}", exc_info=True,
297
- extra={"log_type": "info", "data": {"error_type": "timeout", "server_address": self.server_address}})
209
+ extra={"log_type": "info",
210
+ "data": {"error_type": "timeout", "server_address": self.server_address}})
298
211
  except grpc.RpcError as e:
299
212
  logger.error(f"❌ gRPC channel initialization failed: {str(e)}", exc_info=True,
300
- extra={"log_type": "info", "data": {"error_type": "rpc_error", "server_address": self.server_address}})
213
+ extra={"log_type": "info",
214
+ "data": {"error_type": "grpc_error", "server_address": self.server_address}})
301
215
  except Exception as e:
302
- logger.error(f"❌ Unexpected error during channel initialization: {str(e)}", exc_info=True,
303
- extra={"log_type": "info", "data": {"error_type": "unexpected", "server_address": self.server_address}})
304
-
216
+ logger.error(f"❌ Unexpected error during gRPC channel initialization: {str(e)}", exc_info=True,
217
+ extra={"log_type": "info",
218
+ "data": {"error_type": "unknown", "server_address": self.server_address}})
219
+
305
220
  retry_count += 1
306
- if retry_count > self.max_retries:
307
- logger.error(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.", exc_info=True,
308
- extra={"log_type": "info", "data": {"max_retries_reached": True, "server_address": self.server_address}})
309
- raise ConnectionError(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.")
221
+ if retry_count <= self.max_retries:
222
+ await asyncio.sleep(self.retry_delay * retry_count)
310
223
 
311
- # 指数退避:延迟时间 = retry_delay * (2 ^ (retry_count - 1))
312
- delay = self.retry_delay * (2 ** (retry_count - 1))
313
- logger.warning(f"🔄 Retrying connection (attempt {retry_count}/{self.max_retries}) after {delay:.2f}s delay...",
314
- extra={"log_type": "info", "data": {"retry_count": retry_count, "max_retries": self.max_retries, "delay": delay}})
315
- await asyncio.sleep(delay)
224
+ raise ConnectionError(f"Failed to connect to {self.server_address} after {self.max_retries} retries")
225
+
226
+ async def _retry_request(self, func, *args, **kwargs):
227
+ """
228
+ 使用增强的重试处理器执行请求
229
+
230
+ Args:
231
+ func: 要执行的异步函数
232
+ *args: 函数参数
233
+ **kwargs: 函数关键字参数
234
+
235
+ Returns:
236
+ 函数执行结果
237
+
238
+ Raises:
239
+ TamarModelException: 当所有重试都失败时
240
+ """
241
+ return await self.retry_handler.execute_with_retry(func, *args, **kwargs)
242
+
243
+ async def _retry_request_stream(self, func, *args, **kwargs):
244
+ """
245
+ 流式请求的重试逻辑
246
+
247
+ 对于流式响应,需要特殊的重试处理,因为流不能简单地重新执行。
248
+
249
+ Args:
250
+ func: 生成流的异步函数
251
+ *args: 函数参数
252
+ **kwargs: 函数关键字参数
253
+
254
+ Returns:
255
+ AsyncIterator: 流式响应迭代器
256
+ """
257
+ last_exception = None
258
+
259
+ for attempt in range(self.max_retries + 1):
260
+ try:
261
+ # 尝试创建流
262
+ async for item in func(*args, **kwargs):
263
+ yield item
264
+ return
265
+
266
+ except RpcError as e:
267
+ last_exception = e
268
+ if attempt < self.max_retries:
269
+ logger.warning(
270
+ f"Stream attempt {attempt + 1}/{self.max_retries + 1} failed: {e.code()}",
271
+ extra={"retry_count": attempt, "error_code": str(e.code())}
272
+ )
273
+ await asyncio.sleep(self.retry_delay * (attempt + 1))
274
+ else:
275
+ break
276
+ except Exception as e:
277
+ raise TamarModelException(str(e)) from e
278
+
279
+ if last_exception:
280
+ raise self.error_handler.handle_error(last_exception, {"retry_count": self.max_retries})
281
+ else:
282
+ raise TamarModelException("Unknown streaming error occurred")
316
283
 
317
284
  async def _stream(self, request, metadata, invoke_timeout) -> AsyncIterator[ModelResponse]:
318
- async for response in self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout):
319
- yield ModelResponse(
320
- content=response.content,
321
- usage=json.loads(response.usage) if response.usage else None,
322
- error=response.error or None,
323
- raw_response=json.loads(response.raw_response) if response.raw_response else None,
324
- request_id=response.request_id if response.request_id else None,
325
- )
326
-
327
- async def _stream_with_logging(self, request, metadata, invoke_timeout, start_time, model_request) -> AsyncIterator[ModelResponse]:
328
- """流式响应的包装器,用于记录完整的响应日志"""
285
+ """
286
+ 处理流式响应
287
+
288
+ 包含块级超时保护,防止流式响应挂起。
289
+
290
+ Args:
291
+ request: gRPC 请求对象
292
+ metadata: 请求元数据
293
+ invoke_timeout: 总体超时时间
294
+
295
+ Yields:
296
+ ModelResponse: 流式响应的每个数据块
297
+
298
+ Raises:
299
+ TimeoutError: 当等待下一个数据块超时时
300
+ """
301
+ stream_iter = self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout).__aiter__()
302
+ chunk_timeout = 30.0 # 单个数据块的超时时间
303
+
304
+ try:
305
+ while True:
306
+ try:
307
+ # 对每个数据块的获取进行超时保护
308
+ response = await asyncio.wait_for(
309
+ stream_iter.__anext__(),
310
+ timeout=chunk_timeout
311
+ )
312
+ yield ResponseHandler.build_model_response(response)
313
+
314
+ except asyncio.TimeoutError:
315
+ raise TimeoutError(f"流式响应在等待下一个数据块时超时 ({chunk_timeout}s)")
316
+
317
+ except StopAsyncIteration:
318
+ break # 正常结束
319
+ except Exception as e:
320
+ raise
321
+
322
+ async def _stream_with_logging(self, request, metadata, invoke_timeout, start_time, model_request) -> AsyncIterator[
323
+ ModelResponse]:
324
+ """流式响应的包装器,用于记录完整的响应日志并处理重试"""
329
325
  total_content = ""
330
326
  final_usage = None
331
327
  error_occurred = None
332
328
  chunk_count = 0
333
-
329
+
330
+ # 使用重试逻辑获取流生成器
331
+ stream_generator = self._retry_request_stream(self._stream, request, metadata, invoke_timeout)
332
+
334
333
  try:
335
- async for response in self._stream(request, metadata, invoke_timeout):
334
+ async for response in stream_generator:
336
335
  chunk_count += 1
337
336
  if response.content:
338
337
  total_content += response.content
@@ -341,26 +340,46 @@ class AsyncTamarModelClient:
341
340
  if response.error:
342
341
  error_occurred = response.error
343
342
  yield response
344
-
345
- # 流式响应完成,记录成功日志
343
+
344
+ # 流式响应完成,记录日志
346
345
  duration = time.time() - start_time
347
- logger.info(
348
- f"✅ Stream completed successfully | chunks: {chunk_count}",
349
- extra={
350
- "log_type": "response",
351
- "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
352
- "duration": duration,
353
- "data": {
354
- "provider": model_request.provider.value,
355
- "invoke_type": model_request.invoke_type.value,
356
- "model": model_request.model,
357
- "stream": True,
358
- "chunks_count": chunk_count,
359
- "total_length": len(total_content),
360
- "usage": final_usage
346
+ if error_occurred:
347
+ # 流式响应中包含错误
348
+ logger.warning(
349
+ f"⚠️ Stream completed with errors | chunks: {chunk_count}",
350
+ extra={
351
+ "log_type": "response",
352
+ "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
353
+ "duration": duration,
354
+ "data": ResponseHandler.build_log_data(
355
+ model_request,
356
+ stream_stats={
357
+ "chunks_count": chunk_count,
358
+ "total_length": len(total_content),
359
+ "usage": final_usage,
360
+ "error": error_occurred
361
+ }
362
+ )
361
363
  }
362
- }
363
- )
364
+ )
365
+ else:
366
+ # 流式响应成功完成
367
+ logger.info(
368
+ f"✅ Stream completed successfully | chunks: {chunk_count}",
369
+ extra={
370
+ "log_type": "response",
371
+ "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
372
+ "duration": duration,
373
+ "data": ResponseHandler.build_log_data(
374
+ model_request,
375
+ stream_stats={
376
+ "chunks_count": chunk_count,
377
+ "total_length": len(total_content),
378
+ "usage": final_usage
379
+ }
380
+ )
381
+ }
382
+ )
364
383
  except Exception as e:
365
384
  # 流式响应出错,记录错误日志
366
385
  duration = time.time() - start_time
@@ -371,28 +390,22 @@ class AsyncTamarModelClient:
371
390
  "log_type": "response",
372
391
  "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
373
392
  "duration": duration,
374
- "data": {
375
- "provider": model_request.provider.value,
376
- "invoke_type": model_request.invoke_type.value,
377
- "model": model_request.model,
378
- "stream": True,
379
- "chunks_count": chunk_count,
380
- "error_type": type(e).__name__,
381
- "partial_content_length": len(total_content)
382
- }
393
+ "data": ResponseHandler.build_log_data(
394
+ model_request,
395
+ error=e,
396
+ stream_stats={
397
+ "chunks_count": chunk_count,
398
+ "partial_content_length": len(total_content)
399
+ }
400
+ )
383
401
  }
384
402
  )
385
403
  raise
386
404
 
387
405
  async def _invoke_request(self, request, metadata, invoke_timeout):
406
+ """执行单个非流式请求"""
388
407
  async for response in self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout):
389
- return ModelResponse(
390
- content=response.content,
391
- usage=json.loads(response.usage) if response.usage else None,
392
- error=response.error or None,
393
- raw_response=json.loads(response.raw_response) if response.raw_response else None,
394
- request_id=response.request_id if response.request_id else None,
395
- )
408
+ return ResponseHandler.build_model_response(response)
396
409
 
397
410
  async def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None,
398
411
  request_id: Optional[str] = None) -> Union[
@@ -420,9 +433,9 @@ class AsyncTamarModelClient:
420
433
  }
421
434
 
422
435
  if not request_id:
423
- request_id = generate_request_id() # 生成一个新的 request_id
424
- set_request_id(request_id) # 设置当前请求的 request_id
425
- metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
436
+ request_id = generate_request_id()
437
+ set_request_id(request_id)
438
+ metadata = self._build_auth_metadata(request_id)
426
439
 
427
440
  # 记录开始日志
428
441
  start_time = time.time()
@@ -431,135 +444,86 @@ class AsyncTamarModelClient:
431
444
  extra={
432
445
  "log_type": "request",
433
446
  "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
434
- "data": {
435
- "provider": model_request.provider.value,
436
- "invoke_type": model_request.invoke_type.value,
437
- "model": model_request.model,
438
- "stream": model_request.stream,
439
- "org_id": model_request.user_context.org_id,
440
- "user_id": model_request.user_context.user_id,
441
- "client_type": model_request.user_context.client_type
442
- }
447
+ "data": ResponseHandler.build_log_data(model_request)
443
448
  })
444
449
 
445
- # 动态根据 provider/invoke_type 决定使用哪个 input 字段
446
450
  try:
447
- # 选择需要校验的字段集合
448
- # 动态分支逻辑
449
- match (model_request.provider, model_request.invoke_type):
450
- case (ProviderType.GOOGLE, InvokeType.GENERATION):
451
- allowed_fields = GoogleGenAiInput.model_fields.keys()
452
- case (ProviderType.GOOGLE, InvokeType.IMAGE_GENERATION):
453
- allowed_fields = GoogleVertexAIImagesInput.model_fields.keys()
454
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.RESPONSES | InvokeType.GENERATION):
455
- allowed_fields = OpenAIResponsesInput.model_fields.keys()
456
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.CHAT_COMPLETIONS):
457
- allowed_fields = OpenAIChatCompletionsInput.model_fields.keys()
458
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_GENERATION):
459
- allowed_fields = OpenAIImagesInput.model_fields.keys()
460
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_EDIT_GENERATION):
461
- allowed_fields = OpenAIImagesEditInput.model_fields.keys()
462
- case _:
463
- raise ValueError(
464
- f"Unsupported provider/invoke_type combination: {model_request.provider} + {model_request.invoke_type}")
465
-
466
- # 将 ModelRequest 转 dict,过滤只保留 base + allowed 的字段
467
- model_request_dict = model_request.model_dump(exclude_unset=True)
468
-
469
- grpc_request_kwargs = {}
470
- for field in allowed_fields:
471
- if field in model_request_dict:
472
- value = model_request_dict[field]
473
-
474
- # 跳过无效的值
475
- if not is_effective_value(value):
476
- continue
477
-
478
- # 序列化grpc不支持的类型
479
- grpc_request_kwargs[field] = serialize_value(value)
480
-
481
- # 清理 serialize后的 grpc_request_kwargs
482
- grpc_request_kwargs = remove_none_from_dict(grpc_request_kwargs)
483
-
484
- request = model_service_pb2.ModelRequestItem(
485
- provider=model_request.provider.value,
486
- channel=model_request.channel.value,
487
- invoke_type=model_request.invoke_type.value,
488
- stream=model_request.stream or False,
489
- org_id=model_request.user_context.org_id or "",
490
- user_id=model_request.user_context.user_id or "",
491
- client_type=model_request.user_context.client_type or "",
492
- extra=grpc_request_kwargs
493
- )
494
-
451
+ # 构建 gRPC 请求
452
+ request = RequestBuilder.build_single_request(model_request)
453
+
495
454
  except Exception as e:
455
+ duration = time.time() - start_time
456
+ logger.error(
457
+ f"❌ Request build failed: {str(e)}",
458
+ exc_info=True,
459
+ extra={
460
+ "log_type": "response",
461
+ "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
462
+ "duration": duration,
463
+ "data": {
464
+ "provider": model_request.provider.value,
465
+ "invoke_type": model_request.invoke_type.value,
466
+ "model": getattr(model_request, 'model', None),
467
+ "error_type": "build_error",
468
+ "error_message": str(e)
469
+ }
470
+ }
471
+ )
496
472
  raise ValueError(f"构建请求失败: {str(e)}") from e
497
473
 
498
474
  try:
499
475
  invoke_timeout = timeout or self.default_invoke_timeout
500
476
  if model_request.stream:
501
- # 对于流式响应,使用带日志记录的包装器
502
- stream_generator = await self._retry_request_stream(self._stream, request, metadata, invoke_timeout)
477
+ # 对于流式响应,直接返回带日志记录的包装器
503
478
  return self._stream_with_logging(request, metadata, invoke_timeout, start_time, model_request)
504
479
  else:
505
480
  result = await self._retry_request(self._invoke_request, request, metadata, invoke_timeout)
506
-
481
+
507
482
  # 记录非流式响应的成功日志
508
483
  duration = time.time() - start_time
484
+ content_length = len(result.content) if result.content else 0
509
485
  logger.info(
510
- f"✅ Request completed successfully",
486
+ f"✅ Request completed | content_length: {content_length}",
511
487
  extra={
512
488
  "log_type": "response",
513
489
  "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
514
490
  "duration": duration,
515
- "data": {
516
- "provider": model_request.provider.value,
517
- "invoke_type": model_request.invoke_type.value,
518
- "model": model_request.model,
519
- "stream": False,
520
- "content_length": len(result.content) if result.content else 0,
521
- "usage": result.usage
522
- }
491
+ "data": ResponseHandler.build_log_data(model_request, result)
523
492
  }
524
493
  )
525
494
  return result
495
+
526
496
  except grpc.RpcError as e:
527
497
  duration = time.time() - start_time
528
498
  error_message = f"❌ Invoke gRPC failed: {str(e)}"
529
499
  logger.error(error_message, exc_info=True,
530
- extra={
531
- "log_type": "response",
532
- "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
533
- "duration": duration,
534
- "data": {
535
- "error_type": "grpc_error",
536
- "error_code": str(e.code()) if hasattr(e, 'code') else None,
537
- "provider": model_request.provider.value,
538
- "invoke_type": model_request.invoke_type.value,
539
- "model": model_request.model
540
- }
541
- })
500
+ extra={
501
+ "log_type": "response",
502
+ "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
503
+ "duration": duration,
504
+ "data": ResponseHandler.build_log_data(
505
+ model_request,
506
+ error=e
507
+ )
508
+ })
542
509
  raise e
543
510
  except Exception as e:
544
511
  duration = time.time() - start_time
545
512
  error_message = f"❌ Invoke other error: {str(e)}"
546
513
  logger.error(error_message, exc_info=True,
547
- extra={
548
- "log_type": "response",
549
- "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
550
- "duration": duration,
551
- "data": {
552
- "error_type": "other_error",
553
- "provider": model_request.provider.value,
554
- "invoke_type": model_request.invoke_type.value,
555
- "model": model_request.model
556
- }
557
- })
514
+ extra={
515
+ "log_type": "response",
516
+ "uri": f"/invoke/{model_request.provider.value}/{model_request.invoke_type.value}",
517
+ "duration": duration,
518
+ "data": ResponseHandler.build_log_data(
519
+ model_request,
520
+ error=e
521
+ )
522
+ })
558
523
  raise e
559
524
 
560
525
  async def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None,
561
- request_id: Optional[str] = None) -> \
562
- BatchModelResponse:
526
+ request_id: Optional[str] = None) -> BatchModelResponse:
563
527
  """
564
528
  批量模型调用接口
565
529
 
@@ -570,7 +534,6 @@ class AsyncTamarModelClient:
570
534
  Returns:
571
535
  BatchModelResponse: 批量请求的结果
572
536
  """
573
-
574
537
  await self._ensure_initialized()
575
538
 
576
539
  if not self.default_payload:
@@ -580,9 +543,9 @@ class AsyncTamarModelClient:
580
543
  }
581
544
 
582
545
  if not request_id:
583
- request_id = generate_request_id() # 生成一个新的 request_id
584
- set_request_id(request_id) # 设置当前请求的 request_id
585
- metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
546
+ request_id = generate_request_id()
547
+ set_request_id(request_id)
548
+ metadata = self._build_auth_metadata(request_id)
586
549
 
587
550
  # 记录开始日志
588
551
  start_time = time.time()
@@ -599,155 +562,83 @@ class AsyncTamarModelClient:
599
562
  }
600
563
  })
601
564
 
602
- # 构造批量请求
603
- items = []
604
- for model_request_item in batch_request_model.items:
605
- # 动态根据 provider/invoke_type 决定使用哪个 input 字段
606
- try:
607
- match (model_request_item.provider, model_request_item.invoke_type):
608
- case (ProviderType.GOOGLE, InvokeType.GENERATION):
609
- allowed_fields = GoogleGenAiInput.model_fields.keys()
610
- case (ProviderType.GOOGLE, InvokeType.IMAGE_GENERATION):
611
- allowed_fields = GoogleVertexAIImagesInput.model_fields.keys()
612
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.RESPONSES | InvokeType.GENERATION):
613
- allowed_fields = OpenAIResponsesInput.model_fields.keys()
614
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.CHAT_COMPLETIONS):
615
- allowed_fields = OpenAIChatCompletionsInput.model_fields.keys()
616
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_GENERATION):
617
- allowed_fields = OpenAIImagesInput.model_fields.keys()
618
- case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_EDIT_GENERATION):
619
- allowed_fields = OpenAIImagesEditInput.model_fields.keys()
620
- case _:
621
- raise ValueError(
622
- f"Unsupported provider/invoke_type combination: {model_request_item.provider} + {model_request_item.invoke_type}")
623
-
624
- # 将 ModelRequest 转 dict,过滤只保留 base + allowed 的字段
625
- model_request_dict = model_request_item.model_dump(exclude_unset=True)
626
-
627
- grpc_request_kwargs = {}
628
- for field in allowed_fields:
629
- if field in model_request_dict:
630
- value = model_request_dict[field]
631
-
632
- # 跳过无效的值
633
- if not is_effective_value(value):
634
- continue
635
-
636
- # 序列化grpc不支持的类型
637
- grpc_request_kwargs[field] = serialize_value(value)
638
-
639
- # 清理 serialize后的 grpc_request_kwargs
640
- grpc_request_kwargs = remove_none_from_dict(grpc_request_kwargs)
641
-
642
- items.append(model_service_pb2.ModelRequestItem(
643
- provider=model_request_item.provider.value,
644
- channel=model_request_item.channel.value,
645
- invoke_type=model_request_item.invoke_type.value,
646
- stream=model_request_item.stream or False,
647
- custom_id=model_request_item.custom_id or "",
648
- priority=model_request_item.priority or 1,
649
- org_id=batch_request_model.user_context.org_id or "",
650
- user_id=batch_request_model.user_context.user_id or "",
651
- client_type=batch_request_model.user_context.client_type or "",
652
- extra=grpc_request_kwargs,
653
- ))
654
-
655
- except Exception as e:
656
- raise ValueError(f"构建请求失败: {str(e)},item={model_request_item.custom_id}") from e
565
+ try:
566
+ # 构建批量请求
567
+ batch_request = RequestBuilder.build_batch_request(batch_request_model)
568
+
569
+ except Exception as e:
570
+ duration = time.time() - start_time
571
+ logger.error(
572
+ f"❌ Batch request build failed: {str(e)}",
573
+ exc_info=True,
574
+ extra={
575
+ "log_type": "response",
576
+ "uri": "/batch_invoke",
577
+ "duration": duration,
578
+ "data": {
579
+ "batch_size": len(batch_request_model.items),
580
+ "error_type": "build_error",
581
+ "error_message": str(e)
582
+ }
583
+ }
584
+ )
585
+ raise ValueError(f"构建批量请求失败: {str(e)}") from e
657
586
 
658
587
  try:
659
- # 超时处理逻辑
660
588
  invoke_timeout = timeout or self.default_invoke_timeout
661
-
662
- # 调用 gRPC 接口
663
- response = await self._retry_request(self.stub.BatchInvoke, model_service_pb2.ModelRequest(items=items),
664
- timeout=invoke_timeout, metadata=metadata)
665
-
666
- result = []
667
- for res_item in response.items:
668
- result.append(ModelResponse(
669
- content=res_item.content,
670
- usage=json.loads(res_item.usage) if res_item.usage else None,
671
- raw_response=json.loads(res_item.raw_response) if res_item.raw_response else None,
672
- error=res_item.error or None,
673
- custom_id=res_item.custom_id if res_item.custom_id else None
674
- ))
675
- batch_response = BatchModelResponse(
676
- request_id=response.request_id if response.request_id else None,
677
- responses=result
589
+ batch_response = await self._retry_request(
590
+ self.stub.BatchInvoke,
591
+ batch_request,
592
+ metadata=metadata,
593
+ timeout=invoke_timeout
678
594
  )
679
-
595
+
596
+ # 构建响应对象
597
+ result = ResponseHandler.build_batch_response(batch_response)
598
+
680
599
  # 记录成功日志
681
600
  duration = time.time() - start_time
682
601
  logger.info(
683
- f"✅ Batch request completed successfully",
602
+ f"✅ Batch Request completed | batch_size: {len(result.responses)}",
684
603
  extra={
685
604
  "log_type": "response",
686
605
  "uri": "/batch_invoke",
687
606
  "duration": duration,
688
607
  "data": {
689
- "batch_size": len(batch_request_model.items),
690
- "responses_count": len(result)
608
+ "batch_size": len(result.responses),
609
+ "success_count": sum(1 for item in result.responses if not item.error),
610
+ "error_count": sum(1 for item in result.responses if item.error)
691
611
  }
692
- }
693
- )
694
- return batch_response
612
+ })
613
+
614
+ return result
615
+
695
616
  except grpc.RpcError as e:
696
617
  duration = time.time() - start_time
697
- error_message = f"❌ BatchInvoke gRPC failed: {str(e)}"
618
+ error_message = f"❌ Batch invoke gRPC failed: {str(e)}"
698
619
  logger.error(error_message, exc_info=True,
699
- extra={
700
- "log_type": "response",
701
- "uri": "/batch_invoke",
702
- "duration": duration,
703
- "data": {
704
- "error_type": "grpc_error",
705
- "error_code": str(e.code()) if hasattr(e, 'code') else None,
706
- "batch_size": len(batch_request_model.items)
707
- }
708
- })
620
+ extra={
621
+ "log_type": "response",
622
+ "uri": "/batch_invoke",
623
+ "duration": duration,
624
+ "data": {
625
+ "error_type": "grpc_error",
626
+ "error_code": str(e.code()) if hasattr(e, 'code') else None,
627
+ "batch_size": len(batch_request_model.items)
628
+ }
629
+ })
709
630
  raise e
710
631
  except Exception as e:
711
632
  duration = time.time() - start_time
712
- error_message = f"❌ BatchInvoke other error: {str(e)}"
633
+ error_message = f"❌ Batch invoke other error: {str(e)}"
713
634
  logger.error(error_message, exc_info=True,
714
- extra={
715
- "log_type": "response",
716
- "uri": "/batch_invoke",
717
- "duration": duration,
718
- "data": {
719
- "error_type": "other_error",
720
- "batch_size": len(batch_request_model.items)
721
- }
722
- })
723
- raise e
724
-
725
- async def close(self):
726
- """关闭 gRPC 通道"""
727
- if self.channel and not self._closed:
728
- await self.channel.close()
729
- self._closed = True
730
- logger.info("✅ gRPC channel closed",
731
- extra={"log_type": "info", "data": {"status": "success"}})
732
-
733
- def _safe_sync_close(self):
734
- """进程退出时自动关闭 channel(事件循环处理兼容)"""
735
- if self.channel and not self._closed:
736
- try:
737
- loop = asyncio.get_event_loop()
738
- if loop.is_running():
739
- loop.create_task(self.close())
740
- else:
741
- loop.run_until_complete(self.close())
742
- except Exception as e:
743
- logger.warning(f"⚠️ gRPC channel close failed at exit: {e}",
744
- extra={"log_type": "info", "data": {"status": "failed", "error": str(e)}})
745
-
746
- async def __aenter__(self):
747
- """支持 async with 自动初始化连接"""
748
- await self._ensure_initialized()
749
- return self
750
-
751
- async def __aexit__(self, exc_type, exc_val, exc_tb):
752
- """支持 async with 自动关闭连接"""
753
- await self.close()
635
+ extra={
636
+ "log_type": "response",
637
+ "uri": "/batch_invoke",
638
+ "duration": duration,
639
+ "data": {
640
+ "error_type": "other_error",
641
+ "batch_size": len(batch_request_model.items)
642
+ }
643
+ })
644
+ raise e