tamar-model-client 0.1.14__py3-none-any.whl → 0.1.15__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,6 +4,8 @@ import base64
4
4
  import json
5
5
  import logging
6
6
  import os
7
+ import uuid
8
+ from contextvars import ContextVar
7
9
 
8
10
  import grpc
9
11
  from typing import Optional, AsyncIterator, Union, Iterable
@@ -13,21 +15,44 @@ from pydantic import BaseModel
13
15
 
14
16
  from .auth import JWTAuthHandler
15
17
  from .enums import ProviderType, InvokeType
16
- from .exceptions import ConnectionError, ValidationError
18
+ from .exceptions import ConnectionError
17
19
  from .schemas import ModelRequest, ModelResponse, BatchModelRequest, BatchModelResponse
18
20
  from .generated import model_service_pb2, model_service_pb2_grpc
19
21
  from .schemas.inputs import GoogleGenAiInput, OpenAIResponsesInput, OpenAIChatCompletionsInput, \
20
22
  GoogleVertexAIImagesInput, OpenAIImagesInput
21
23
 
22
- if not logging.getLogger().hasHandlers():
23
- # 配置日志格式
24
- logging.basicConfig(
25
- level=logging.INFO,
26
- format="%(asctime)s [%(levelname)s] %(message)s",
27
- )
28
-
29
24
  logger = logging.getLogger(__name__)
30
25
 
26
+ # 使用 contextvars 管理请求ID
27
+ _request_id: ContextVar[str] = ContextVar('request_id', default='-')
28
+
29
+
30
+ class RequestIdFilter(logging.Filter):
31
+ """自定义日志过滤器,向日志中添加 request_id"""
32
+
33
+ def filter(self, record):
34
+ # 从 ContextVar 中获取当前的 request_id
35
+ record.request_id = _request_id.get()
36
+ return True
37
+
38
+
39
+ if not logger.hasHandlers():
40
+ # 创建日志处理器,输出到控制台
41
+ console_handler = logging.StreamHandler()
42
+
43
+ # 设置日志格式
44
+ formatter = logging.Formatter('%(asctime)s [%(levelname)s] [%(request_id)s] %(message)s')
45
+ console_handler.setFormatter(formatter)
46
+
47
+ # 为当前记录器添加处理器
48
+ logger.addHandler(console_handler)
49
+
50
+ # 设置日志级别
51
+ logger.setLevel(logging.INFO)
52
+
53
+ # 将自定义的 RequestIdFilter 添加到 logger 中
54
+ logger.addFilter(RequestIdFilter())
55
+
31
56
  MAX_MESSAGE_LENGTH = 2 ** 31 - 1 # 对于32位系统
32
57
 
33
58
 
@@ -97,6 +122,16 @@ def remove_none_from_dict(data: Any) -> Any:
97
122
  return data
98
123
 
99
124
 
125
+ def generate_request_id():
126
+ """生成一个唯一的request_id"""
127
+ return str(uuid.uuid4())
128
+
129
+
130
+ def set_request_id(request_id: str):
131
+ """设置当前请求的 request_id"""
132
+ _request_id.set(request_id)
133
+
134
+
100
135
  class AsyncTamarModelClient:
101
136
  def __init__(
102
137
  self,
@@ -105,8 +140,8 @@ class AsyncTamarModelClient:
105
140
  jwt_token: Optional[str] = None,
106
141
  default_payload: Optional[dict] = None,
107
142
  token_expires_in: int = 3600,
108
- max_retries: int = 3, # 最大重试次数
109
- retry_delay: float = 1.0, # 初始重试延迟(秒)
143
+ max_retries: Optional[int] = None, # 最大重试次数
144
+ retry_delay: Optional[float] = None, # 初始重试延迟(秒)
110
145
  ):
111
146
  # 服务端地址
112
147
  self.server_address = server_address or os.getenv("MODEL_MANAGER_SERVER_ADDRESS")
@@ -137,12 +172,45 @@ class AsyncTamarModelClient:
137
172
  self._closed = False
138
173
  atexit.register(self._safe_sync_close) # 注册进程退出自动关闭
139
174
 
140
- def _build_auth_metadata(self) -> list:
175
+ async def _retry_request(self, func, *args, **kwargs):
176
+ retry_count = 0
177
+ while retry_count < self.max_retries:
178
+ try:
179
+ return await func(*args, **kwargs)
180
+ except (grpc.aio.AioRpcError, grpc.RpcError) as e:
181
+ # 对于取消的情况进行指数退避重试
182
+ if isinstance(e, grpc.aio.AioRpcError) and e.code() == grpc.StatusCode.CANCELLED:
183
+ retry_count += 1
184
+ logger.warning(f"❌ RPC cancelled, retrying {retry_count}/{self.max_retries}...")
185
+ if retry_count < self.max_retries:
186
+ delay = self.retry_delay * (2 ** (retry_count - 1))
187
+ await asyncio.sleep(delay)
188
+ else:
189
+ logger.error("❌ Max retry reached for CANCELLED")
190
+ raise
191
+ # 针对其他 RPC 错误类型,如暂时的连接问题、服务器超时等
192
+ elif isinstance(e, grpc.RpcError) and e.code() in {grpc.StatusCode.UNAVAILABLE,
193
+ grpc.StatusCode.DEADLINE_EXCEEDED}:
194
+ retry_count += 1
195
+ logger.warning(f"❌ gRPC error {e.code()}, retrying {retry_count}/{self.max_retries}...")
196
+ if retry_count < self.max_retries:
197
+ delay = self.retry_delay * (2 ** (retry_count - 1))
198
+ await asyncio.sleep(delay)
199
+ else:
200
+ logger.error(f"❌ Max retry reached for {e.code()}")
201
+ raise
202
+ else:
203
+ logger.error(f"❌ Non-retryable gRPC error: {e}", exc_info=True)
204
+ raise
205
+
206
+ def _build_auth_metadata(self, request_id: str) -> list:
141
207
  # if not self.jwt_token and self.jwt_handler:
142
208
  # 更改为每次请求都生成一次token
209
+ metadata = [("x-request-id", request_id)] # 将 request_id 添加到 headers
143
210
  if self.jwt_handler:
144
211
  self.jwt_token = self.jwt_handler.encode_token(self.default_payload, expires_in=self.token_expires_in)
145
- return [("authorization", f"Bearer {self.jwt_token}")] if self.jwt_token else []
212
+ metadata.append(("authorization", f"Bearer {self.jwt_token}"))
213
+ return metadata
146
214
 
147
215
  async def _ensure_initialized(self):
148
216
  """初始化 gRPC 通道,支持 TLS 与重试机制"""
@@ -195,7 +263,8 @@ class AsyncTamarModelClient:
195
263
  logger.info(f"🚀 Retrying connection (attempt {retry_count}/{self.max_retries}) after {delay:.2f}s delay...")
196
264
  await asyncio.sleep(delay)
197
265
 
198
- async def _stream(self, model_request, metadata, invoke_timeout) -> AsyncIterator[ModelResponse]:
266
+ async def _stream_inner(self, model_request, metadata, invoke_timeout) -> AsyncIterator[ModelResponse]:
267
+ """Inner function to handle the actual streaming gRPC call."""
199
268
  async for response in self.stub.Invoke(model_request, metadata=metadata, timeout=invoke_timeout):
200
269
  yield ModelResponse(
201
270
  content=response.content,
@@ -204,14 +273,28 @@ class AsyncTamarModelClient:
204
273
  error=response.error or None,
205
274
  )
206
275
 
207
- async def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None) -> Union[
276
+ async def _stream(self, model_request, metadata, invoke_timeout) -> AsyncIterator[ModelResponse]:
277
+ return await self._retry_request(self._stream_inner, model_request, metadata, invoke_timeout)
278
+
279
+ async def _invoke_request(self, request, metadata, invoke_timeout):
280
+ async for response in self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout):
281
+ return ModelResponse(
282
+ content=response.content,
283
+ usage=json.loads(response.usage) if response.usage else None,
284
+ error=response.error or None,
285
+ request_id=response.request_id if response.request_id else None,
286
+ )
287
+
288
+ async def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None,
289
+ request_id: Optional[str] = None) -> Union[
208
290
  ModelResponse, AsyncIterator[ModelResponse]]:
209
291
  """
210
292
  通用调用模型方法。
211
293
 
212
294
  Args:
213
295
  model_request: ModelRequest 对象,包含请求参数。
214
-
296
+ timeout: Optional[float]
297
+ request_id: Optional[str]
215
298
  Yields:
216
299
  ModelResponse: 支持流式或非流式的模型响应
217
300
 
@@ -227,6 +310,15 @@ class AsyncTamarModelClient:
227
310
  "user_id": model_request.user_context.user_id or ""
228
311
  }
229
312
 
313
+ if not request_id:
314
+ request_id = generate_request_id() # 生成一个新的 request_id
315
+ set_request_id(request_id) # 设置当前请求的 request_id
316
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
317
+
318
+ # 记录开始日志
319
+ logger.info(
320
+ f"🔵 Request Start | request_id: {request_id} | provider: {model_request.provider} | invoke_type: {model_request.invoke_type} | model_request: {model_request}")
321
+
230
322
  # 动态根据 provider/invoke_type 决定使用哪个 input 字段
231
323
  try:
232
324
  # 选择需要校验的字段集合
@@ -278,22 +370,12 @@ class AsyncTamarModelClient:
278
370
  except Exception as e:
279
371
  raise ValueError(f"构建请求失败: {str(e)}") from e
280
372
 
281
- metadata = self._build_auth_metadata()
282
-
283
373
  try:
284
374
  invoke_timeout = timeout or self.default_invoke_timeout
285
375
  if model_request.stream:
286
- return self._stream(request, metadata, invoke_timeout)
376
+ return await self._stream(request, metadata, invoke_timeout)
287
377
  else:
288
- async for response in self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout):
289
- return ModelResponse(
290
- content=response.content,
291
- usage=json.loads(response.usage) if response.usage else None,
292
- raw_response=json.loads(response.raw_response) if response.raw_response else None,
293
- error=response.error or None,
294
- custom_id=None,
295
- request_id=response.request_id if response.request_id else None,
296
- )
378
+ return await self._retry_request(self._invoke_request, request, metadata, invoke_timeout)
297
379
  except grpc.RpcError as e:
298
380
  error_message = f"❌ Invoke gRPC failed: {str(e)}"
299
381
  logger.error(error_message, exc_info=True)
@@ -303,7 +385,8 @@ class AsyncTamarModelClient:
303
385
  logger.error(error_message, exc_info=True)
304
386
  raise e
305
387
 
306
- async def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None) -> \
388
+ async def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None,
389
+ request_id: Optional[str] = None) -> \
307
390
  BatchModelResponse:
308
391
  """
309
392
  批量模型调用接口
@@ -311,10 +394,11 @@ class AsyncTamarModelClient:
311
394
  Args:
312
395
  batch_request_model: 多条 BatchModelRequest 输入
313
396
  timeout: 调用超时,单位秒
314
-
397
+ request_id: 请求id
315
398
  Returns:
316
399
  BatchModelResponse: 批量请求的结果
317
400
  """
401
+
318
402
  await self._ensure_initialized()
319
403
 
320
404
  if not self.default_payload:
@@ -323,7 +407,14 @@ class AsyncTamarModelClient:
323
407
  "user_id": batch_request_model.user_context.user_id or ""
324
408
  }
325
409
 
326
- metadata = self._build_auth_metadata()
410
+ if not request_id:
411
+ request_id = generate_request_id() # 生成一个新的 request_id
412
+ set_request_id(request_id) # 设置当前请求的 request_id
413
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
414
+
415
+ # 记录开始日志
416
+ logger.info(
417
+ f"🔵 Batch Request Start | request_id: {request_id} | batch_size: {len(batch_request_model.items)} | batch_request_model: {batch_request_model}")
327
418
 
328
419
  # 构造批量请求
329
420
  items = []
@@ -384,11 +475,8 @@ class AsyncTamarModelClient:
384
475
  invoke_timeout = timeout or self.default_invoke_timeout
385
476
 
386
477
  # 调用 gRPC 接口
387
- response = await self.stub.BatchInvoke(
388
- model_service_pb2.ModelRequest(items=items),
389
- timeout=invoke_timeout,
390
- metadata=metadata
391
- )
478
+ response = await self._retry_request(self.stub.BatchInvoke, model_service_pb2.ModelRequest(items=items),
479
+ timeout=invoke_timeout, metadata=metadata)
392
480
 
393
481
  result = []
394
482
  for res_item in response.items:
@@ -417,7 +505,6 @@ class AsyncTamarModelClient:
417
505
  if self.channel and not self._closed:
418
506
  await self.channel.close()
419
507
  self._closed = True
420
- await self.channel.close()
421
508
  logger.info("✅ gRPC channel closed")
422
509
 
423
510
  def _safe_sync_close(self):
@@ -1,21 +1,135 @@
1
- import asyncio
2
- import atexit
1
+ import base64
2
+ import json
3
3
  import logging
4
- from typing import Optional, Union, Iterator
4
+ import os
5
+ import time
6
+ import uuid
7
+ import grpc
8
+ from typing import Optional, Union, Iterable, Iterator
9
+ from contextvars import ContextVar
5
10
 
6
- from .async_client import AsyncTamarModelClient
7
- from .schemas import ModelRequest, BatchModelRequest, ModelResponse, BatchModelResponse
11
+ from openai import NOT_GIVEN
12
+ from pydantic import BaseModel
13
+
14
+ from .auth import JWTAuthHandler
15
+ from .enums import ProviderType, InvokeType
16
+ from .exceptions import ConnectionError
17
+ from .generated import model_service_pb2, model_service_pb2_grpc
18
+ from .schemas import BatchModelResponse, ModelResponse
19
+ from .schemas.inputs import GoogleGenAiInput, GoogleVertexAIImagesInput, OpenAIResponsesInput, \
20
+ OpenAIChatCompletionsInput, OpenAIImagesInput, BatchModelRequest, ModelRequest
8
21
 
9
22
  logger = logging.getLogger(__name__)
10
23
 
24
+ _request_id: ContextVar[str] = ContextVar('request_id', default='-')
11
25
 
12
- class TamarModelClient:
26
+
27
+ class RequestIdFilter(logging.Filter):
28
+ """自定义日志过滤器,向日志中添加 request_id"""
29
+
30
+ def filter(self, record):
31
+ # 从 ContextVar 中获取当前的 request_id
32
+ record.request_id = _request_id.get()
33
+ return True
34
+
35
+
36
+ if not logger.hasHandlers():
37
+ # 创建日志处理器,输出到控制台
38
+ console_handler = logging.StreamHandler()
39
+
40
+ # 设置日志格式
41
+ formatter = logging.Formatter('%(asctime)s [%(levelname)s] [%(request_id)s] %(message)s')
42
+ console_handler.setFormatter(formatter)
43
+
44
+ # 为当前记录器添加处理器
45
+ logger.addHandler(console_handler)
46
+
47
+ # 设置日志级别
48
+ logger.setLevel(logging.INFO)
49
+
50
+ # 将自定义的 RequestIdFilter 添加到 logger 中
51
+ logger.addFilter(RequestIdFilter())
52
+
53
+ MAX_MESSAGE_LENGTH = 2 ** 31 - 1 # 对于32位系统
54
+
55
+
56
+ def is_effective_value(value) -> bool:
57
+ """
58
+ 递归判断value是否是有意义的有效值
59
+ """
60
+ if value is None or value is NOT_GIVEN:
61
+ return False
62
+
63
+ if isinstance(value, str):
64
+ return value.strip() != ""
65
+
66
+ if isinstance(value, bytes):
67
+ return len(value) > 0
68
+
69
+ if isinstance(value, dict):
70
+ for v in value.values():
71
+ if is_effective_value(v):
72
+ return True
73
+ return False
74
+
75
+ if isinstance(value, list):
76
+ for item in value:
77
+ if is_effective_value(item):
78
+ return True
79
+ return False
80
+
81
+ return True # 其他类型(int/float/bool)只要不是None就算有效
82
+
83
+
84
+ def serialize_value(value):
85
+ """递归处理单个值,处理BaseModel, dict, list, bytes"""
86
+ if not is_effective_value(value):
87
+ return None
88
+ if isinstance(value, BaseModel):
89
+ return serialize_value(value.model_dump())
90
+ if hasattr(value, "dict") and callable(value.dict):
91
+ return serialize_value(value.dict())
92
+ if isinstance(value, dict):
93
+ return {k: serialize_value(v) for k, v in value.items()}
94
+ if isinstance(value, list) or (isinstance(value, Iterable) and not isinstance(value, (str, bytes))):
95
+ return [serialize_value(v) for v in value]
96
+ if isinstance(value, bytes):
97
+ return f"bytes:{base64.b64encode(value).decode('utf-8')}"
98
+ return value
99
+
100
+
101
+ from typing import Any
102
+
103
+
104
+ def remove_none_from_dict(data: Any) -> Any:
13
105
  """
14
- 同步版本的模型管理客户端,用于非异步环境(如 Flask、Django、脚本)。
15
- 内部封装 AsyncTamarModelClient 并处理事件循环兼容性。
106
+ 遍历 dict/list,递归删除 value 为 None 的字段
16
107
  """
17
- _loop: Optional[asyncio.AbstractEventLoop] = None
108
+ if isinstance(data, dict):
109
+ new_dict = {}
110
+ for key, value in data.items():
111
+ if value is None:
112
+ continue
113
+ cleaned_value = remove_none_from_dict(value)
114
+ new_dict[key] = cleaned_value
115
+ return new_dict
116
+ elif isinstance(data, list):
117
+ return [remove_none_from_dict(item) for item in data]
118
+ else:
119
+ return data
120
+
121
+
122
+ def generate_request_id():
123
+ """生成一个唯一的request_id"""
124
+ return str(uuid.uuid4())
18
125
 
126
+
127
+ def set_request_id(request_id: str):
128
+ """设置当前请求的 request_id"""
129
+ _request_id.set(request_id)
130
+
131
+
132
+ class TamarModelClient:
19
133
  def __init__(
20
134
  self,
21
135
  server_address: Optional[str] = None,
@@ -23,89 +137,373 @@ class TamarModelClient:
23
137
  jwt_token: Optional[str] = None,
24
138
  default_payload: Optional[dict] = None,
25
139
  token_expires_in: int = 3600,
26
- max_retries: int = 3,
27
- retry_delay: float = 1.0,
140
+ max_retries: Optional[int] = None, # 最大重试次数
141
+ retry_delay: Optional[float] = None, # 初始重试延迟(秒)
28
142
  ):
29
- # 初始化全局事件循环,仅创建一次
30
- if not TamarModelClient._loop:
143
+ self.server_address = server_address or os.getenv("MODEL_MANAGER_SERVER_ADDRESS")
144
+ if not self.server_address:
145
+ raise ValueError("Server address must be provided via argument or environment variable.")
146
+ self.default_invoke_timeout = float(os.getenv("MODEL_MANAGER_SERVER_INVOKE_TIMEOUT", 30.0))
147
+
148
+ # JWT 配置
149
+ self.jwt_secret_key = jwt_secret_key or os.getenv("MODEL_MANAGER_SERVER_JWT_SECRET_KEY")
150
+ self.jwt_handler = JWTAuthHandler(self.jwt_secret_key)
151
+ self.jwt_token = jwt_token # 用户传入的 Token(可选)
152
+ self.default_payload = default_payload
153
+ self.token_expires_in = token_expires_in
154
+
155
+ # === TLS/Authority 配置 ===
156
+ self.use_tls = os.getenv("MODEL_MANAGER_SERVER_GRPC_USE_TLS", "true").lower() == "true"
157
+ self.default_authority = os.getenv("MODEL_MANAGER_SERVER_GRPC_DEFAULT_AUTHORITY")
158
+
159
+ # === 重试配置 ===
160
+ self.max_retries = max_retries if max_retries is not None else int(
161
+ os.getenv("MODEL_MANAGER_SERVER_GRPC_MAX_RETRIES", 3))
162
+ self.retry_delay = retry_delay if retry_delay is not None else float(
163
+ os.getenv("MODEL_MANAGER_SERVER_GRPC_RETRY_DELAY", 1.0))
164
+
165
+ # === gRPC 通道相关 ===
166
+ self.channel: Optional[grpc.Channel] = None
167
+ self.stub: Optional[model_service_pb2_grpc.ModelServiceStub] = None
168
+ self._closed = False
169
+
170
+ def _retry_request(self, func, *args, **kwargs):
171
+ retry_count = 0
172
+ while retry_count < self.max_retries:
31
173
  try:
32
- TamarModelClient._loop = asyncio.get_running_loop()
33
- except RuntimeError:
34
- TamarModelClient._loop = asyncio.new_event_loop()
35
- asyncio.set_event_loop(TamarModelClient._loop)
36
-
37
- self._loop = TamarModelClient._loop
38
-
39
- self._async_client = AsyncTamarModelClient(
40
- server_address=server_address,
41
- jwt_secret_key=jwt_secret_key,
42
- jwt_token=jwt_token,
43
- default_payload=default_payload,
44
- token_expires_in=token_expires_in,
45
- max_retries=max_retries,
46
- retry_delay=retry_delay,
47
- )
48
- atexit.register(self._safe_sync_close)
49
-
50
- def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None) -> Union[
51
- ModelResponse, Iterator[ModelResponse]]:
52
- """
53
- 同步调用单个模型任务
54
- """
55
- if model_request.stream:
56
- async def stream():
57
- async for r in await self._async_client.invoke(model_request, timeout=timeout):
58
- yield r
174
+ return func(*args, **kwargs)
175
+ except (grpc.RpcError) as e:
176
+ if e.code() in {grpc.StatusCode.UNAVAILABLE, grpc.StatusCode.DEADLINE_EXCEEDED}:
177
+ retry_count += 1
178
+ logger.error(f"❌ gRPC error {e.code()}, retrying {retry_count}/{self.max_retries}...")
179
+ if retry_count < self.max_retries:
180
+ delay = self.retry_delay * (2 ** (retry_count - 1))
181
+ time.sleep(delay)
182
+ else:
183
+ logger.error(f"❌ Max retry reached for {e.code()}")
184
+ raise
185
+ else:
186
+ logger.error(f"❌ Non-retryable gRPC error: {e}", exc_info=True)
187
+ raise
188
+
189
+ def _build_auth_metadata(self, request_id: str) -> list:
190
+ metadata = [("x-request-id", request_id)] # 将 request_id 添加到 headers
191
+ if self.jwt_handler:
192
+ self.jwt_token = self.jwt_handler.encode_token(self.default_payload, expires_in=self.token_expires_in)
193
+ metadata.append(("authorization", f"Bearer {self.jwt_token}"))
194
+ return metadata
195
+
196
+ def _ensure_initialized(self):
197
+ """初始化 gRPC 通道,支持 TLS 与重试机制"""
198
+ if self.channel and self.stub:
199
+ return
200
+
201
+ retry_count = 0
202
+ options = [
203
+ ('grpc.max_send_message_length', MAX_MESSAGE_LENGTH),
204
+ ('grpc.max_receive_message_length', MAX_MESSAGE_LENGTH),
205
+ ('grpc.keepalive_permit_without_calls', True) # 即使没有活跃请求也保持连接
206
+ ]
207
+ if self.default_authority:
208
+ options.append(("grpc.default_authority", self.default_authority))
209
+
210
+ while retry_count <= self.max_retries:
211
+ try:
212
+ if self.use_tls:
213
+ credentials = grpc.ssl_channel_credentials()
214
+ self.channel = grpc.secure_channel(
215
+ self.server_address,
216
+ credentials,
217
+ options=options
218
+ )
219
+ logger.info("🔐 Using secure gRPC channel (TLS enabled)")
220
+ else:
221
+ self.channel = grpc.insecure_channel(
222
+ self.server_address,
223
+ options=options
224
+ )
225
+ logger.info("🔓 Using insecure gRPC channel (TLS disabled)")
59
226
 
60
- return self._sync_wrap_async_generator(stream())
61
- return self._run_async(self._async_client.invoke(model_request, timeout=timeout))
227
+ # Wait for the channel to be ready (synchronously)
228
+ grpc.channel_ready_future(self.channel).result() # This is blocking in sync mode
62
229
 
63
- def invoke_batch(self, batch_model_request: BatchModelRequest,
64
- timeout: Optional[float] = None) -> BatchModelResponse:
230
+ self.stub = model_service_pb2_grpc.ModelServiceStub(self.channel)
231
+ logger.info(f"✅ gRPC channel initialized to {self.server_address}")
232
+ return
233
+ except grpc.FutureTimeoutError as e:
234
+ logger.error(f"❌ gRPC channel initialization timed out: {str(e)}", exc_info=True)
235
+ except grpc.RpcError as e:
236
+ logger.error(f"❌ gRPC channel initialization failed: {str(e)}", exc_info=True)
237
+ except Exception as e:
238
+ logger.error(f"❌ Unexpected error during channel initialization: {str(e)}", exc_info=True)
239
+
240
+ retry_count += 1
241
+ if retry_count > self.max_retries:
242
+ logger.error(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.", exc_info=True)
243
+ raise ConnectionError(f"❌ Failed to initialize gRPC channel after {self.max_retries} retries.")
244
+
245
+ # 指数退避:延迟时间 = retry_delay * (2 ^ (retry_count - 1))
246
+ delay = self.retry_delay * (2 ** (retry_count - 1))
247
+ logger.info(f"🚀 Retrying connection (attempt {retry_count}/{self.max_retries}) after {delay:.2f}s delay...")
248
+ time.sleep(delay) # Blocking sleep in sync version
249
+
250
+ def _stream_inner(self, model_request, metadata, invoke_timeout) -> Iterator[ModelResponse]:
251
+ """Inner function to handle the actual streaming gRPC call."""
252
+ response = self.stub.Invoke(model_request, metadata=metadata, timeout=invoke_timeout)
253
+ for res in response:
254
+ yield ModelResponse(
255
+ content=res.content,
256
+ usage=json.loads(res.usage) if res.usage else None,
257
+ raw_response=json.loads(res.raw_response) if res.raw_response else None,
258
+ error=res.error or None,
259
+ )
260
+
261
+ def _stream(self, model_request, metadata, invoke_timeout) -> Iterator[ModelResponse]:
262
+ return self._retry_request(self._stream_inner, model_request, metadata, invoke_timeout)
263
+
264
+ def _invoke_request(self, request, metadata, invoke_timeout):
265
+ response = self.stub.Invoke(request, metadata=metadata, timeout=invoke_timeout)
266
+ for response in response:
267
+ return ModelResponse(
268
+ content=response.content,
269
+ usage=json.loads(response.usage) if response.usage else None,
270
+ error=response.error or None,
271
+ request_id=response.request_id if response.request_id else None,
272
+ )
273
+
274
+ def invoke(self, model_request: ModelRequest, timeout: Optional[float] = None, request_id: Optional[str] = None) -> \
275
+ Union[ModelResponse, Iterator[ModelResponse]]:
65
276
  """
66
- 同步调用批量模型任务
277
+ 通用调用模型方法。
278
+
279
+ Args:
280
+ model_request: ModelRequest 对象,包含请求参数。
281
+ timeout: Optional[float]
282
+ request_id: Optional[str]
283
+ Yields:
284
+ ModelResponse: 支持流式或非流式的模型响应
285
+
286
+ Raises:
287
+ ValidationError: 输入验证失败。
288
+ ConnectionError: 连接服务端失败。
67
289
  """
68
- return self._run_async(self._async_client.invoke_batch(batch_model_request, timeout=timeout))
290
+ self._ensure_initialized()
69
291
 
70
- def close(self):
71
- """手动关闭 gRPC 通道"""
72
- self._run_async(self._async_client.close())
292
+ if not self.default_payload:
293
+ self.default_payload = {
294
+ "org_id": model_request.user_context.org_id or "",
295
+ "user_id": model_request.user_context.user_id or ""
296
+ }
73
297
 
74
- def _safe_sync_close(self):
75
- """退出时自动关闭"""
298
+ if not request_id:
299
+ request_id = generate_request_id() # 生成一个新的 request_id
300
+ set_request_id(request_id) # 设置当前请求的 request_id
301
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
302
+
303
+ # 记录开始日志
304
+ logger.info(
305
+ f"🔵 Request Start | request_id: {request_id} | provider: {model_request.provider} | invoke_type: {model_request.invoke_type} | model_request: {model_request}")
306
+
307
+ # 动态根据 provider/invoke_type 决定使用哪个 input 字段
76
308
  try:
77
- self._run_async(self._async_client.close())
78
- logger.info("✅ gRPC channel closed at exit")
309
+ # 选择需要校验的字段集合
310
+ # 动态分支逻辑
311
+ match (model_request.provider, model_request.invoke_type):
312
+ case (ProviderType.GOOGLE, InvokeType.GENERATION):
313
+ allowed_fields = GoogleGenAiInput.model_fields.keys()
314
+ case (ProviderType.GOOGLE, InvokeType.IMAGE_GENERATION):
315
+ allowed_fields = GoogleVertexAIImagesInput.model_fields.keys()
316
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.RESPONSES | InvokeType.GENERATION):
317
+ allowed_fields = OpenAIResponsesInput.model_fields.keys()
318
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.CHAT_COMPLETIONS):
319
+ allowed_fields = OpenAIChatCompletionsInput.model_fields.keys()
320
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_GENERATION):
321
+ allowed_fields = OpenAIImagesInput.model_fields.keys()
322
+ case _:
323
+ raise ValueError(
324
+ f"Unsupported provider/invoke_type combination: {model_request.provider} + {model_request.invoke_type}")
325
+
326
+ # 将 ModelRequest 转 dict,过滤只保留 base + allowed 的字段
327
+ model_request_dict = model_request.model_dump(exclude_unset=True)
328
+
329
+ grpc_request_kwargs = {}
330
+ for field in allowed_fields:
331
+ if field in model_request_dict:
332
+ value = model_request_dict[field]
333
+
334
+ # 跳过无效的值
335
+ if not is_effective_value(value):
336
+ continue
337
+
338
+ # 序列化grpc不支持的类型
339
+ grpc_request_kwargs[field] = serialize_value(value)
340
+
341
+ # 清理 serialize后的 grpc_request_kwargs
342
+ grpc_request_kwargs = remove_none_from_dict(grpc_request_kwargs)
343
+
344
+ request = model_service_pb2.ModelRequestItem(
345
+ provider=model_request.provider.value,
346
+ channel=model_request.channel.value,
347
+ invoke_type=model_request.invoke_type.value,
348
+ stream=model_request.stream or False,
349
+ org_id=model_request.user_context.org_id or "",
350
+ user_id=model_request.user_context.user_id or "",
351
+ client_type=model_request.user_context.client_type or "",
352
+ extra=grpc_request_kwargs
353
+ )
354
+
79
355
  except Exception as e:
80
- logger.warning(f" gRPC channel close failed at exit: {e}")
356
+ raise ValueError(f"构建请求失败: {str(e)}") from e
81
357
 
82
- def _run_async(self, coro):
83
- """统一运行协程,兼容已存在的事件循环"""
84
358
  try:
85
- loop = asyncio.get_running_loop()
86
- import nest_asyncio
87
- nest_asyncio.apply()
88
- return loop.run_until_complete(coro)
89
- except RuntimeError:
90
- return self._loop.run_until_complete(coro)
91
-
92
- def _sync_wrap_async_generator(self, async_gen_func):
359
+ invoke_timeout = timeout or self.default_invoke_timeout
360
+ if model_request.stream:
361
+ return self._stream(request, metadata, invoke_timeout)
362
+ else:
363
+ return self._retry_request(self._invoke_request, request, metadata, invoke_timeout)
364
+ except grpc.RpcError as e:
365
+ error_message = f"❌ Invoke gRPC failed: {str(e)}"
366
+ logger.error(error_message, exc_info=True)
367
+ raise e
368
+ except Exception as e:
369
+ error_message = f"❌ Invoke other error: {str(e)}"
370
+ logger.error(error_message, exc_info=True)
371
+ raise e
372
+
373
+ def invoke_batch(self, batch_request_model: BatchModelRequest, timeout: Optional[float] = None,
374
+ request_id: Optional[str] = None) -> BatchModelResponse:
93
375
  """
94
- 将 async generator 转换为同步 generator,逐条 yield。
376
+ 批量模型调用接口
377
+
378
+ Args:
379
+ batch_request_model: 多条 BatchModelRequest 输入
380
+ timeout: 调用超时,单位秒
381
+ request_id: 请求id
382
+ Returns:
383
+ BatchModelResponse: 批量请求的结果
95
384
  """
96
- loop = self._loop
97
385
 
98
- # 创建异步生成器对象
99
- agen = async_gen_func
386
+ self._ensure_initialized()
100
387
 
101
- class SyncGenerator:
102
- def __iter__(self_inner):
103
- return self_inner
388
+ if not self.default_payload:
389
+ self.default_payload = {
390
+ "org_id": batch_request_model.user_context.org_id or "",
391
+ "user_id": batch_request_model.user_context.user_id or ""
392
+ }
393
+
394
+ if not request_id:
395
+ request_id = generate_request_id() # 生成一个新的 request_id
396
+ set_request_id(request_id) # 设置当前请求的 request_id
397
+ metadata = self._build_auth_metadata(request_id) # 将 request_id 加入到请求头
398
+
399
+ # 记录开始日志
400
+ logger.info(
401
+ f"🔵 Batch Request Start | request_id: {request_id} | batch_size: {len(batch_request_model.items)} | batch_request_model: {batch_request_model}")
402
+
403
+ # 构造批量请求
404
+ items = []
405
+ for model_request_item in batch_request_model.items:
406
+ # 动态根据 provider/invoke_type 决定使用哪个 input 字段
407
+ try:
408
+ match (model_request_item.provider, model_request_item.invoke_type):
409
+ case (ProviderType.GOOGLE, InvokeType.GENERATION):
410
+ allowed_fields = GoogleGenAiInput.model_fields.keys()
411
+ case (ProviderType.GOOGLE, InvokeType.IMAGE_GENERATION):
412
+ allowed_fields = GoogleVertexAIImagesInput.model_fields.keys()
413
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.RESPONSES | InvokeType.GENERATION):
414
+ allowed_fields = OpenAIResponsesInput.model_fields.keys()
415
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.CHAT_COMPLETIONS):
416
+ allowed_fields = OpenAIChatCompletionsInput.model_fields.keys()
417
+ case ((ProviderType.OPENAI | ProviderType.AZURE), InvokeType.IMAGE_GENERATION):
418
+ allowed_fields = OpenAIImagesInput.model_fields.keys()
419
+ case _:
420
+ raise ValueError(
421
+ f"Unsupported provider/invoke_type combination: {model_request_item.provider} + {model_request_item.invoke_type}")
422
+
423
+ # 将 ModelRequest 转 dict,过滤只保留 base + allowed 的字段
424
+ model_request_dict = model_request_item.model_dump(exclude_unset=True)
425
+
426
+ grpc_request_kwargs = {}
427
+ for field in allowed_fields:
428
+ if field in model_request_dict:
429
+ value = model_request_dict[field]
430
+
431
+ # 跳过无效的值
432
+ if not is_effective_value(value):
433
+ continue
434
+
435
+ # 序列化grpc不支持的类型
436
+ grpc_request_kwargs[field] = serialize_value(value)
437
+
438
+ # 清理 serialize后的 grpc_request_kwargs
439
+ grpc_request_kwargs = remove_none_from_dict(grpc_request_kwargs)
440
+
441
+ items.append(model_service_pb2.ModelRequestItem(
442
+ provider=model_request_item.provider.value,
443
+ channel=model_request_item.channel.value,
444
+ invoke_type=model_request_item.invoke_type.value,
445
+ stream=model_request_item.stream or False,
446
+ custom_id=model_request_item.custom_id or "",
447
+ priority=model_request_item.priority or 1,
448
+ org_id=batch_request_model.user_context.org_id or "",
449
+ user_id=batch_request_model.user_context.user_id or "",
450
+ client_type=batch_request_model.user_context.client_type or "",
451
+ extra=grpc_request_kwargs,
452
+ ))
453
+
454
+ except Exception as e:
455
+ raise ValueError(f"构建请求失败: {str(e)},item={model_request_item.custom_id}") from e
456
+
457
+ try:
458
+ # 超时处理逻辑
459
+ invoke_timeout = timeout or self.default_invoke_timeout
460
+
461
+ # 调用 gRPC 接口
462
+ response = self._retry_request(self.stub.BatchInvoke, model_service_pb2.ModelRequest(items=items),
463
+ timeout=invoke_timeout, metadata=metadata)
464
+
465
+ result = []
466
+ for res_item in response.items:
467
+ result.append(ModelResponse(
468
+ content=res_item.content,
469
+ usage=json.loads(res_item.usage) if res_item.usage else None,
470
+ raw_response=json.loads(res_item.raw_response) if res_item.raw_response else None,
471
+ error=res_item.error or None,
472
+ custom_id=res_item.custom_id if res_item.custom_id else None
473
+ ))
474
+ return BatchModelResponse(
475
+ request_id=response.request_id if response.request_id else None,
476
+ responses=result
477
+ )
478
+ except grpc.RpcError as e:
479
+ error_message = f"❌ BatchInvoke gRPC failed: {str(e)}"
480
+ logger.error(error_message, exc_info=True)
481
+ raise e
482
+ except Exception as e:
483
+ error_message = f"❌ BatchInvoke other error: {str(e)}"
484
+ logger.error(error_message, exc_info=True)
485
+ raise e
486
+
487
+ def close(self):
488
+ """关闭 gRPC 通道"""
489
+ if self.channel and not self._closed:
490
+ self.channel.close()
491
+ self._closed = True
492
+ logger.info("✅ gRPC channel closed")
493
+
494
+ def _safe_sync_close(self):
495
+ """进程退出时自动关闭 channel(事件循环处理兼容)"""
496
+ if self.channel and not self._closed:
497
+ try:
498
+ self.close() # 直接调用关闭方法
499
+ except Exception as e:
500
+ logger.error(f"❌ gRPC channel close failed at exit: {e}")
104
501
 
105
- def __next__(self_inner):
106
- try:
107
- return loop.run_until_complete(agen.__anext__())
108
- except StopAsyncIteration:
109
- raise StopIteration
502
+ def __enter__(self):
503
+ """同步初始化连接"""
504
+ self._ensure_initialized()
505
+ return self
110
506
 
111
- return SyncGenerator()
507
+ def __exit__(self, exc_type, exc_val, exc_tb):
508
+ """同步关闭连接"""
509
+ self.close()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: tamar-model-client
3
- Version: 0.1.14
3
+ Version: 0.1.15
4
4
  Summary: A Python SDK for interacting with the Model Manager gRPC service
5
5
  Home-page: http://gitlab.tamaredge.top/project-tap/AgentOS/model-manager-client
6
6
  Author: Oscar Ou
@@ -1,8 +1,8 @@
1
1
  tamar_model_client/__init__.py,sha256=LMECAuDARWHV1XzH3msoDXcyurS2eihRQmBy26_PUE0,328
2
- tamar_model_client/async_client.py,sha256=gmZ2xMHO_F-Vtg3OK7B_yf-gtI-WH2NU2LzC6YO_t7k,19649
2
+ tamar_model_client/async_client.py,sha256=Ckg9BbndvlqhngixaEe-Yfu9Fkh5T9FOqToYGAHhRg4,23941
3
3
  tamar_model_client/auth.py,sha256=gbwW5Aakeb49PMbmYvrYlVx1mfyn1LEDJ4qQVs-9DA4,438
4
4
  tamar_model_client/exceptions.py,sha256=jYU494OU_NeIa4X393V-Y73mTNm0JZ9yZApnlOM9CJQ,332
5
- tamar_model_client/sync_client.py,sha256=o8b20fQUvtMq1gWax3_dfOpputYT4l9pRTz6cHdB0lg,4006
5
+ tamar_model_client/sync_client.py,sha256=wMZw-d5s2ctaNIDUCUeRK2iZDLzuRryNjDaAVemFhk8,22558
6
6
  tamar_model_client/enums/__init__.py,sha256=3cYYn8ztNGBa_pI_5JGRVYf2QX8fkBVWdjID1PLvoBQ,182
7
7
  tamar_model_client/enums/channel.py,sha256=wCzX579nNpTtwzGeS6S3Ls0UzVAgsOlfy4fXMzQTCAw,199
8
8
  tamar_model_client/enums/invoke.py,sha256=WufImoN_87ZjGyzYitZkhNNFefWJehKfLtyP-DTBYlA,267
@@ -13,7 +13,7 @@ tamar_model_client/generated/model_service_pb2_grpc.py,sha256=k4tIbp3XBxdyuOVR18
13
13
  tamar_model_client/schemas/__init__.py,sha256=AxuI-TcvA4OMTj2FtK4wAItvz9LrK_293pu3cmMLE7k,394
14
14
  tamar_model_client/schemas/inputs.py,sha256=AlvjTRp_UGnbmqzv4OJ3RjH4UGErzSNfKS8Puj6oEXQ,19088
15
15
  tamar_model_client/schemas/outputs.py,sha256=M_fcqUtXPJnfiLabHlyA8BorlC5pYkf5KLjXO1ysKIQ,1031
16
- tamar_model_client-0.1.14.dist-info/METADATA,sha256=XB9fzmRzMJM2UL8udezQf6PHy103GgtwICGmlFUnn4U,16566
17
- tamar_model_client-0.1.14.dist-info/WHEEL,sha256=ck4Vq1_RXyvS4Jt6SI0Vz6fyVs4GWg7AINwpsaGEgPE,91
18
- tamar_model_client-0.1.14.dist-info/top_level.txt,sha256=_LfDhPv_fvON0PoZgQuo4M7EjoWtxPRoQOBJziJmip8,19
19
- tamar_model_client-0.1.14.dist-info/RECORD,,
16
+ tamar_model_client-0.1.15.dist-info/METADATA,sha256=ZXSYngVn_8ors2DORv7CxzadNvCD7927Duqk0lEY5yc,16566
17
+ tamar_model_client-0.1.15.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
18
+ tamar_model_client-0.1.15.dist-info/top_level.txt,sha256=_LfDhPv_fvON0PoZgQuo4M7EjoWtxPRoQOBJziJmip8,19
19
+ tamar_model_client-0.1.15.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.0.0)
2
+ Generator: setuptools (80.9.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5