tabpfn-time-series 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tabpfn_time_series/__init__.py +11 -0
- tabpfn_time_series/data_preparation.py +226 -0
- tabpfn_time_series/defaults.py +5 -0
- tabpfn_time_series/feature.py +78 -0
- tabpfn_time_series/plot.py +189 -0
- tabpfn_time_series/predictor.py +47 -0
- tabpfn_time_series/tabpfn_worker.py +224 -0
- tabpfn_time_series-0.1.0.dist-info/METADATA +59 -0
- tabpfn_time_series-0.1.0.dist-info/RECORD +11 -0
- tabpfn_time_series-0.1.0.dist-info/WHEEL +4 -0
- tabpfn_time_series-0.1.0.dist-info/licenses/LICENSE.txt +202 -0
@@ -0,0 +1,11 @@
|
|
1
|
+
from .feature import DefaultFeatures, FeatureTransformer
|
2
|
+
from .predictor import TabPFNTimeSeriesPredictor, TabPFNMode
|
3
|
+
|
4
|
+
__version__ = "0.1.0"
|
5
|
+
|
6
|
+
__all__ = [
|
7
|
+
"DefaultFeatures",
|
8
|
+
"FeatureTransformer",
|
9
|
+
"TabPFNTimeSeriesPredictor",
|
10
|
+
"TabPFNMode",
|
11
|
+
]
|
@@ -0,0 +1,226 @@
|
|
1
|
+
import pandas as pd
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
import datasets
|
5
|
+
from autogluon.timeseries import TimeSeriesDataFrame
|
6
|
+
|
7
|
+
|
8
|
+
def generate_test_X(
|
9
|
+
train_tsdf: TimeSeriesDataFrame,
|
10
|
+
prediction_length: int,
|
11
|
+
):
|
12
|
+
test_dfs = []
|
13
|
+
for item_id in train_tsdf.item_ids:
|
14
|
+
last_train_timestamp = train_tsdf.xs(item_id, level="item_id").index.max()
|
15
|
+
first_test_timestamp = pd.date_range(
|
16
|
+
start=last_train_timestamp, periods=2, freq=train_tsdf.freq
|
17
|
+
)[-1]
|
18
|
+
test_dfs.append(
|
19
|
+
pd.DataFrame(
|
20
|
+
{
|
21
|
+
"target": np.full(prediction_length, np.nan),
|
22
|
+
"timestamp": pd.date_range(
|
23
|
+
start=first_test_timestamp,
|
24
|
+
periods=prediction_length,
|
25
|
+
freq=train_tsdf.freq,
|
26
|
+
),
|
27
|
+
"item_id": item_id,
|
28
|
+
}
|
29
|
+
)
|
30
|
+
)
|
31
|
+
|
32
|
+
test_tsdf = TimeSeriesDataFrame.from_data_frame(pd.concat(test_dfs))
|
33
|
+
assert test_tsdf.item_ids.equals(train_tsdf.item_ids)
|
34
|
+
|
35
|
+
return test_tsdf
|
36
|
+
|
37
|
+
|
38
|
+
# From pandas._libs.tslibs.dtypes.OFFSET_TO_PERIOD_FREQSTR
|
39
|
+
offset_alias_to_period_alias = {
|
40
|
+
"WEEKDAY": "D",
|
41
|
+
"EOM": "M",
|
42
|
+
"BME": "M",
|
43
|
+
"SME": "M",
|
44
|
+
"BQS": "Q",
|
45
|
+
"QS": "Q",
|
46
|
+
"BQE": "Q",
|
47
|
+
"BQE-DEC": "Q",
|
48
|
+
"BQE-JAN": "Q",
|
49
|
+
"BQE-FEB": "Q",
|
50
|
+
"BQE-MAR": "Q",
|
51
|
+
"BQE-APR": "Q",
|
52
|
+
"BQE-MAY": "Q",
|
53
|
+
"BQE-JUN": "Q",
|
54
|
+
"BQE-JUL": "Q",
|
55
|
+
"BQE-AUG": "Q",
|
56
|
+
"BQE-SEP": "Q",
|
57
|
+
"BQE-OCT": "Q",
|
58
|
+
"BQE-NOV": "Q",
|
59
|
+
"MS": "M",
|
60
|
+
"D": "D",
|
61
|
+
"B": "B",
|
62
|
+
"min": "min",
|
63
|
+
"s": "s",
|
64
|
+
"ms": "ms",
|
65
|
+
"us": "us",
|
66
|
+
"ns": "ns",
|
67
|
+
"h": "h",
|
68
|
+
"QE": "Q",
|
69
|
+
"QE-DEC": "Q-DEC",
|
70
|
+
"QE-JAN": "Q-JAN",
|
71
|
+
"QE-FEB": "Q-FEB",
|
72
|
+
"QE-MAR": "Q-MAR",
|
73
|
+
"QE-APR": "Q-APR",
|
74
|
+
"QE-MAY": "Q-MAY",
|
75
|
+
"QE-JUN": "Q-JUN",
|
76
|
+
"QE-JUL": "Q-JUL",
|
77
|
+
"QE-AUG": "Q-AUG",
|
78
|
+
"QE-SEP": "Q-SEP",
|
79
|
+
"QE-OCT": "Q-OCT",
|
80
|
+
"QE-NOV": "Q-NOV",
|
81
|
+
"YE": "Y",
|
82
|
+
"YE-DEC": "Y-DEC",
|
83
|
+
"YE-JAN": "Y-JAN",
|
84
|
+
"YE-FEB": "Y-FEB",
|
85
|
+
"YE-MAR": "Y-MAR",
|
86
|
+
"YE-APR": "Y-APR",
|
87
|
+
"YE-MAY": "Y-MAY",
|
88
|
+
"YE-JUN": "Y-JUN",
|
89
|
+
"YE-JUL": "Y-JUL",
|
90
|
+
"YE-AUG": "Y-AUG",
|
91
|
+
"YE-SEP": "Y-SEP",
|
92
|
+
"YE-OCT": "Y-OCT",
|
93
|
+
"YE-NOV": "Y-NOV",
|
94
|
+
"W": "W",
|
95
|
+
"ME": "M",
|
96
|
+
"Y": "Y",
|
97
|
+
"BYE": "Y",
|
98
|
+
"BYE-DEC": "Y",
|
99
|
+
"BYE-JAN": "Y",
|
100
|
+
"BYE-FEB": "Y",
|
101
|
+
"BYE-MAR": "Y",
|
102
|
+
"BYE-APR": "Y",
|
103
|
+
"BYE-MAY": "Y",
|
104
|
+
"BYE-JUN": "Y",
|
105
|
+
"BYE-JUL": "Y",
|
106
|
+
"BYE-AUG": "Y",
|
107
|
+
"BYE-SEP": "Y",
|
108
|
+
"BYE-OCT": "Y",
|
109
|
+
"BYE-NOV": "Y",
|
110
|
+
"YS": "Y",
|
111
|
+
"BYS": "Y",
|
112
|
+
"QS-JAN": "Q",
|
113
|
+
"QS-FEB": "Q",
|
114
|
+
"QS-MAR": "Q",
|
115
|
+
"QS-APR": "Q",
|
116
|
+
"QS-MAY": "Q",
|
117
|
+
"QS-JUN": "Q",
|
118
|
+
"QS-JUL": "Q",
|
119
|
+
"QS-AUG": "Q",
|
120
|
+
"QS-SEP": "Q",
|
121
|
+
"QS-OCT": "Q",
|
122
|
+
"QS-NOV": "Q",
|
123
|
+
"QS-DEC": "Q",
|
124
|
+
"BQS-JAN": "Q",
|
125
|
+
"BQS-FEB": "Q",
|
126
|
+
"BQS-MAR": "Q",
|
127
|
+
"BQS-APR": "Q",
|
128
|
+
"BQS-MAY": "Q",
|
129
|
+
"BQS-JUN": "Q",
|
130
|
+
"BQS-JUL": "Q",
|
131
|
+
"BQS-AUG": "Q",
|
132
|
+
"BQS-SEP": "Q",
|
133
|
+
"BQS-OCT": "Q",
|
134
|
+
"BQS-NOV": "Q",
|
135
|
+
"BQS-DEC": "Q",
|
136
|
+
"YS-JAN": "Y",
|
137
|
+
"YS-FEB": "Y",
|
138
|
+
"YS-MAR": "Y",
|
139
|
+
"YS-APR": "Y",
|
140
|
+
"YS-MAY": "Y",
|
141
|
+
"YS-JUN": "Y",
|
142
|
+
"YS-JUL": "Y",
|
143
|
+
"YS-AUG": "Y",
|
144
|
+
"YS-SEP": "Y",
|
145
|
+
"YS-OCT": "Y",
|
146
|
+
"YS-NOV": "Y",
|
147
|
+
"YS-DEC": "Y",
|
148
|
+
"BYS-JAN": "Y",
|
149
|
+
"BYS-FEB": "Y",
|
150
|
+
"BYS-MAR": "Y",
|
151
|
+
"BYS-APR": "Y",
|
152
|
+
"BYS-MAY": "Y",
|
153
|
+
"BYS-JUN": "Y",
|
154
|
+
"BYS-JUL": "Y",
|
155
|
+
"BYS-AUG": "Y",
|
156
|
+
"BYS-SEP": "Y",
|
157
|
+
"BYS-OCT": "Y",
|
158
|
+
"BYS-NOV": "Y",
|
159
|
+
"BYS-DEC": "Y",
|
160
|
+
"Y-JAN": "Y-JAN",
|
161
|
+
"Y-FEB": "Y-FEB",
|
162
|
+
"Y-MAR": "Y-MAR",
|
163
|
+
"Y-APR": "Y-APR",
|
164
|
+
"Y-MAY": "Y-MAY",
|
165
|
+
"Y-JUN": "Y-JUN",
|
166
|
+
"Y-JUL": "Y-JUL",
|
167
|
+
"Y-AUG": "Y-AUG",
|
168
|
+
"Y-SEP": "Y-SEP",
|
169
|
+
"Y-OCT": "Y-OCT",
|
170
|
+
"Y-NOV": "Y-NOV",
|
171
|
+
"Y-DEC": "Y-DEC",
|
172
|
+
"Q-JAN": "Q-JAN",
|
173
|
+
"Q-FEB": "Q-FEB",
|
174
|
+
"Q-MAR": "Q-MAR",
|
175
|
+
"Q-APR": "Q-APR",
|
176
|
+
"Q-MAY": "Q-MAY",
|
177
|
+
"Q-JUN": "Q-JUN",
|
178
|
+
"Q-JUL": "Q-JUL",
|
179
|
+
"Q-AUG": "Q-AUG",
|
180
|
+
"Q-SEP": "Q-SEP",
|
181
|
+
"Q-OCT": "Q-OCT",
|
182
|
+
"Q-NOV": "Q-NOV",
|
183
|
+
"Q-DEC": "Q-DEC",
|
184
|
+
"W-MON": "W-MON",
|
185
|
+
"W-TUE": "W-TUE",
|
186
|
+
"W-WED": "W-WED",
|
187
|
+
"W-THU": "W-THU",
|
188
|
+
"W-FRI": "W-FRI",
|
189
|
+
"W-SAT": "W-SAT",
|
190
|
+
"W-SUN": "W-SUN",
|
191
|
+
}
|
192
|
+
|
193
|
+
|
194
|
+
# From https://github.com/amazon-science/chronos-forecasting/blob/ad410c9c0ae0d499aeec9a7af09b0636844b6274/scripts/evaluation/evaluate.py#L28
|
195
|
+
def to_gluonts_univariate(hf_dataset: datasets.Dataset):
|
196
|
+
series_fields = [
|
197
|
+
col
|
198
|
+
for col in hf_dataset.features
|
199
|
+
if isinstance(hf_dataset.features[col], datasets.Sequence)
|
200
|
+
]
|
201
|
+
series_fields.remove("timestamp")
|
202
|
+
dataset_length = hf_dataset.info.splits["train"].num_examples * len(series_fields)
|
203
|
+
dataset_freq = pd.infer_freq(hf_dataset[0]["timestamp"])
|
204
|
+
dataset_freq = offset_alias_to_period_alias.get(dataset_freq, dataset_freq)
|
205
|
+
|
206
|
+
gts_dataset = []
|
207
|
+
for hf_entry in hf_dataset:
|
208
|
+
for field in series_fields:
|
209
|
+
gts_dataset.append(
|
210
|
+
{
|
211
|
+
"start": pd.Period(
|
212
|
+
hf_entry["timestamp"][0],
|
213
|
+
freq=dataset_freq,
|
214
|
+
),
|
215
|
+
"target": hf_entry[field],
|
216
|
+
}
|
217
|
+
)
|
218
|
+
assert len(gts_dataset) == dataset_length
|
219
|
+
|
220
|
+
return gts_dataset
|
221
|
+
|
222
|
+
|
223
|
+
def split_time_series_to_X_y(df: pd.DataFrame, target_col="target"):
|
224
|
+
X = pd.DataFrame(df.drop(columns=[target_col]))
|
225
|
+
y = pd.DataFrame(df[target_col])
|
226
|
+
return X, y
|
@@ -0,0 +1,78 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
from typing import Tuple, List, Callable
|
4
|
+
|
5
|
+
import gluonts.time_feature
|
6
|
+
from autogluon.timeseries import TimeSeriesDataFrame
|
7
|
+
|
8
|
+
|
9
|
+
class DefaultFeatures:
|
10
|
+
@staticmethod
|
11
|
+
def add_running_index(df: pd.DataFrame) -> pd.Series:
|
12
|
+
df["running_index"] = range(len(df))
|
13
|
+
return df
|
14
|
+
|
15
|
+
@staticmethod
|
16
|
+
def add_calendar_features(df: pd.DataFrame) -> pd.DataFrame:
|
17
|
+
CALENDAR_COMPONENT = [
|
18
|
+
"year",
|
19
|
+
# "month",
|
20
|
+
# "day",
|
21
|
+
]
|
22
|
+
|
23
|
+
CALENDAR_FEATURES = [
|
24
|
+
# (feature, natural seasonality)
|
25
|
+
("hour_of_day", 24),
|
26
|
+
("day_of_week", 7),
|
27
|
+
("day_of_month", 30.5),
|
28
|
+
("day_of_year", 365),
|
29
|
+
("week_of_year", 52),
|
30
|
+
("month_of_year", 12),
|
31
|
+
]
|
32
|
+
|
33
|
+
timestamps = df.index.get_level_values("timestamp")
|
34
|
+
|
35
|
+
for component_name in CALENDAR_COMPONENT:
|
36
|
+
df[component_name] = getattr(timestamps, component_name)
|
37
|
+
|
38
|
+
for feature_name, seasonality in CALENDAR_FEATURES:
|
39
|
+
feature_func = getattr(gluonts.time_feature, f"{feature_name}_index")
|
40
|
+
feature = feature_func(timestamps).astype(np.int32)
|
41
|
+
if seasonality is not None:
|
42
|
+
df[f"{feature_name}_sin"] = np.sin(
|
43
|
+
2 * np.pi * feature / (seasonality - 1)
|
44
|
+
) # seasonality - 1 because the value starts from 0
|
45
|
+
df[f"{feature_name}_cos"] = np.cos(
|
46
|
+
2 * np.pi * feature / (seasonality - 1)
|
47
|
+
)
|
48
|
+
else:
|
49
|
+
df[feature_name] = feature
|
50
|
+
|
51
|
+
return df
|
52
|
+
|
53
|
+
|
54
|
+
class FeatureTransformer:
|
55
|
+
@staticmethod
|
56
|
+
def add_features(
|
57
|
+
train_tsdf: TimeSeriesDataFrame,
|
58
|
+
test_tsdf: TimeSeriesDataFrame,
|
59
|
+
feature_generators: List[Callable[[TimeSeriesDataFrame], TimeSeriesDataFrame]],
|
60
|
+
target_column: str = "target",
|
61
|
+
) -> Tuple[TimeSeriesDataFrame, TimeSeriesDataFrame]:
|
62
|
+
assert target_column in train_tsdf.columns
|
63
|
+
assert test_tsdf[target_column].isna().all()
|
64
|
+
|
65
|
+
# Join train and test tsdf
|
66
|
+
tsdf = pd.concat([train_tsdf, test_tsdf])
|
67
|
+
|
68
|
+
# Apply feature generators
|
69
|
+
for func in feature_generators:
|
70
|
+
tsdf = tsdf.groupby(level="item_id", group_keys=False).apply(func)
|
71
|
+
|
72
|
+
# Split train and test tsdf
|
73
|
+
train_tsdf = tsdf.iloc[: len(train_tsdf)]
|
74
|
+
test_tsdf = tsdf.iloc[len(train_tsdf) :]
|
75
|
+
|
76
|
+
assert test_tsdf[target_column].isna().all()
|
77
|
+
|
78
|
+
return train_tsdf, test_tsdf
|
@@ -0,0 +1,189 @@
|
|
1
|
+
import numpy as np
|
2
|
+
import pandas as pd
|
3
|
+
import matplotlib.pyplot as plt
|
4
|
+
|
5
|
+
from autogluon.timeseries import TimeSeriesDataFrame
|
6
|
+
|
7
|
+
|
8
|
+
def is_subset(tsdf_A: TimeSeriesDataFrame, tsdf_B: TimeSeriesDataFrame) -> bool:
|
9
|
+
tsdf_index_set_A, tsdf_index_set_B = set(tsdf_A.index), set(tsdf_B.index)
|
10
|
+
return tsdf_index_set_A.issubset(tsdf_index_set_B)
|
11
|
+
|
12
|
+
|
13
|
+
def plot_time_series(
|
14
|
+
df: TimeSeriesDataFrame,
|
15
|
+
item_ids: list[int] | None = None,
|
16
|
+
in_single_plot: bool = False,
|
17
|
+
y_limit: tuple[float, float] | None = None,
|
18
|
+
show_points: bool = False,
|
19
|
+
target_col: str = "target",
|
20
|
+
):
|
21
|
+
if item_ids is None:
|
22
|
+
item_ids = df.index.get_level_values("item_id").unique()
|
23
|
+
elif not set(item_ids).issubset(df.index.get_level_values("item_id").unique()):
|
24
|
+
raise ValueError(f"Item IDs {item_ids} not found in the dataframe")
|
25
|
+
|
26
|
+
if not in_single_plot:
|
27
|
+
# create subplots
|
28
|
+
fig, axes = plt.subplots(
|
29
|
+
len(item_ids), 1, figsize=(10, 3 * len(item_ids)), sharex=True
|
30
|
+
)
|
31
|
+
|
32
|
+
if len(item_ids) == 1:
|
33
|
+
axes = [axes]
|
34
|
+
|
35
|
+
for ax, item_id in zip(axes, item_ids):
|
36
|
+
df_item = df.xs(item_id, level="item_id")
|
37
|
+
ax.plot(df_item.index, df_item[target_col])
|
38
|
+
if show_points:
|
39
|
+
ax.scatter(
|
40
|
+
df_item.index,
|
41
|
+
df_item[target_col],
|
42
|
+
color="lightcoral",
|
43
|
+
s=8,
|
44
|
+
alpha=0.8,
|
45
|
+
)
|
46
|
+
ax.set_title(f"Item ID: {item_id}")
|
47
|
+
ax.set_xlabel("Timestamp")
|
48
|
+
ax.set_ylabel("Target")
|
49
|
+
if y_limit is not None:
|
50
|
+
ax.set_ylim(*y_limit)
|
51
|
+
|
52
|
+
else:
|
53
|
+
fig, ax = plt.subplots(1, 1, figsize=(10, 3))
|
54
|
+
for item_id in item_ids:
|
55
|
+
df_item = df.xs(item_id, level="item_id")
|
56
|
+
ax.plot(df_item.index, df_item[target_col], label=f"Item ID: {item_id}")
|
57
|
+
if show_points:
|
58
|
+
ax.scatter(
|
59
|
+
df_item.index,
|
60
|
+
df_item[target_col],
|
61
|
+
color="lightcoral",
|
62
|
+
s=8,
|
63
|
+
alpha=0.8,
|
64
|
+
)
|
65
|
+
ax.legend()
|
66
|
+
if y_limit is not None:
|
67
|
+
ax.set_ylim(*y_limit)
|
68
|
+
|
69
|
+
plt.tight_layout()
|
70
|
+
plt.show()
|
71
|
+
|
72
|
+
|
73
|
+
def plot_actual_ts(
|
74
|
+
train: TimeSeriesDataFrame,
|
75
|
+
test: TimeSeriesDataFrame,
|
76
|
+
item_ids: list[int] | None = None,
|
77
|
+
show_points: bool = False,
|
78
|
+
):
|
79
|
+
if item_ids is None:
|
80
|
+
item_ids = train.index.get_level_values("item_id").unique()
|
81
|
+
elif not set(item_ids).issubset(train.index.get_level_values("item_id").unique()):
|
82
|
+
raise ValueError(f"Item IDs {item_ids} not found in the dataframe")
|
83
|
+
|
84
|
+
_, ax = plt.subplots(len(item_ids), 1, figsize=(10, 3 * len(item_ids)))
|
85
|
+
ax = [ax] if not isinstance(ax, np.ndarray) else ax
|
86
|
+
|
87
|
+
def plot_single_item(ax, item_id):
|
88
|
+
train_item = train.xs(item_id, level="item_id")
|
89
|
+
test_item = test.xs(item_id, level="item_id")
|
90
|
+
|
91
|
+
if is_subset(train_item, test_item):
|
92
|
+
ground_truth = test_item["target"]
|
93
|
+
else:
|
94
|
+
ground_truth = pd.concat([train_item[["target"]], test_item[["target"]]])
|
95
|
+
ax.plot(ground_truth.index, ground_truth, label="Ground Truth")
|
96
|
+
if show_points:
|
97
|
+
ax.scatter(
|
98
|
+
ground_truth.index, ground_truth, color="lightblue", s=8, alpha=0.8
|
99
|
+
)
|
100
|
+
|
101
|
+
train_item_length = train.xs(item_id, level="item_id").iloc[-1].name
|
102
|
+
ax.axvline(
|
103
|
+
x=train_item_length, color="r", linestyle="--", label="Train/Test Split"
|
104
|
+
)
|
105
|
+
|
106
|
+
ax.set_title(f"Item ID: {item_id}")
|
107
|
+
ax.legend()
|
108
|
+
|
109
|
+
for i, item_id in enumerate(item_ids):
|
110
|
+
plot_single_item(ax[i], item_id)
|
111
|
+
|
112
|
+
plt.tight_layout()
|
113
|
+
plt.show()
|
114
|
+
|
115
|
+
|
116
|
+
def plot_pred_and_actual_ts(
|
117
|
+
pred: TimeSeriesDataFrame,
|
118
|
+
train: TimeSeriesDataFrame,
|
119
|
+
test: TimeSeriesDataFrame,
|
120
|
+
item_ids: list[int] | None = None,
|
121
|
+
show_quantiles: bool = True,
|
122
|
+
show_points: bool = False,
|
123
|
+
):
|
124
|
+
if item_ids is None:
|
125
|
+
item_ids = train.index.get_level_values("item_id").unique()
|
126
|
+
elif not set(item_ids).issubset(train.index.get_level_values("item_id").unique()):
|
127
|
+
raise ValueError(f"Item IDs {item_ids} not found in the dataframe")
|
128
|
+
|
129
|
+
if pred.shape[0] != test.shape[0]:
|
130
|
+
if not is_subset(pred, test):
|
131
|
+
raise ValueError(
|
132
|
+
"Pred and Test have different number of items and Pred is not a subset of Test"
|
133
|
+
)
|
134
|
+
|
135
|
+
filled_pred = test.copy()
|
136
|
+
filled_pred["target"] = np.nan
|
137
|
+
for col in pred.columns:
|
138
|
+
filled_pred.loc[pred.index, col] = pred[col]
|
139
|
+
pred = filled_pred
|
140
|
+
|
141
|
+
assert pred.shape[0] == test.shape[0]
|
142
|
+
|
143
|
+
_, ax = plt.subplots(len(item_ids), 1, figsize=(10, 3 * len(item_ids)))
|
144
|
+
ax = [ax] if not isinstance(ax, np.ndarray) else ax
|
145
|
+
|
146
|
+
def plot_single_item(ax, item_id):
|
147
|
+
pred_item = pred.xs(item_id, level="item_id")
|
148
|
+
train_item = train.xs(item_id, level="item_id")
|
149
|
+
test_item = test.xs(item_id, level="item_id")
|
150
|
+
|
151
|
+
if is_subset(train_item, test_item):
|
152
|
+
ground_truth = test_item["target"]
|
153
|
+
else:
|
154
|
+
ground_truth = pd.concat([train_item[["target"]], test_item[["target"]]])
|
155
|
+
ax.plot(ground_truth.index, ground_truth, label="Ground Truth")
|
156
|
+
ax.plot(pred_item.index, pred_item["target"], label="Prediction")
|
157
|
+
if show_points:
|
158
|
+
ax.scatter(
|
159
|
+
ground_truth.index, ground_truth, color="lightblue", s=8, alpha=0.8
|
160
|
+
)
|
161
|
+
|
162
|
+
if show_quantiles:
|
163
|
+
# Plot the lower and upper bound of the quantile predictions
|
164
|
+
quantile_config = sorted(
|
165
|
+
pred_item.columns.drop(["target"]).tolist(), key=lambda x: float(x)
|
166
|
+
)
|
167
|
+
lower_quantile = quantile_config[0]
|
168
|
+
upper_quantile = quantile_config[-1]
|
169
|
+
ax.fill_between(
|
170
|
+
pred_item.index,
|
171
|
+
pred_item[lower_quantile],
|
172
|
+
pred_item[upper_quantile],
|
173
|
+
color="gray",
|
174
|
+
alpha=0.2,
|
175
|
+
label=f"{lower_quantile}-{upper_quantile} Quantile Range",
|
176
|
+
)
|
177
|
+
|
178
|
+
train_item_length = train.xs(item_id, level="item_id").iloc[-1].name
|
179
|
+
ax.axvline(
|
180
|
+
x=train_item_length, color="r", linestyle="--", label="Train/Test Split"
|
181
|
+
)
|
182
|
+
ax.set_title(f"Item ID: {item_id}")
|
183
|
+
ax.legend(loc="upper left", bbox_to_anchor=(0, 1))
|
184
|
+
|
185
|
+
for i, item_id in enumerate(item_ids):
|
186
|
+
plot_single_item(ax[i], item_id)
|
187
|
+
|
188
|
+
plt.tight_layout()
|
189
|
+
plt.show()
|
@@ -0,0 +1,47 @@
|
|
1
|
+
import logging
|
2
|
+
from enum import Enum
|
3
|
+
|
4
|
+
from autogluon.timeseries import TimeSeriesDataFrame
|
5
|
+
|
6
|
+
from tabpfn_time_series.tabpfn_worker import TabPFNClient, LocalTabPFN
|
7
|
+
from tabpfn_time_series.defaults import TABPFN_DEFAULT_QUANTILE_CONFIG, TABPFN_DEFAULT_CONFIG
|
8
|
+
|
9
|
+
logger = logging.getLogger(__name__)
|
10
|
+
|
11
|
+
|
12
|
+
class TabPFNMode(Enum):
|
13
|
+
LOCAL = "tabpfn-local"
|
14
|
+
CLIENT = "tabpfn-client"
|
15
|
+
|
16
|
+
|
17
|
+
class TabPFNTimeSeriesPredictor:
|
18
|
+
"""
|
19
|
+
Given a TimeSeriesDataFrame (multiple time series), perform prediction on each time series individually.
|
20
|
+
"""
|
21
|
+
|
22
|
+
def __init__(
|
23
|
+
self,
|
24
|
+
tabpfn_mode: TabPFNMode = TabPFNMode.CLIENT,
|
25
|
+
tabpfn_config: dict = TABPFN_DEFAULT_CONFIG,
|
26
|
+
) -> None:
|
27
|
+
worker_mapping = {
|
28
|
+
TabPFNMode.CLIENT: lambda: TabPFNClient(tabpfn_config),
|
29
|
+
TabPFNMode.LOCAL: lambda: LocalTabPFN(tabpfn_config),
|
30
|
+
}
|
31
|
+
self.tabpfn_worker = worker_mapping[tabpfn_mode]()
|
32
|
+
|
33
|
+
def predict(
|
34
|
+
self,
|
35
|
+
train_tsdf: TimeSeriesDataFrame, # with features and target
|
36
|
+
test_tsdf: TimeSeriesDataFrame, # with features only
|
37
|
+
quantile_config: list[float] = TABPFN_DEFAULT_QUANTILE_CONFIG,
|
38
|
+
) -> TimeSeriesDataFrame:
|
39
|
+
"""
|
40
|
+
Predict on each time series individually (local forecasting).
|
41
|
+
"""
|
42
|
+
|
43
|
+
logger.info(
|
44
|
+
f"Predicting {len(train_tsdf.item_ids)} time series with config{self.tabpfn_worker.tabpfn_config}"
|
45
|
+
)
|
46
|
+
|
47
|
+
return self.tabpfn_worker.predict(train_tsdf, test_tsdf, quantile_config)
|
@@ -0,0 +1,224 @@
|
|
1
|
+
import logging
|
2
|
+
from abc import ABC, abstractmethod
|
3
|
+
from joblib import Parallel, delayed
|
4
|
+
|
5
|
+
import pandas as pd
|
6
|
+
import numpy as np
|
7
|
+
from scipy.stats import norm
|
8
|
+
from autogluon.timeseries import TimeSeriesDataFrame
|
9
|
+
|
10
|
+
from tabpfn_time_series.data_preparation import split_time_series_to_X_y
|
11
|
+
from tabpfn_time_series.defaults import TABPFN_DEFAULT_QUANTILE_CONFIG
|
12
|
+
|
13
|
+
logger = logging.getLogger(__name__)
|
14
|
+
|
15
|
+
|
16
|
+
class TabPFNWorker(ABC):
|
17
|
+
def __init__(
|
18
|
+
self,
|
19
|
+
tabpfn_config: dict = {},
|
20
|
+
num_workers: int = 1,
|
21
|
+
):
|
22
|
+
self.tabpfn_config = tabpfn_config
|
23
|
+
self.num_workers = num_workers
|
24
|
+
|
25
|
+
def predict(
|
26
|
+
self,
|
27
|
+
train_tsdf: TimeSeriesDataFrame,
|
28
|
+
test_tsdf: TimeSeriesDataFrame,
|
29
|
+
quantile_config: list[float],
|
30
|
+
):
|
31
|
+
predictions = Parallel(
|
32
|
+
n_jobs=self.num_workers,
|
33
|
+
backend="loky",
|
34
|
+
)(
|
35
|
+
delayed(self._prediction_routine)(
|
36
|
+
item_id,
|
37
|
+
train_tsdf.loc[item_id],
|
38
|
+
test_tsdf.loc[item_id],
|
39
|
+
quantile_config,
|
40
|
+
)
|
41
|
+
for item_id in train_tsdf.item_ids
|
42
|
+
)
|
43
|
+
|
44
|
+
predictions = pd.concat(predictions)
|
45
|
+
|
46
|
+
# Sort predictions according to original item_ids order (important for MASE and WQL calculation)
|
47
|
+
predictions = predictions.loc[train_tsdf.item_ids]
|
48
|
+
|
49
|
+
return TimeSeriesDataFrame(predictions)
|
50
|
+
|
51
|
+
def _prediction_routine(
|
52
|
+
self,
|
53
|
+
item_id: str,
|
54
|
+
single_train_tsdf: TimeSeriesDataFrame,
|
55
|
+
single_test_tsdf: TimeSeriesDataFrame,
|
56
|
+
quantile_config: list[float],
|
57
|
+
) -> pd.DataFrame:
|
58
|
+
test_index = single_test_tsdf.index
|
59
|
+
train_X, train_y = split_time_series_to_X_y(single_train_tsdf.copy())
|
60
|
+
test_X, _ = split_time_series_to_X_y(single_test_tsdf.copy())
|
61
|
+
train_y = train_y.squeeze()
|
62
|
+
|
63
|
+
train_y_has_constant_value = train_y.nunique() == 1
|
64
|
+
if train_y_has_constant_value:
|
65
|
+
logger.info("Found time-series with constant target")
|
66
|
+
result = self._predict_on_constant_train_target(
|
67
|
+
single_train_tsdf, single_test_tsdf, quantile_config
|
68
|
+
)
|
69
|
+
else:
|
70
|
+
# Call worker-specific prediction routine
|
71
|
+
result = self._worker_specific_prediction_routine(
|
72
|
+
train_X,
|
73
|
+
train_y,
|
74
|
+
test_X,
|
75
|
+
quantile_config,
|
76
|
+
)
|
77
|
+
|
78
|
+
result = pd.DataFrame(result, index=test_index)
|
79
|
+
result["item_id"] = item_id
|
80
|
+
result.set_index(["item_id", result.index], inplace=True)
|
81
|
+
return result
|
82
|
+
|
83
|
+
@abstractmethod
|
84
|
+
def _worker_specific_prediction_routine(
|
85
|
+
self,
|
86
|
+
train_X: pd.DataFrame,
|
87
|
+
train_y: pd.Series,
|
88
|
+
test_X: pd.DataFrame,
|
89
|
+
quantile_config: list[float],
|
90
|
+
) -> pd.DataFrame:
|
91
|
+
pass
|
92
|
+
|
93
|
+
def _predict_on_constant_train_target(
|
94
|
+
self,
|
95
|
+
single_train_tsdf: TimeSeriesDataFrame,
|
96
|
+
single_test_tsdf: TimeSeriesDataFrame,
|
97
|
+
quantile_config: list[float],
|
98
|
+
) -> pd.DataFrame:
|
99
|
+
# If train_y is constant, we return the constant value from the training set
|
100
|
+
mean_constant = single_train_tsdf.target.iloc[0]
|
101
|
+
result = {"target": np.full(len(single_test_tsdf), mean_constant)}
|
102
|
+
|
103
|
+
# For quantile prediction, we assume that the uncertainty follows a standard normal distribution
|
104
|
+
quantile_pred_with_uncertainty = norm.ppf(
|
105
|
+
quantile_config, loc=mean_constant, scale=1
|
106
|
+
)
|
107
|
+
result.update(
|
108
|
+
{
|
109
|
+
q: np.full(len(single_test_tsdf), v)
|
110
|
+
for q, v in zip(quantile_config, quantile_pred_with_uncertainty)
|
111
|
+
}
|
112
|
+
)
|
113
|
+
|
114
|
+
return result
|
115
|
+
|
116
|
+
|
117
|
+
class TabPFNClient(TabPFNWorker):
|
118
|
+
def __init__(
|
119
|
+
self,
|
120
|
+
tabpfn_config: dict = {},
|
121
|
+
num_workers: int = 2,
|
122
|
+
):
|
123
|
+
super().__init__(tabpfn_config, num_workers)
|
124
|
+
|
125
|
+
# Initialize the TabPFN client (e.g. sign up, login, etc.)
|
126
|
+
from tabpfn_client import init
|
127
|
+
|
128
|
+
init()
|
129
|
+
|
130
|
+
def predict(
|
131
|
+
self,
|
132
|
+
train_tsdf: TimeSeriesDataFrame,
|
133
|
+
test_tsdf: TimeSeriesDataFrame,
|
134
|
+
quantile_config: list[float],
|
135
|
+
):
|
136
|
+
if not set(quantile_config).issubset(set(TABPFN_DEFAULT_QUANTILE_CONFIG)):
|
137
|
+
raise NotImplementedError(
|
138
|
+
f"TabPFNClient currently only supports {TABPFN_DEFAULT_QUANTILE_CONFIG} for quantile prediction,"
|
139
|
+
f" but got {quantile_config}."
|
140
|
+
)
|
141
|
+
|
142
|
+
return super().predict(train_tsdf, test_tsdf, quantile_config)
|
143
|
+
|
144
|
+
def _worker_specific_prediction_routine(
|
145
|
+
self,
|
146
|
+
train_X: pd.DataFrame,
|
147
|
+
train_y: pd.Series,
|
148
|
+
test_X: pd.DataFrame,
|
149
|
+
quantile_config: list[float],
|
150
|
+
) -> pd.DataFrame:
|
151
|
+
from tabpfn_client import TabPFNRegressor
|
152
|
+
|
153
|
+
tabpfn = TabPFNRegressor(**self.tabpfn_config)
|
154
|
+
tabpfn.fit(train_X, train_y)
|
155
|
+
full_pred = tabpfn.predict_full(test_X)
|
156
|
+
|
157
|
+
result = {"target": full_pred[self._get_optimization_mode()]}
|
158
|
+
result.update({q: full_pred[f"quantile_{q:.2f}"] for q in quantile_config})
|
159
|
+
|
160
|
+
return result
|
161
|
+
|
162
|
+
def _get_optimization_mode(self):
|
163
|
+
if (
|
164
|
+
"optimize_metric" not in self.tabpfn_config
|
165
|
+
or self.tabpfn_config["optimize_metric"] is None
|
166
|
+
):
|
167
|
+
return "mean"
|
168
|
+
elif self.tabpfn_config["optimize_metric"] in ["rmse", "mse", "r2", "mean"]:
|
169
|
+
return "mean"
|
170
|
+
elif self.tabpfn_config["optimize_metric"] in ["mae", "median"]:
|
171
|
+
return "median"
|
172
|
+
elif self.tabpfn_config["optimize_metric"] in ["mode", "exact_match"]:
|
173
|
+
return "mode"
|
174
|
+
else:
|
175
|
+
raise ValueError(f"Unknown metric {self.tabpfn_config['optimize_metric']}")
|
176
|
+
|
177
|
+
|
178
|
+
class LocalTabPFN(TabPFNWorker):
|
179
|
+
def __init__(
|
180
|
+
self,
|
181
|
+
tabpfn_config: dict = {},
|
182
|
+
):
|
183
|
+
# Local TabPFN has a different interface for declaring the model
|
184
|
+
if "model" in tabpfn_config:
|
185
|
+
config = tabpfn_config.copy()
|
186
|
+
config["model_path"] = self._parse_model_path(config["model"])
|
187
|
+
del config["model"]
|
188
|
+
tabpfn_config = config
|
189
|
+
|
190
|
+
super().__init__(tabpfn_config, num_workers=1)
|
191
|
+
|
192
|
+
def _worker_specific_prediction_routine(
|
193
|
+
self,
|
194
|
+
train_X: pd.DataFrame,
|
195
|
+
train_y: pd.Series,
|
196
|
+
test_X: pd.DataFrame,
|
197
|
+
quantile_config: list[float],
|
198
|
+
) -> pd.DataFrame:
|
199
|
+
from tabpfn import TabPFNRegressor
|
200
|
+
|
201
|
+
tabpfn = TabPFNRegressor(**self.tabpfn_config)
|
202
|
+
tabpfn.fit(train_X, train_y)
|
203
|
+
full_pred = tabpfn.predict_full(test_X)
|
204
|
+
|
205
|
+
result = {"target": full_pred[tabpfn.get_optimization_mode()]}
|
206
|
+
if set(quantile_config).issubset(set(TABPFN_DEFAULT_QUANTILE_CONFIG)):
|
207
|
+
result.update({q: full_pred[f"quantile_{q:.2f}"] for q in quantile_config})
|
208
|
+
else:
|
209
|
+
import torch
|
210
|
+
|
211
|
+
criterion = full_pred["criterion"]
|
212
|
+
logits = torch.tensor(full_pred["logits"])
|
213
|
+
result.update({q: criterion.icdf(logits, q) for q in quantile_config})
|
214
|
+
|
215
|
+
return result
|
216
|
+
|
217
|
+
def _parse_model_path(self, model_name: str) -> str:
|
218
|
+
from pathlib import Path
|
219
|
+
import importlib.util
|
220
|
+
|
221
|
+
tabpfn_path = Path(importlib.util.find_spec("tabpfn").origin).parent
|
222
|
+
return str(
|
223
|
+
tabpfn_path / "model_cache" / f"model_hans_regression_{model_name}.ckpt"
|
224
|
+
)
|
@@ -0,0 +1,59 @@
|
|
1
|
+
Metadata-Version: 2.4
|
2
|
+
Name: tabpfn_time_series
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: Zero-shot time series forecasting with TabPFN
|
5
|
+
Project-URL: Homepage, https://github.com/liam-sbhoo/tabpfn-time-series
|
6
|
+
Project-URL: Bug Tracker, https://github.com/liam-sbhoo/tabpfn-time-series/issues
|
7
|
+
Author-email: Liam Shi Bin Hoo <hoos@tf.uni-freiburg.de>
|
8
|
+
License-File: LICENSE.txt
|
9
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
10
|
+
Classifier: Operating System :: OS Independent
|
11
|
+
Classifier: Programming Language :: Python :: 3
|
12
|
+
Requires-Python: >=3.10
|
13
|
+
Requires-Dist: autogluon-timeseries
|
14
|
+
Requires-Dist: gluonts
|
15
|
+
Requires-Dist: pandas
|
16
|
+
Requires-Dist: tabpfn-client
|
17
|
+
Requires-Dist: tqdm
|
18
|
+
Provides-Extra: dev
|
19
|
+
Requires-Dist: build; extra == 'dev'
|
20
|
+
Requires-Dist: pre-commit; extra == 'dev'
|
21
|
+
Requires-Dist: ruff; extra == 'dev'
|
22
|
+
Requires-Dist: twine; extra == 'dev'
|
23
|
+
Description-Content-Type: text/markdown
|
24
|
+
|
25
|
+
# Time Series Forecasting with TabPFN
|
26
|
+
|
27
|
+
[](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
|
28
|
+
[](https://discord.com/channels/1285598202732482621/)
|
29
|
+
[](https://arxiv.org/abs/2501.02945)
|
30
|
+
|
31
|
+
|
32
|
+
We demonstrate that the tabular foundation model **TabPFN**, when paired with minimal featurization, can perform zero-shot time series forecasting. Its performance on point forecasting matches or even slightly outperforms state-of-the-art methods.
|
33
|
+
|
34
|
+
## 📖 How does it work?
|
35
|
+
|
36
|
+
Our work proposes to frame **univariate time series forecasting** as a **tabular regression problem**.
|
37
|
+
|
38
|
+

|
39
|
+
|
40
|
+
Concretely, we:
|
41
|
+
1. Transform a time series into a table
|
42
|
+
2. Extract features from timestamp and add them to the table
|
43
|
+
3. Perform regression on the table using TabPFN
|
44
|
+
4. Use regression results as time series forecasting outputs
|
45
|
+
|
46
|
+
For more details, please refer to our [paper](https://arxiv.org/abs/2501.02945) and our [poster](docs/tabpfn-ts-neurips-poster.pdf) (presented at NeurIPS 2024 TRL and TSALM workshops).
|
47
|
+
|
48
|
+
## 👉 **Why gives us a try?**
|
49
|
+
- **Zero-shot forecasting**: this method is extremely fast and requires no training, making it highly accessible for experimenting with your own problems.
|
50
|
+
- **Point and probabilistic forecasting**: it provides accurate point forecasts as well as probabilistic forecasts.
|
51
|
+
- **Support for exogenous variables**: if you have exogenous variables, this method can seemlessly incorporate them into the forecasting model.
|
52
|
+
|
53
|
+
On top of that, thanks to [tabpfn-client](https://github.com/automl/tabpfn-client) from [Prior Labs](https://priorlabs.ai), you won’t even need your own GPU to run fast inference with TabPFN. 😉 We have included `tabpfn-client` as the default engine in our implementation.
|
54
|
+
|
55
|
+
## How to use it?
|
56
|
+
|
57
|
+
[](https://colab.research.google.com/github/liam-sbhoo/tabpfn-time-series/blob/main/demo.ipynb)
|
58
|
+
|
59
|
+
The demo should explain it all. 😉
|
@@ -0,0 +1,11 @@
|
|
1
|
+
tabpfn_time_series/__init__.py,sha256=atVNap8tQLI0t5COkkCop-wbY3y1FdVxIMfvCf6VDsQ,257
|
2
|
+
tabpfn_time_series/data_preparation.py,sha256=iNW7sAnRkTgmzzOEHBhkkTwm_lQ3p_Q9xgAQ5PbkOts,5416
|
3
|
+
tabpfn_time_series/defaults.py,sha256=C9HiD7Zm0BzVfE9e2f8nhpiPQSYx79hWozvzb-93L40,165
|
4
|
+
tabpfn_time_series/feature.py,sha256=_9FxfQfgPOOO1MiT8hB8523eZ3Nc5oKuoY7vcohKZZc,2531
|
5
|
+
tabpfn_time_series/plot.py,sha256=bwSYcWBanzPrUxXKFsbqG8fyGsOJZfgU2v3NsxzTSXo,6571
|
6
|
+
tabpfn_time_series/predictor.py,sha256=YfJIe8KsyzkwgX4EFAHR8dDp-mqSv9WK88_qO_EXlws,1505
|
7
|
+
tabpfn_time_series/tabpfn_worker.py,sha256=3xInPzzQtmIBPjbc_5TaQsX3-Bl3WOlxttqj3KZlC9Q,7395
|
8
|
+
tabpfn_time_series-0.1.0.dist-info/METADATA,sha256=3lPtIH1qAR58k6Y-19ZPN8fEEtNG1UKkW5qKZ-jh8e4,3147
|
9
|
+
tabpfn_time_series-0.1.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
10
|
+
tabpfn_time_series-0.1.0.dist-info/licenses/LICENSE.txt,sha256=iwhPL7kIWQG6gyLZZwIMDItGrNgxMDIq9itxkUSMapY,11345
|
11
|
+
tabpfn_time_series-0.1.0.dist-info/RECORD,,
|
@@ -0,0 +1,202 @@
|
|
1
|
+
|
2
|
+
Apache License
|
3
|
+
Version 2.0, January 2004
|
4
|
+
http://www.apache.org/licenses/
|
5
|
+
|
6
|
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
7
|
+
|
8
|
+
1. Definitions.
|
9
|
+
|
10
|
+
"License" shall mean the terms and conditions for use, reproduction,
|
11
|
+
and distribution as defined by Sections 1 through 9 of this document.
|
12
|
+
|
13
|
+
"Licensor" shall mean the copyright owner or entity authorized by
|
14
|
+
the copyright owner that is granting the License.
|
15
|
+
|
16
|
+
"Legal Entity" shall mean the union of the acting entity and all
|
17
|
+
other entities that control, are controlled by, or are under common
|
18
|
+
control with that entity. For the purposes of this definition,
|
19
|
+
"control" means (i) the power, direct or indirect, to cause the
|
20
|
+
direction or management of such entity, whether by contract or
|
21
|
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
22
|
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
23
|
+
|
24
|
+
"You" (or "Your") shall mean an individual or Legal Entity
|
25
|
+
exercising permissions granted by this License.
|
26
|
+
|
27
|
+
"Source" form shall mean the preferred form for making modifications,
|
28
|
+
including but not limited to software source code, documentation
|
29
|
+
source, and configuration files.
|
30
|
+
|
31
|
+
"Object" form shall mean any form resulting from mechanical
|
32
|
+
transformation or translation of a Source form, including but
|
33
|
+
not limited to compiled object code, generated documentation,
|
34
|
+
and conversions to other media types.
|
35
|
+
|
36
|
+
"Work" shall mean the work of authorship, whether in Source or
|
37
|
+
Object form, made available under the License, as indicated by a
|
38
|
+
copyright notice that is included in or attached to the work
|
39
|
+
(an example is provided in the Appendix below).
|
40
|
+
|
41
|
+
"Derivative Works" shall mean any work, whether in Source or Object
|
42
|
+
form, that is based on (or derived from) the Work and for which the
|
43
|
+
editorial revisions, annotations, elaborations, or other modifications
|
44
|
+
represent, as a whole, an original work of authorship. For the purposes
|
45
|
+
of this License, Derivative Works shall not include works that remain
|
46
|
+
separable from, or merely link (or bind by name) to the interfaces of,
|
47
|
+
the Work and Derivative Works thereof.
|
48
|
+
|
49
|
+
"Contribution" shall mean any work of authorship, including
|
50
|
+
the original version of the Work and any modifications or additions
|
51
|
+
to that Work or Derivative Works thereof, that is intentionally
|
52
|
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
53
|
+
or by an individual or Legal Entity authorized to submit on behalf of
|
54
|
+
the copyright owner. For the purposes of this definition, "submitted"
|
55
|
+
means any form of electronic, verbal, or written communication sent
|
56
|
+
to the Licensor or its representatives, including but not limited to
|
57
|
+
communication on electronic mailing lists, source code control systems,
|
58
|
+
and issue tracking systems that are managed by, or on behalf of, the
|
59
|
+
Licensor for the purpose of discussing and improving the Work, but
|
60
|
+
excluding communication that is conspicuously marked or otherwise
|
61
|
+
designated in writing by the copyright owner as "Not a Contribution."
|
62
|
+
|
63
|
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
64
|
+
on behalf of whom a Contribution has been received by Licensor and
|
65
|
+
subsequently incorporated within the Work.
|
66
|
+
|
67
|
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
68
|
+
this License, each Contributor hereby grants to You a perpetual,
|
69
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
70
|
+
copyright license to reproduce, prepare Derivative Works of,
|
71
|
+
publicly display, publicly perform, sublicense, and distribute the
|
72
|
+
Work and such Derivative Works in Source or Object form.
|
73
|
+
|
74
|
+
3. Grant of Patent License. Subject to the terms and conditions of
|
75
|
+
this License, each Contributor hereby grants to You a perpetual,
|
76
|
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
77
|
+
(except as stated in this section) patent license to make, have made,
|
78
|
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
79
|
+
where such license applies only to those patent claims licensable
|
80
|
+
by such Contributor that are necessarily infringed by their
|
81
|
+
Contribution(s) alone or by combination of their Contribution(s)
|
82
|
+
with the Work to which such Contribution(s) was submitted. If You
|
83
|
+
institute patent litigation against any entity (including a
|
84
|
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
85
|
+
or a Contribution incorporated within the Work constitutes direct
|
86
|
+
or contributory patent infringement, then any patent licenses
|
87
|
+
granted to You under this License for that Work shall terminate
|
88
|
+
as of the date such litigation is filed.
|
89
|
+
|
90
|
+
4. Redistribution. You may reproduce and distribute copies of the
|
91
|
+
Work or Derivative Works thereof in any medium, with or without
|
92
|
+
modifications, and in Source or Object form, provided that You
|
93
|
+
meet the following conditions:
|
94
|
+
|
95
|
+
(a) You must give any other recipients of the Work or
|
96
|
+
Derivative Works a copy of this License; and
|
97
|
+
|
98
|
+
(b) You must cause any modified files to carry prominent notices
|
99
|
+
stating that You changed the files; and
|
100
|
+
|
101
|
+
(c) You must retain, in the Source form of any Derivative Works
|
102
|
+
that You distribute, all copyright, patent, trademark, and
|
103
|
+
attribution notices from the Source form of the Work,
|
104
|
+
excluding those notices that do not pertain to any part of
|
105
|
+
the Derivative Works; and
|
106
|
+
|
107
|
+
(d) If the Work includes a "NOTICE" text file as part of its
|
108
|
+
distribution, then any Derivative Works that You distribute must
|
109
|
+
include a readable copy of the attribution notices contained
|
110
|
+
within such NOTICE file, excluding those notices that do not
|
111
|
+
pertain to any part of the Derivative Works, in at least one
|
112
|
+
of the following places: within a NOTICE text file distributed
|
113
|
+
as part of the Derivative Works; within the Source form or
|
114
|
+
documentation, if provided along with the Derivative Works; or,
|
115
|
+
within a display generated by the Derivative Works, if and
|
116
|
+
wherever such third-party notices normally appear. The contents
|
117
|
+
of the NOTICE file are for informational purposes only and
|
118
|
+
do not modify the License. You may add Your own attribution
|
119
|
+
notices within Derivative Works that You distribute, alongside
|
120
|
+
or as an addendum to the NOTICE text from the Work, provided
|
121
|
+
that such additional attribution notices cannot be construed
|
122
|
+
as modifying the License.
|
123
|
+
|
124
|
+
You may add Your own copyright statement to Your modifications and
|
125
|
+
may provide additional or different license terms and conditions
|
126
|
+
for use, reproduction, or distribution of Your modifications, or
|
127
|
+
for any such Derivative Works as a whole, provided Your use,
|
128
|
+
reproduction, and distribution of the Work otherwise complies with
|
129
|
+
the conditions stated in this License.
|
130
|
+
|
131
|
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
132
|
+
any Contribution intentionally submitted for inclusion in the Work
|
133
|
+
by You to the Licensor shall be under the terms and conditions of
|
134
|
+
this License, without any additional terms or conditions.
|
135
|
+
Notwithstanding the above, nothing herein shall supersede or modify
|
136
|
+
the terms of any separate license agreement you may have executed
|
137
|
+
with Licensor regarding such Contributions.
|
138
|
+
|
139
|
+
6. Trademarks. This License does not grant permission to use the trade
|
140
|
+
names, trademarks, service marks, or product names of the Licensor,
|
141
|
+
except as required for reasonable and customary use in describing the
|
142
|
+
origin of the Work and reproducing the content of the NOTICE file.
|
143
|
+
|
144
|
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
145
|
+
agreed to in writing, Licensor provides the Work (and each
|
146
|
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
147
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
148
|
+
implied, including, without limitation, any warranties or conditions
|
149
|
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
150
|
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
151
|
+
appropriateness of using or redistributing the Work and assume any
|
152
|
+
risks associated with Your exercise of permissions under this License.
|
153
|
+
|
154
|
+
8. Limitation of Liability. In no event and under no legal theory,
|
155
|
+
whether in tort (including negligence), contract, or otherwise,
|
156
|
+
unless required by applicable law (such as deliberate and grossly
|
157
|
+
negligent acts) or agreed to in writing, shall any Contributor be
|
158
|
+
liable to You for damages, including any direct, indirect, special,
|
159
|
+
incidental, or consequential damages of any character arising as a
|
160
|
+
result of this License or out of the use or inability to use the
|
161
|
+
Work (including but not limited to damages for loss of goodwill,
|
162
|
+
work stoppage, computer failure or malfunction, or any and all
|
163
|
+
other commercial damages or losses), even if such Contributor
|
164
|
+
has been advised of the possibility of such damages.
|
165
|
+
|
166
|
+
9. Accepting Warranty or Additional Liability. While redistributing
|
167
|
+
the Work or Derivative Works thereof, You may choose to offer,
|
168
|
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
169
|
+
or other liability obligations and/or rights consistent with this
|
170
|
+
License. However, in accepting such obligations, You may act only
|
171
|
+
on Your own behalf and on Your sole responsibility, not on behalf
|
172
|
+
of any other Contributor, and only if You agree to indemnify,
|
173
|
+
defend, and hold each Contributor harmless for any liability
|
174
|
+
incurred by, or claims asserted against, such Contributor by reason
|
175
|
+
of your accepting any such warranty or additional liability.
|
176
|
+
|
177
|
+
END OF TERMS AND CONDITIONS
|
178
|
+
|
179
|
+
APPENDIX: How to apply the Apache License to your work.
|
180
|
+
|
181
|
+
To apply the Apache License to your work, attach the following
|
182
|
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
183
|
+
replaced with your own identifying information. (Don't include
|
184
|
+
the brackets!) The text should be enclosed in the appropriate
|
185
|
+
comment syntax for the file format. We also recommend that a
|
186
|
+
file or class name and description of purpose be included on the
|
187
|
+
same "printed page" as the copyright notice for easier
|
188
|
+
identification within third-party archives.
|
189
|
+
|
190
|
+
Copyright 2025 Prior Labs GmbH
|
191
|
+
|
192
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
193
|
+
you may not use this file except in compliance with the License.
|
194
|
+
You may obtain a copy of the License at
|
195
|
+
|
196
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
197
|
+
|
198
|
+
Unless required by applicable law or agreed to in writing, software
|
199
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
200
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
201
|
+
See the License for the specific language governing permissions and
|
202
|
+
limitations under the License.
|