synth-ai 0.2.4.dev8__py3-none-any.whl → 0.2.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of synth-ai might be problematic. Click here for more details.

Files changed (112) hide show
  1. synth_ai/__init__.py +1 -1
  2. synth_ai/cli/__init__.py +6 -0
  3. synth_ai/cli/demo.py +68 -9
  4. synth_ai/cli/rl_demo.py +137 -0
  5. synth_ai/cli/root.py +65 -0
  6. synth_ai/demos/core/__init__.py +1 -0
  7. synth_ai/demos/core/cli.py +685 -0
  8. synth_ai/demos/demo_task_apps/__init__.py +1 -0
  9. synth_ai/demos/demo_task_apps/core.py +374 -0
  10. synth_ai/demos/demo_task_apps/math/__init__.py +1 -0
  11. synth_ai/demos/demo_task_apps/math/app.py +37 -0
  12. synth_ai/demos/demo_task_apps/math/config.toml +44 -0
  13. synth_ai/demos/demo_task_apps/math/deploy_modal.py +60 -0
  14. synth_ai/demos/demo_task_apps/math/deploy_task_app.sh +22 -0
  15. synth_ai/environments/examples/bandit/__init__.py +33 -0
  16. synth_ai/environments/examples/bandit/engine.py +294 -0
  17. synth_ai/environments/examples/bandit/environment.py +194 -0
  18. synth_ai/environments/examples/bandit/taskset.py +200 -0
  19. synth_ai/environments/examples/crafter_classic/agent_demos/analyze_semantic_words_markdown.py +250 -0
  20. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_comprehensive_evaluation.py +59 -0
  21. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_browser.py +152 -0
  22. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_config.toml +24 -0
  23. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_framework.py +1194 -0
  24. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/crafter_synth_config.toml +56 -0
  25. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_config_modal.toml +32 -0
  26. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_traces_sft_turso.py +724 -0
  27. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/kick_off_ft_modal.py +384 -0
  28. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_action_results.py +53 -0
  29. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_agent_actions.py +178 -0
  30. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_latest_run.py +222 -0
  31. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_lm_traces.py +183 -0
  32. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_no_rewards.py +210 -0
  33. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_trace_issue.py +206 -0
  34. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_db_schema.py +49 -0
  35. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_latest_results.py +64 -0
  36. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/debug_agent_responses.py +88 -0
  37. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/quick_trace_check.py +77 -0
  38. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/compare_experiments.py +324 -0
  39. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/filter_traces_sft_turso.py +580 -0
  40. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/kick_off_ft_oai.py +362 -0
  41. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/multi_model_config.toml +49 -0
  42. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_enhanced_hooks.py +332 -0
  43. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_events.py +97 -0
  44. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_results.py +217 -0
  45. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_hook_storage.py +87 -0
  46. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_seeds.py +88 -0
  47. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/compare_seed_performance.py +195 -0
  48. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/custom_eval_pipelines.py +400 -0
  49. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/plot_hook_frequency.py +195 -0
  50. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/seed_analysis_summary.py +56 -0
  51. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/run_rollouts_for_models_and_compare_v3.py +858 -0
  52. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_quick_evaluation.py +52 -0
  53. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_react_agent.py +874 -0
  54. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1412 -0
  55. synth_ai/environments/examples/crafter_classic/agent_demos/example_v3_usage.py +216 -0
  56. synth_ai/environments/examples/crafter_classic/agent_demos/old/compare_traces.py +296 -0
  57. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_comprehensive_evaluation.py +58 -0
  58. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_env_serialization.py +464 -0
  59. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_evaluation_browser.py +152 -0
  60. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_quick_evaluation.py +51 -0
  61. synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_trace_evaluation.py +1412 -0
  62. synth_ai/environments/examples/crafter_classic/agent_demos/old/debug_player_loss.py +112 -0
  63. synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_service.py +203 -0
  64. synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_slowness.py +305 -0
  65. synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_by_difficulty.py +126 -0
  66. synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_example.py +94 -0
  67. synth_ai/environments/examples/crafter_classic/agent_demos/old/explore_saved_states.py +142 -0
  68. synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft.py +26 -0
  69. synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft_OLD.py +984 -0
  70. synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_gemini.py +724 -0
  71. synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_modal.py +386 -0
  72. synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_metadata.py +205 -0
  73. synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_gemini.py +150 -0
  74. synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_modal.py +283 -0
  75. synth_ai/environments/examples/crafter_classic/agent_demos/old/prepare_vertex_ft.py +280 -0
  76. synth_ai/environments/examples/crafter_classic/agent_demos/old/profile_env_slowness.py +456 -0
  77. synth_ai/environments/examples/crafter_classic/agent_demos/old/replicate_issue.py +166 -0
  78. synth_ai/environments/examples/crafter_classic/agent_demos/old/run_and_eval.py +102 -0
  79. synth_ai/environments/examples/crafter_classic/agent_demos/old/run_comparison.py +128 -0
  80. synth_ai/environments/examples/crafter_classic/agent_demos/old/run_qwen_rollouts.py +655 -0
  81. synth_ai/environments/examples/crafter_classic/agent_demos/old/trace_eval_OLD.py +202 -0
  82. synth_ai/environments/examples/crafter_classic/agent_demos/old/validate_openai_format.py +166 -0
  83. synth_ai/environments/examples/crafter_classic/environment.py +41 -2
  84. synth_ai/environments/examples/crafter_custom/agent_demos/__init__.py +1 -0
  85. synth_ai/environments/examples/crafter_custom/agent_demos/trace_eval.py +202 -0
  86. synth_ai/environments/examples/crafter_custom/old/analyze_diamond_issue.py +159 -0
  87. synth_ai/environments/examples/crafter_custom/old/analyze_diamond_spawning.py +158 -0
  88. synth_ai/environments/examples/crafter_custom/old/compare_worlds.py +71 -0
  89. synth_ai/environments/examples/crafter_custom/old/dataset_stats.py +105 -0
  90. synth_ai/environments/examples/crafter_custom/old/diamond_spawning_summary.py +119 -0
  91. synth_ai/environments/examples/crafter_custom/old/example_dataset_usage.py +52 -0
  92. synth_ai/environments/examples/enron/units/keyword_stats.py +112 -0
  93. synth_ai/environments/examples/minigrid/agent_demos/minigrid_evaluation_framework.py +1188 -0
  94. synth_ai/environments/examples/minigrid/agent_demos/minigrid_quick_evaluation.py +48 -0
  95. synth_ai/environments/examples/minigrid/agent_demos/minigrid_react_agent.py +562 -0
  96. synth_ai/environments/examples/minigrid/agent_demos/minigrid_trace_evaluation.py +221 -0
  97. synth_ai/environments/examples/nethack/agent_demos/nethack_evaluation_framework.py +981 -0
  98. synth_ai/environments/examples/nethack/agent_demos/nethack_quick_evaluation.py +74 -0
  99. synth_ai/environments/examples/nethack/agent_demos/nethack_react_agent.py +831 -0
  100. synth_ai/environments/examples/red/agent_demos/__init__.py +1 -0
  101. synth_ai/environments/examples/red/units/__init__.py +1 -0
  102. synth_ai/environments/examples/sokoban/agent_demos/sokoban_full_eval.py +899 -0
  103. synth_ai/environments/examples/sokoban/units/astar_common.py +95 -0
  104. synth_ai/environments/service/app.py +8 -0
  105. synth_ai/install_sqld.sh +40 -0
  106. synth_ai-0.2.5.dist-info/METADATA +106 -0
  107. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.5.dist-info}/RECORD +111 -12
  108. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.5.dist-info}/entry_points.txt +1 -0
  109. synth_ai-0.2.4.dev8.dist-info/METADATA +0 -635
  110. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.5.dist-info}/WHEEL +0 -0
  111. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.5.dist-info}/licenses/LICENSE +0 -0
  112. {synth_ai-0.2.4.dev8.dist-info → synth_ai-0.2.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,899 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ Comprehensive Sokoban evaluation framework with trace generation.
4
+ Generates proper trace files for the Streamlit viewer.
5
+ """
6
+
7
+ import asyncio
8
+ import json
9
+ import os
10
+ import time
11
+ import uuid
12
+ from dataclasses import asdict, dataclass
13
+ from datetime import datetime
14
+ from pathlib import Path
15
+ from typing import Any, Dict, List, Optional
16
+
17
+ from synth_ai.environments.environment.tools import EnvToolCall
18
+ from synth_ai.environments.examples.sokoban.engine import ACTION_STRING_TO_INT, _grid_to_text
19
+ from synth_ai.environments.examples.sokoban.engine_helpers.room_utils import (
20
+ generate_room,
21
+ get_shortest_action_path,
22
+ )
23
+ from synth_ai.environments.examples.sokoban.environment import SokobanEnvironment
24
+ from synth_ai.environments.examples.sokoban.taskset import (
25
+ SokobanTaskInstance,
26
+ SokobanTaskInstanceMetadata,
27
+ )
28
+ from synth_ai.environments.tasks.core import Impetus, Intent
29
+ from synth_ai.zyk import LM
30
+ from synth_sdk.tracing.abstractions import (
31
+ Dataset,
32
+ EventPartitionElement,
33
+ RewardSignal,
34
+ SystemTrace,
35
+ TrainingQuestion,
36
+ )
37
+ from synth_sdk.tracing.decorators import trace_event_async
38
+ from synth_sdk.tracing.utils import get_system_id
39
+ from test_synth_react_locally import (
40
+ AgentDecisionRecord,
41
+ HistoryObservationCallable,
42
+ Move,
43
+ ReActAgent,
44
+ SokobanInteractArgs,
45
+ format_obs_for_llm_from_states,
46
+ )
47
+
48
+
49
+ @dataclass
50
+ class SokobanTrajectoryResult:
51
+ """Result from a single Sokoban trajectory."""
52
+
53
+ trajectory_id: str
54
+ model_name: str
55
+ difficulty: str
56
+ seed: int
57
+ success: bool
58
+ final_reward: float
59
+ num_steps: int
60
+ boxes_solved: int
61
+ total_boxes: int
62
+ trace_file_path: str
63
+ metadata: Dict[str, Any]
64
+
65
+
66
+ class SokobanEvalFramework:
67
+ """Comprehensive evaluation framework for Sokoban with trace generation."""
68
+
69
+ def __init__(self):
70
+ self.trajectory_results: List[SokobanTrajectoryResult] = []
71
+
72
+ async def run_single_trajectory_with_trace(
73
+ self,
74
+ model_name: str,
75
+ difficulty: str,
76
+ seed: int,
77
+ max_turns: int = 20,
78
+ collect_detailed_data: bool = True,
79
+ eval_dir: Path = None,
80
+ ) -> SokobanTrajectoryResult:
81
+ """Run a single trajectory with comprehensive trace capture."""
82
+
83
+ # Generate Sokoban instance
84
+ difficulty_configs = {
85
+ "ultra-easy": {"target_len": 1, "dim": (5, 5), "boxes": 1},
86
+ "easy": {"target_len": 3, "dim": (5, 5), "boxes": 1},
87
+ "medium": {"target_len": 5, "dim": (6, 6), "boxes": 1},
88
+ "hard": {"target_len": 7, "dim": (7, 7), "boxes": 2},
89
+ }
90
+
91
+ config = difficulty_configs.get(difficulty, difficulty_configs["easy"])
92
+
93
+ # Generate room
94
+ room_structure, room_state, _, _ = generate_room(
95
+ dim=config["dim"],
96
+ initial_seed=seed,
97
+ num_boxes=config["boxes"],
98
+ search_depth=max(10, config["target_len"] + 2),
99
+ )
100
+
101
+ # Convert numpy arrays to lists for JSON serialization
102
+ room_structure = room_structure.tolist()
103
+ room_state = room_state.tolist()
104
+
105
+ # Create task instance
106
+ metadata = SokobanTaskInstanceMetadata(
107
+ difficulty=difficulty,
108
+ num_boxes=config["boxes"],
109
+ dim_room=config["dim"],
110
+ max_steps=max_turns,
111
+ shortest_path_length=config["target_len"],
112
+ seed=seed,
113
+ generation_params=f"dim={config['dim']}, boxes={config['boxes']}, steps={max_turns}",
114
+ )
115
+
116
+ instance = SokobanTaskInstance(
117
+ id=uuid.uuid4(),
118
+ impetus=Impetus(
119
+ instructions="Solve this Sokoban puzzle by pushing all boxes onto targets."
120
+ ),
121
+ intent=Intent(rubric={}, gold_trajectories=None, gold_state_diff={}),
122
+ metadata=metadata,
123
+ is_reproducible=True,
124
+ initial_engine_snapshot={
125
+ "dim_room": config["dim"],
126
+ "room_fixed": room_structure,
127
+ "room_state": room_state,
128
+ "boxes_on_target": 0,
129
+ "max_steps": max_turns,
130
+ "num_boxes": config["boxes"],
131
+ },
132
+ )
133
+
134
+ # Setup environment and agent
135
+ hist_cb = HistoryObservationCallable(max_history=1)
136
+ env = SokobanEnvironment(instance, custom_step_obs=hist_cb)
137
+
138
+ llm = LM(model_name=model_name, formatting_model_name=model_name, temperature=0.0)
139
+ agent = ReActAgent(llm, max_turns=max_turns)
140
+
141
+ # Initialize tracking
142
+ trajectory_id = str(uuid.uuid4())
143
+ turn_count = 0
144
+ actions_per_turn = []
145
+ turn_by_turn_data = [] if collect_detailed_data else None
146
+ partition_index = 0
147
+
148
+ # Initialize environment
149
+ obs_payload = await env.initialize()
150
+ if "error" in obs_payload:
151
+ raise Exception(f"Environment initialization failed: {obs_payload['error']}")
152
+
153
+ # Record initial turn before any agent action
154
+ initial_pub_state = obs_payload["public"]
155
+ initial_priv_state = obs_payload["private"]
156
+ initial_turn_data = {
157
+ "turn_number": 0,
158
+ "room_text": _grid_to_text(initial_pub_state.room_state),
159
+ "player_position": [int(x) for x in initial_pub_state.player_position],
160
+ "boxes_on_target": int(initial_pub_state.boxes_on_target),
161
+ "num_steps": int(initial_pub_state.num_steps),
162
+ "last_action": "Initial",
163
+ "terminated": bool(initial_priv_state.terminated),
164
+ "truncated": bool(initial_priv_state.truncated),
165
+ "reward": float(initial_priv_state.reward_last),
166
+ "total_reward": float(initial_priv_state.total_reward),
167
+ "action_taken": -1,
168
+ "action_name": "initial",
169
+ }
170
+ if collect_detailed_data:
171
+ turn_by_turn_data.append(initial_turn_data)
172
+ partition_index = 0
173
+ event_partition_initial = EventPartitionElement(
174
+ partition_index=partition_index,
175
+ events=[
176
+ {
177
+ "event_type": "sokoban_turn",
178
+ "event_metadata": {
179
+ "turn_number": 0,
180
+ "turn_data": initial_turn_data,
181
+ },
182
+ "environment_compute_steps": [
183
+ {
184
+ "compute_output": [
185
+ {
186
+ "outputs": {
187
+ "room_text": initial_turn_data["room_text"],
188
+ "action": -1,
189
+ "action_name": "initial",
190
+ "player_position": initial_turn_data["player_position"],
191
+ "boxes_on_target": initial_turn_data["boxes_on_target"],
192
+ "num_steps": initial_turn_data["num_steps"],
193
+ "reward": initial_turn_data["reward"],
194
+ "terminated": initial_turn_data["terminated"],
195
+ "truncated": initial_turn_data["truncated"],
196
+ }
197
+ }
198
+ ]
199
+ }
200
+ ],
201
+ }
202
+ ],
203
+ )
204
+ partition_index += 1
205
+
206
+ agent.last_obs_dict = {
207
+ "terminated": obs_payload["private"].terminated,
208
+ "boxes_on_target": obs_payload["public"].boxes_on_target,
209
+ }
210
+ agent.num_total_boxes = obs_payload["public"].num_boxes
211
+
212
+ try:
213
+ while turn_count < max_turns:
214
+ turn_count += 1
215
+
216
+ current_formatted_obs = format_obs_for_llm_from_states(
217
+ obs_payload["public"], obs_payload["private"]
218
+ )
219
+
220
+ # Get current game state for trace
221
+ pub_state = obs_payload["public"]
222
+ priv_state = obs_payload["private"]
223
+
224
+ # Create turn data
225
+ turn_data = {
226
+ "turn_number": turn_count,
227
+ "room_text": _grid_to_text(pub_state.room_state),
228
+ "player_position": [int(x) for x in pub_state.player_position],
229
+ "boxes_on_target": int(pub_state.boxes_on_target),
230
+ "num_steps": int(pub_state.num_steps),
231
+ "last_action": pub_state.last_action_name,
232
+ "terminated": priv_state.terminated,
233
+ "truncated": priv_state.truncated,
234
+ "reward": float(priv_state.reward_last),
235
+ "total_reward": float(priv_state.total_reward),
236
+ }
237
+
238
+ # Agent decision - get full reasoning record
239
+ decision_record = await agent.decide(current_formatted_obs)
240
+ action_int = decision_record.action_int
241
+
242
+ if action_int == -1: # Agent terminated
243
+ break
244
+
245
+ # Execute action
246
+ obs_payload_next = await env.step([Move(action_int)])
247
+
248
+ if "error" in obs_payload_next:
249
+ break
250
+
251
+ # Update turn data with action taken
252
+ turn_data["action_taken"] = action_int
253
+ turn_data["action_name"] = (
254
+ list(ACTION_STRING_TO_INT.keys())[
255
+ list(ACTION_STRING_TO_INT.values()).index(action_int)
256
+ ]
257
+ if action_int in ACTION_STRING_TO_INT.values()
258
+ else f"unknown_{action_int}"
259
+ )
260
+
261
+ # Store detailed turn data
262
+ if collect_detailed_data:
263
+ turn_by_turn_data.append(turn_data)
264
+
265
+ # Create event partition for this turn with BOTH agent and environment compute steps
266
+ event_partition = EventPartitionElement(
267
+ partition_index=partition_index,
268
+ events=[
269
+ {
270
+ "event_type": "sokoban_turn",
271
+ "event_metadata": {
272
+ "turn_number": turn_count,
273
+ "boxes_on_target": pub_state.boxes_on_target,
274
+ "total_boxes": pub_state.num_boxes,
275
+ "action_taken": turn_data["action_name"],
276
+ "player_position": turn_data["player_position"],
277
+ },
278
+ "agent_compute_step": {
279
+ "event_order": 1,
280
+ "compute_began": datetime.now().isoformat(),
281
+ "compute_ended": datetime.now().isoformat(),
282
+ "model_name": decision_record.model_name,
283
+ "model_params": {"temperature": 0.0},
284
+ "compute_input": [{"messages": decision_record.input_messages}],
285
+ "compute_output": [{"messages": decision_record.output_messages}],
286
+ },
287
+ "environment_compute_steps": [
288
+ {
289
+ "event_order": 2,
290
+ "compute_began": datetime.now().isoformat(),
291
+ "compute_ended": datetime.now().isoformat(),
292
+ "compute_input": [
293
+ {
294
+ "action": action_int,
295
+ "action_name": turn_data["action_name"],
296
+ }
297
+ ],
298
+ "compute_output": [
299
+ {
300
+ "outputs": {
301
+ "room_text": turn_data["room_text"],
302
+ "action": action_int,
303
+ "action_name": turn_data["action_name"],
304
+ "player_position": turn_data["player_position"],
305
+ "boxes_on_target": turn_data["boxes_on_target"],
306
+ "num_steps": turn_data["num_steps"],
307
+ "reward": turn_data["reward"],
308
+ "terminated": turn_data["terminated"],
309
+ "truncated": turn_data["truncated"],
310
+ }
311
+ }
312
+ ],
313
+ }
314
+ ],
315
+ }
316
+ ],
317
+ )
318
+
319
+ actions_per_turn.append(action_int)
320
+ partition_index += 1
321
+
322
+ # Update for next iteration
323
+ obs_payload = obs_payload_next
324
+ agent.last_obs_dict = {
325
+ "terminated": obs_payload["private"].terminated,
326
+ "boxes_on_target": obs_payload["public"].boxes_on_target,
327
+ }
328
+
329
+ # Check termination - if terminated, record final state
330
+ if obs_payload["private"].terminated or obs_payload["private"].truncated:
331
+ # Record final state after the terminating action
332
+ final_pub_state = obs_payload["public"]
333
+ final_priv_state = obs_payload["private"]
334
+
335
+ final_turn_data = {
336
+ "turn_number": turn_count + 1,
337
+ "room_text": _grid_to_text(final_pub_state.room_state),
338
+ "player_position": [int(x) for x in final_pub_state.player_position],
339
+ "boxes_on_target": int(final_pub_state.boxes_on_target),
340
+ "num_steps": int(final_pub_state.num_steps),
341
+ "last_action": final_pub_state.last_action_name,
342
+ "terminated": final_priv_state.terminated,
343
+ "truncated": final_priv_state.truncated,
344
+ "reward": float(final_priv_state.reward_last),
345
+ "total_reward": float(final_priv_state.total_reward),
346
+ "action_taken": -1, # No action taken in final state
347
+ "action_name": "final_state",
348
+ }
349
+
350
+ if collect_detailed_data:
351
+ turn_by_turn_data.append(final_turn_data)
352
+
353
+ # Create event partition for final state
354
+ final_event_partition = EventPartitionElement(
355
+ partition_index=partition_index,
356
+ events=[
357
+ {
358
+ "event_type": "sokoban_turn",
359
+ "event_metadata": {
360
+ "turn_number": turn_count + 1,
361
+ "turn_data": final_turn_data,
362
+ },
363
+ "environment_compute_steps": [
364
+ {
365
+ "compute_output": [
366
+ {
367
+ "outputs": {
368
+ "room_text": final_turn_data["room_text"],
369
+ "action": -1,
370
+ "action_name": "final_state",
371
+ "player_position": final_turn_data[
372
+ "player_position"
373
+ ],
374
+ "boxes_on_target": final_turn_data[
375
+ "boxes_on_target"
376
+ ],
377
+ "num_steps": final_turn_data["num_steps"],
378
+ "reward": final_turn_data["reward"],
379
+ "terminated": final_turn_data["terminated"],
380
+ "truncated": final_turn_data["truncated"],
381
+ }
382
+ }
383
+ ]
384
+ }
385
+ ],
386
+ }
387
+ ],
388
+ )
389
+ partition_index += 1
390
+ break
391
+
392
+ except Exception as e:
393
+ print(f"Error during trajectory execution: {e}")
394
+
395
+ # Final state
396
+ final_private_state = obs_payload["private"]
397
+ final_public_state = obs_payload["public"]
398
+
399
+ success = bool(final_public_state.boxes_on_target == final_public_state.num_boxes)
400
+ final_reward = float(final_private_state.total_reward)
401
+ num_steps = int(final_public_state.num_steps)
402
+
403
+ # Create trace data
404
+ trace_data = {
405
+ "trace": {
406
+ "metadata": {
407
+ "model_name": model_name,
408
+ "difficulty": difficulty,
409
+ "seed": seed,
410
+ "trajectory_id": trajectory_id,
411
+ "success": success,
412
+ "final_reward": final_reward,
413
+ "num_steps": num_steps,
414
+ "boxes_solved": int(final_public_state.boxes_on_target),
415
+ "total_boxes": int(final_public_state.num_boxes),
416
+ "max_turns": max_turns,
417
+ },
418
+ "partition": [
419
+ {
420
+ "partition_index": i,
421
+ "events": [
422
+ {
423
+ "event_type": "sokoban_turn",
424
+ "event_metadata": {
425
+ "turn_number": i + 1,
426
+ "turn_data": turn_data,
427
+ },
428
+ "agent_compute_step": {
429
+ "event_order": 1,
430
+ "compute_began": datetime.now().isoformat(),
431
+ "compute_ended": datetime.now().isoformat(),
432
+ "model_name": model_name,
433
+ "model_params": {"temperature": 0.0},
434
+ "compute_input": [
435
+ {
436
+ "messages": [
437
+ {
438
+ "role": "system",
439
+ "content": "You are playing Sokoban. Push all boxes onto targets.",
440
+ },
441
+ {
442
+ "role": "user",
443
+ "content": f"Turn {i + 1}: {turn_data['room_text']}",
444
+ },
445
+ ]
446
+ }
447
+ ],
448
+ "compute_output": [
449
+ {
450
+ "messages": [
451
+ {
452
+ "role": "assistant",
453
+ "content": f"Taking action: {turn_data.get('action_name', 'initial')}",
454
+ "tool_calls": [
455
+ {
456
+ "id": f"turn_{i + 1}",
457
+ "type": "function",
458
+ "function": {
459
+ "name": "sokoban_interact",
460
+ "arguments": json.dumps(
461
+ {
462
+ "actions_list": [
463
+ turn_data.get(
464
+ "action_name",
465
+ "initial",
466
+ )
467
+ ],
468
+ "reasoning": f"Turn {i + 1} action",
469
+ }
470
+ ),
471
+ },
472
+ }
473
+ ],
474
+ },
475
+ {
476
+ "role": "tool",
477
+ "tool_call_id": f"turn_{i + 1}",
478
+ "content": f"Executed: {turn_data.get('action_name', 'initial')}",
479
+ },
480
+ ]
481
+ }
482
+ ],
483
+ },
484
+ "environment_compute_steps": [
485
+ {
486
+ "event_order": 2,
487
+ "compute_began": datetime.now().isoformat(),
488
+ "compute_ended": datetime.now().isoformat(),
489
+ "compute_input": [
490
+ {
491
+ "action": turn_data.get("action_taken", -1),
492
+ "action_name": turn_data.get(
493
+ "action_name", "initial"
494
+ ),
495
+ }
496
+ ],
497
+ "compute_output": [
498
+ {
499
+ "outputs": {
500
+ "room_text": turn_data["room_text"],
501
+ "action": turn_data.get("action_taken", -1),
502
+ "action_name": turn_data.get(
503
+ "action_name", "initial"
504
+ ),
505
+ "player_position": turn_data["player_position"],
506
+ "boxes_on_target": turn_data["boxes_on_target"],
507
+ "num_steps": turn_data["num_steps"],
508
+ "reward": turn_data["reward"],
509
+ "terminated": turn_data["terminated"],
510
+ "truncated": turn_data["truncated"],
511
+ }
512
+ }
513
+ ],
514
+ }
515
+ ],
516
+ }
517
+ ],
518
+ }
519
+ for i, turn_data in enumerate(turn_by_turn_data or [])
520
+ ],
521
+ },
522
+ "dataset": {
523
+ "questions": [
524
+ {
525
+ "id": "sokoban_puzzle",
526
+ "intent": "solve",
527
+ "criteria": "push_all_boxes_to_targets",
528
+ }
529
+ ],
530
+ "reward_signals": [
531
+ {
532
+ "question_id": "sokoban_puzzle",
533
+ "system_instance_id": agent.system_instance_id,
534
+ "reward": final_reward,
535
+ "annotation": json.dumps(
536
+ {
537
+ "success": success,
538
+ "boxes_solved": final_public_state.boxes_on_target,
539
+ "total_boxes": final_public_state.num_boxes,
540
+ "num_steps": num_steps,
541
+ "actions_taken": len(actions_per_turn),
542
+ }
543
+ ),
544
+ }
545
+ ],
546
+ },
547
+ }
548
+
549
+ # Save trace file
550
+ eval_dir = eval_dir or Path(
551
+ f"src/evals/sokoban/run_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
552
+ )
553
+ eval_dir.mkdir(parents=True, exist_ok=True)
554
+ traces_dir = eval_dir / "traces"
555
+ traces_dir.mkdir(exist_ok=True)
556
+
557
+ trace_file_path = traces_dir / f"{trajectory_id}.json"
558
+ with open(trace_file_path, "w") as f:
559
+ json.dump(trace_data, f, indent=2)
560
+
561
+ # Create trajectory result
562
+ result = SokobanTrajectoryResult(
563
+ trajectory_id=trajectory_id,
564
+ model_name=model_name,
565
+ difficulty=difficulty,
566
+ seed=seed,
567
+ success=success,
568
+ final_reward=final_reward,
569
+ num_steps=num_steps,
570
+ boxes_solved=int(final_public_state.boxes_on_target),
571
+ total_boxes=int(final_public_state.num_boxes),
572
+ trace_file_path=str(trace_file_path),
573
+ metadata={
574
+ "max_turns": max_turns,
575
+ "actions_taken": len(actions_per_turn),
576
+ "evaluation_timestamp": datetime.now().isoformat(),
577
+ },
578
+ )
579
+
580
+ self.trajectory_results.append(result)
581
+ return result
582
+
583
+ async def run_evaluation(
584
+ self,
585
+ model_names: List[str],
586
+ difficulties: List[str] = ["ultra-easy", "easy", "medium"],
587
+ num_trajectories_per_condition: int = 3,
588
+ max_turns: int = 20,
589
+ ) -> Dict[str, Any]:
590
+ """Run comprehensive evaluation across models and difficulties."""
591
+
592
+ print(f"šŸŽÆ Starting Sokoban evaluation")
593
+ print(f" Models: {model_names}")
594
+ print(f" Difficulties: {difficulties}")
595
+ print(f" Trajectories per condition: {num_trajectories_per_condition}")
596
+ print(f" Max turns per trajectory: {max_turns}")
597
+
598
+ eval_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
599
+ eval_dir = Path(f"src/evals/sokoban/run_{eval_timestamp}")
600
+ eval_dir.mkdir(parents=True, exist_ok=True)
601
+
602
+ all_results = []
603
+
604
+ for model_name in model_names:
605
+ for difficulty in difficulties:
606
+ print(f"\nšŸ¤– Running {model_name} on {difficulty} difficulty...")
607
+
608
+ # Run trajectories for this condition
609
+ condition_results = []
610
+ for traj_idx in range(num_trajectories_per_condition):
611
+ seed = hash(f"{model_name}_{difficulty}_{traj_idx}") % 10000
612
+
613
+ print(
614
+ f" Trajectory {traj_idx + 1}/{num_trajectories_per_condition} (seed={seed})"
615
+ )
616
+
617
+ result = await self.run_single_trajectory_with_trace(
618
+ model_name=model_name,
619
+ difficulty=difficulty,
620
+ seed=seed,
621
+ max_turns=max_turns,
622
+ eval_dir=eval_dir,
623
+ )
624
+
625
+ condition_results.append(result)
626
+ all_results.append(result)
627
+
628
+ # Print condition summary
629
+ successful = sum(1 for r in condition_results if r.success)
630
+ avg_steps = sum(r.num_steps for r in condition_results) / len(condition_results)
631
+ avg_boxes = sum(r.boxes_solved for r in condition_results) / len(condition_results)
632
+
633
+ print(f" āœ… {successful}/{len(condition_results)} successful")
634
+ print(f" šŸ“Š Avg steps: {avg_steps:.1f}, Avg boxes solved: {avg_boxes:.1f}")
635
+
636
+ # Generate evaluation summary
637
+ summary = {
638
+ "evaluation_timestamp": eval_timestamp,
639
+ "models_evaluated": model_names,
640
+ "difficulties_evaluated": difficulties,
641
+ "evaluation_metadata": {
642
+ "num_trajectories": len(all_results),
643
+ "max_turns": max_turns,
644
+ "trajectories_per_condition": num_trajectories_per_condition,
645
+ },
646
+ "aggregate_results": [],
647
+ }
648
+
649
+ # Aggregate results by model and difficulty
650
+ for model_name in model_names:
651
+ for difficulty in difficulties:
652
+ condition_results = [
653
+ r
654
+ for r in all_results
655
+ if r.model_name == model_name and r.difficulty == difficulty
656
+ ]
657
+
658
+ if condition_results:
659
+ success_rate = sum(1 for r in condition_results if r.success) / len(
660
+ condition_results
661
+ )
662
+ avg_reward = sum(r.final_reward for r in condition_results) / len(
663
+ condition_results
664
+ )
665
+ avg_steps = sum(r.num_steps for r in condition_results) / len(condition_results)
666
+ avg_boxes = sum(r.boxes_solved for r in condition_results) / len(
667
+ condition_results
668
+ )
669
+
670
+ summary["aggregate_results"].append(
671
+ {
672
+ "model_name": model_name,
673
+ "difficulty": difficulty,
674
+ "num_trajectories": len(condition_results),
675
+ "success_rate": success_rate,
676
+ "avg_reward": avg_reward,
677
+ "avg_steps": avg_steps,
678
+ "avg_boxes_solved": avg_boxes,
679
+ }
680
+ )
681
+
682
+ # Save evaluation summary
683
+ summary_file = eval_dir / "evaluation_summary.json"
684
+ with open(summary_file, "w") as f:
685
+ json.dump(summary, f, indent=2)
686
+
687
+ # Print detailed aggregated results
688
+ print("\n" + "=" * 80)
689
+ print("šŸ† FINAL SOKOBAN EVALUATION RESULTS")
690
+ print("=" * 80)
691
+
692
+ # Overall metrics
693
+ all_successes = [r.success for r in all_results]
694
+ all_rewards = [r.final_reward for r in all_results]
695
+ all_steps = [r.num_steps for r in all_results]
696
+ all_boxes_solved = [r.boxes_solved for r in all_results]
697
+
698
+ print(f"šŸ“Š EVAL METRICS:")
699
+ print(f" Episodes: {len(all_results)}")
700
+ print(f" Individual Success: {[str(x) for x in all_successes]}")
701
+ print(f" Success Rate: {sum(all_successes) / len(all_successes):.3f}")
702
+
703
+ print(f"\nšŸ† REWARD METRICS:")
704
+ print(f" Individual Rewards: {[f'{x:.2f}' for x in all_rewards]}")
705
+ print(f" Mean Reward: {sum(all_rewards) / len(all_rewards):.2f}")
706
+
707
+ print(f"\nšŸ“ˆ EFFICIENCY METRICS:")
708
+ print(f" Individual Steps: {[str(x) for x in all_steps]}")
709
+ print(f" Mean Steps: {sum(all_steps) / len(all_steps):.1f}")
710
+
711
+ print(f"\nšŸ“¦ BOX SOLVING METRICS:")
712
+ print(f" Individual Boxes Solved: {[str(x) for x in all_boxes_solved]}")
713
+ print(f" Mean Boxes Solved: {sum(all_boxes_solved) / len(all_boxes_solved):.1f}")
714
+
715
+ # Results by difficulty
716
+ print(f"\nšŸŽÆ RESULTS BY DIFFICULTY:")
717
+ for model_name in model_names:
718
+ print(f" Model: {model_name}")
719
+ for difficulty in difficulties:
720
+ condition_results = [
721
+ r
722
+ for r in all_results
723
+ if r.model_name == model_name and r.difficulty == difficulty
724
+ ]
725
+ if condition_results:
726
+ success_rate = sum(1 for r in condition_results if r.success) / len(
727
+ condition_results
728
+ )
729
+ avg_reward = sum(r.final_reward for r in condition_results) / len(
730
+ condition_results
731
+ )
732
+ avg_steps = sum(r.num_steps for r in condition_results) / len(condition_results)
733
+ avg_boxes = sum(r.boxes_solved for r in condition_results) / len(
734
+ condition_results
735
+ )
736
+ print(
737
+ f" {difficulty}: {success_rate:.1%} success, {avg_reward:.1f} reward, {avg_steps:.1f} steps, {avg_boxes:.1f} boxes"
738
+ )
739
+
740
+ # Overall assessment
741
+ overall_success_rate = sum(all_successes) / len(all_successes)
742
+ overall_reward = sum(all_rewards) / len(all_rewards)
743
+
744
+ print(f"\nšŸ” ASSESSMENT:")
745
+ if overall_success_rate >= 0.8:
746
+ print("šŸŽ‰ Excellent performance - mastering puzzle solving!")
747
+ elif overall_success_rate >= 0.6:
748
+ print("āœ… Good performance - solving most puzzles!")
749
+ elif overall_success_rate >= 0.4:
750
+ print("āš ļø Moderate performance - learning puzzle mechanics")
751
+ elif overall_success_rate >= 0.2:
752
+ print("šŸ“ˆ Early progress - understanding basic moves")
753
+ else:
754
+ print("🧩 Learning phase - focus on understanding Sokoban rules")
755
+
756
+ # Output markdown table row for README collation
757
+ print(f"\nšŸ“‹ MARKDOWN TABLE ROW:")
758
+ print(
759
+ "| Model | Episodes | Success Rate | Mean Reward | Mean Steps | Mean Boxes | Assessment |"
760
+ )
761
+ print(
762
+ "|------------------|----------|--------------|-------------|------------|------------|------------|"
763
+ )
764
+
765
+ if overall_success_rate >= 0.6:
766
+ assessment = "Excellent"
767
+ elif overall_success_rate >= 0.4:
768
+ assessment = "Good"
769
+ elif overall_success_rate >= 0.2:
770
+ assessment = "Moderate"
771
+ else:
772
+ assessment = "Learning"
773
+
774
+ main_model = model_names[0] if model_names else "Unknown"
775
+ mean_steps = sum(all_steps) / len(all_steps)
776
+ mean_boxes = sum(all_boxes_solved) / len(all_boxes_solved)
777
+
778
+ print(
779
+ f"| {main_model:<16} | {len(all_results):>8} | {overall_success_rate:>12.3f} | {overall_reward:>11.2f} | {mean_steps:>10.1f} | {mean_boxes:>10.1f} | {assessment:<10} |"
780
+ )
781
+
782
+ print(f"\nšŸ“ Evaluation saved to: {eval_dir}")
783
+ print(f"šŸ“ Summary: {summary_file}")
784
+ print(f"šŸ“ Traces: {eval_dir / 'traces'}")
785
+
786
+ return summary
787
+
788
+
789
+ # Convenience function for quick evaluations
790
+ async def run_sokoban_eval(
791
+ model_names: List[str],
792
+ difficulties: List[str] = ["ultra-easy", "easy", "medium"],
793
+ num_trajectories: int = 3,
794
+ max_turns: int = 20,
795
+ ) -> Dict[str, Any]:
796
+ """Quick evaluation runner with automatic report generation."""
797
+
798
+ framework = SokobanEvalFramework()
799
+ report = await framework.run_evaluation(
800
+ model_names=model_names,
801
+ difficulties=difficulties,
802
+ num_trajectories_per_condition=num_trajectories,
803
+ max_turns=max_turns,
804
+ )
805
+
806
+ return report
807
+
808
+
809
+ # --- Configuration Class ---
810
+ class SokobanConfig:
811
+ """Configuration for Sokoban evaluation."""
812
+
813
+ def __init__(self, config_path: Optional[str] = None):
814
+ # Defaults
815
+ self.model_name = "gpt-4.1-mini"
816
+ self.num_instances = 3
817
+ self.max_turns = 20
818
+ self.difficulty_levels = ["ultra-easy", "easy", "medium"]
819
+ self.service_base_url = "http://localhost:8901"
820
+ self.service_timeout = 30.0
821
+ self.seed = 42
822
+ self.save_traces = True
823
+ self.save_detailed_results = True
824
+
825
+ if config_path and os.path.exists(config_path):
826
+ try:
827
+ import toml
828
+
829
+ cfg = toml.load(config_path)
830
+
831
+ e = cfg.get("eval", {})
832
+ self.model_name = e.get("model_name", self.model_name)
833
+ self.num_instances = e.get("episodes", self.num_instances)
834
+ self.max_turns = e.get("max_steps", self.max_turns)
835
+ diff = e.get("difficulty", None)
836
+ if diff:
837
+ # allow comma-separated list or single value
838
+ if isinstance(diff, str) and "," in diff:
839
+ self.difficulty_levels = [d.strip() for d in diff.split(",")]
840
+ elif isinstance(diff, list):
841
+ self.difficulty_levels = diff
842
+ else:
843
+ self.difficulty_levels = [str(diff)]
844
+
845
+ self.seed = e.get("seed", self.seed)
846
+
847
+ s = cfg.get("service", {})
848
+ self.service_base_url = s.get("base_url", self.service_base_url)
849
+ self.service_timeout = s.get("timeout", self.service_timeout)
850
+
851
+ o = cfg.get("output", {})
852
+ self.save_traces = o.get("save_traces", self.save_traces)
853
+ self.save_detailed_results = o.get(
854
+ "save_detailed_results", self.save_detailed_results
855
+ )
856
+ except Exception as exc:
857
+ print(f"[WARNING] Failed to load Sokoban config: {exc}")
858
+
859
+
860
+ # --- Helper to run evaluation with config ---
861
+ async def _run_with_config(cfg: SokobanConfig):
862
+ await run_sokoban_eval(
863
+ model_names=[cfg.model_name],
864
+ difficulties=cfg.difficulty_levels,
865
+ num_trajectories=cfg.num_instances,
866
+ max_turns=cfg.max_turns,
867
+ )
868
+
869
+
870
+ # --- CLI Entry Point ---
871
+ if __name__ == "__main__":
872
+ import argparse
873
+ import asyncio
874
+
875
+ parser = argparse.ArgumentParser(description="Run Sokoban evaluation with optional TOML config")
876
+ parser.add_argument("--config", "-c", type=str, help="Path to TOML configuration file")
877
+ parser.add_argument("--model", "-m", type=str, help="Model name override")
878
+ parser.add_argument("--episodes", "-e", type=int, help="Episodes override")
879
+ parser.add_argument("--max-turns", "-t", type=int, help="Max turns override")
880
+ parser.add_argument(
881
+ "--difficulty", "-d", type=str, help="Difficulty (single or comma-separated list)"
882
+ )
883
+
884
+ args = parser.parse_args()
885
+
886
+ cfg = SokobanConfig(args.config)
887
+ if args.model:
888
+ cfg.model_name = args.model
889
+ if args.episodes:
890
+ cfg.num_instances = args.episodes
891
+ if args.max_turns:
892
+ cfg.max_turns = args.max_turns
893
+ if args.difficulty:
894
+ if "," in args.difficulty:
895
+ cfg.difficulty_levels = [d.strip() for d in args.difficulty.split(",")]
896
+ else:
897
+ cfg.difficulty_levels = [args.difficulty]
898
+
899
+ asyncio.run(_run_with_config(cfg))