synth-ai 0.2.4.dev7__py3-none-any.whl → 0.2.4.dev9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of synth-ai might be problematic. Click here for more details.
- synth_ai/__init__.py +1 -1
- synth_ai/cli/__init__.py +6 -0
- synth_ai/cli/balance.py +3 -15
- synth_ai/cli/demo.py +68 -9
- synth_ai/cli/rl_demo.py +137 -0
- synth_ai/cli/root.py +65 -0
- synth_ai/config/base_url.py +47 -0
- synth_ai/demos/core/__init__.py +1 -0
- synth_ai/demos/core/cli.py +621 -0
- synth_ai/demos/demo_task_apps/__init__.py +1 -0
- synth_ai/demos/demo_task_apps/core.py +374 -0
- synth_ai/demos/demo_task_apps/math/__init__.py +1 -0
- synth_ai/demos/demo_task_apps/math/app.py +37 -0
- synth_ai/demos/demo_task_apps/math/config.toml +44 -0
- synth_ai/demos/demo_task_apps/math/deploy_modal.py +60 -0
- synth_ai/demos/demo_task_apps/math/deploy_task_app.sh +22 -0
- synth_ai/environments/examples/bandit/__init__.py +33 -0
- synth_ai/environments/examples/bandit/engine.py +294 -0
- synth_ai/environments/examples/bandit/environment.py +194 -0
- synth_ai/environments/examples/bandit/taskset.py +200 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/analyze_semantic_words_markdown.py +250 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_comprehensive_evaluation.py +59 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_browser.py +152 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_config.toml +24 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_framework.py +1194 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/crafter_synth_config.toml +56 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_config_modal.toml +32 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_traces_sft_turso.py +724 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/kick_off_ft_modal.py +384 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_action_results.py +53 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_agent_actions.py +178 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_latest_run.py +222 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_lm_traces.py +183 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_no_rewards.py +210 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/analyze_trace_issue.py +206 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_db_schema.py +49 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/check_latest_results.py +64 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/debug_agent_responses.py +88 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/old/quick_trace_check.py +77 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/compare_experiments.py +324 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/filter_traces_sft_turso.py +580 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/kick_off_ft_oai.py +362 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/multi_model_config.toml +49 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_enhanced_hooks.py +332 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_events.py +97 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/analyze_hook_results.py +217 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_hook_storage.py +87 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/check_seeds.py +88 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/compare_seed_performance.py +195 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/custom_eval_pipelines.py +400 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/plot_hook_frequency.py +195 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/old/seed_analysis_summary.py +56 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/run_rollouts_for_models_and_compare_v3.py +858 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_quick_evaluation.py +52 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_react_agent.py +874 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1412 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/example_v3_usage.py +216 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/compare_traces.py +296 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_comprehensive_evaluation.py +58 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_env_serialization.py +464 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_evaluation_browser.py +152 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_quick_evaluation.py +51 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/crafter_trace_evaluation.py +1412 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/debug_player_loss.py +112 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_service.py +203 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/diagnose_slowness.py +305 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_by_difficulty.py +126 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/eval_example.py +94 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/explore_saved_states.py +142 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft.py +26 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/filter_traces_sft_OLD.py +984 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_gemini.py +724 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_data_modal.py +386 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/generate_ft_metadata.py +205 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_gemini.py +150 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/kick_off_ft_modal.py +283 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/prepare_vertex_ft.py +280 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/profile_env_slowness.py +456 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/replicate_issue.py +166 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/run_and_eval.py +102 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/run_comparison.py +128 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/run_qwen_rollouts.py +655 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/trace_eval_OLD.py +202 -0
- synth_ai/environments/examples/crafter_classic/agent_demos/old/validate_openai_format.py +166 -0
- synth_ai/environments/examples/crafter_classic/environment.py +41 -2
- synth_ai/environments/examples/crafter_custom/agent_demos/__init__.py +1 -0
- synth_ai/environments/examples/crafter_custom/agent_demos/trace_eval.py +202 -0
- synth_ai/environments/examples/crafter_custom/old/analyze_diamond_issue.py +159 -0
- synth_ai/environments/examples/crafter_custom/old/analyze_diamond_spawning.py +158 -0
- synth_ai/environments/examples/crafter_custom/old/compare_worlds.py +71 -0
- synth_ai/environments/examples/crafter_custom/old/dataset_stats.py +105 -0
- synth_ai/environments/examples/crafter_custom/old/diamond_spawning_summary.py +119 -0
- synth_ai/environments/examples/crafter_custom/old/example_dataset_usage.py +52 -0
- synth_ai/environments/examples/enron/units/keyword_stats.py +112 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_evaluation_framework.py +1188 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_quick_evaluation.py +48 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_react_agent.py +562 -0
- synth_ai/environments/examples/minigrid/agent_demos/minigrid_trace_evaluation.py +221 -0
- synth_ai/environments/examples/nethack/agent_demos/nethack_evaluation_framework.py +981 -0
- synth_ai/environments/examples/nethack/agent_demos/nethack_quick_evaluation.py +74 -0
- synth_ai/environments/examples/nethack/agent_demos/nethack_react_agent.py +831 -0
- synth_ai/environments/examples/red/agent_demos/__init__.py +1 -0
- synth_ai/environments/examples/red/units/__init__.py +1 -0
- synth_ai/environments/examples/sokoban/agent_demos/sokoban_full_eval.py +899 -0
- synth_ai/environments/examples/sokoban/units/astar_common.py +95 -0
- synth_ai/environments/service/app.py +8 -0
- synth_ai/http.py +102 -0
- synth_ai/inference/__init__.py +7 -0
- synth_ai/inference/client.py +20 -0
- synth_ai/install_sqld.sh +40 -0
- synth_ai/jobs/client.py +246 -0
- synth_ai/learning/__init__.py +24 -0
- synth_ai/learning/client.py +149 -0
- synth_ai/learning/config.py +43 -0
- synth_ai/learning/constants.py +29 -0
- synth_ai/learning/ft_client.py +59 -0
- synth_ai/learning/health.py +43 -0
- synth_ai/learning/jobs.py +205 -0
- synth_ai/learning/rl_client.py +256 -0
- synth_ai/learning/sse.py +58 -0
- synth_ai/learning/validators.py +48 -0
- synth_ai/lm/core/main_v3.py +13 -0
- synth_ai/lm/core/synth_models.py +48 -0
- synth_ai/lm/core/vendor_clients.py +9 -6
- synth_ai/lm/vendors/core/openai_api.py +31 -3
- synth_ai/lm/vendors/openai_standard.py +45 -14
- synth_ai/lm/vendors/supported/custom_endpoint.py +12 -2
- synth_ai/lm/vendors/synth_client.py +372 -28
- synth_ai/rl/__init__.py +30 -0
- synth_ai/rl/contracts.py +32 -0
- synth_ai/rl/env_keys.py +137 -0
- synth_ai/rl/secrets.py +19 -0
- synth_ai/scripts/verify_rewards.py +100 -0
- synth_ai/task/__init__.py +10 -0
- synth_ai/task/contracts.py +120 -0
- synth_ai/task/health.py +28 -0
- synth_ai/task/validators.py +12 -0
- synth_ai/tracing_v3/hooks.py +3 -1
- synth_ai/tracing_v3/session_tracer.py +123 -2
- synth_ai/tracing_v3/turso/manager.py +218 -0
- synth_ai/tracing_v3/turso/models.py +53 -0
- synth_ai-0.2.4.dev9.dist-info/METADATA +91 -0
- {synth_ai-0.2.4.dev7.dist-info → synth_ai-0.2.4.dev9.dist-info}/RECORD +147 -30
- {synth_ai-0.2.4.dev7.dist-info → synth_ai-0.2.4.dev9.dist-info}/entry_points.txt +1 -0
- synth_ai/tui/__init__.py +0 -1
- synth_ai/tui/__main__.py +0 -13
- synth_ai/tui/cli/__init__.py +0 -1
- synth_ai/tui/cli/query_experiments.py +0 -164
- synth_ai/tui/cli/query_experiments_v3.py +0 -164
- synth_ai/tui/dashboard.py +0 -340
- synth_ai-0.2.4.dev7.dist-info/METADATA +0 -193
- {synth_ai-0.2.4.dev7.dist-info → synth_ai-0.2.4.dev9.dist-info}/WHEEL +0 -0
- {synth_ai-0.2.4.dev7.dist-info → synth_ai-0.2.4.dev9.dist-info}/licenses/LICENSE +0 -0
- {synth_ai-0.2.4.dev7.dist-info → synth_ai-0.2.4.dev9.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,294 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from dataclasses import dataclass
|
|
4
|
+
from typing import Any
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
|
|
8
|
+
from synth_ai.environments.environment.shared_engine import (
|
|
9
|
+
GetObservationCallable,
|
|
10
|
+
InternalObservation,
|
|
11
|
+
)
|
|
12
|
+
from synth_ai.environments.reproducibility.core import IReproducibleEngine
|
|
13
|
+
from synth_ai.environments.stateful.engine import StatefulEngine, StatefulEngineSnapshot
|
|
14
|
+
from synth_ai.environments.tasks.core import TaskInstance
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
@dataclass
|
|
18
|
+
class BanditPublicState:
|
|
19
|
+
arm_count: int
|
|
20
|
+
step_count: int
|
|
21
|
+
max_steps: int
|
|
22
|
+
last_arm: int | None
|
|
23
|
+
last_reward: float | None
|
|
24
|
+
cumulative_reward: float
|
|
25
|
+
reward_history: list[float]
|
|
26
|
+
arm_pull_counts: list[int]
|
|
27
|
+
terminated: bool
|
|
28
|
+
status: str
|
|
29
|
+
|
|
30
|
+
@property
|
|
31
|
+
def steps_remaining(self) -> int:
|
|
32
|
+
return max(0, self.max_steps - self.step_count)
|
|
33
|
+
|
|
34
|
+
@property
|
|
35
|
+
def average_reward(self) -> float:
|
|
36
|
+
return self.cumulative_reward / self.step_count if self.step_count else 0.0
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
@dataclass
|
|
40
|
+
class BanditPrivateState:
|
|
41
|
+
reward_last: float
|
|
42
|
+
total_reward: float
|
|
43
|
+
terminated: bool
|
|
44
|
+
truncated: bool
|
|
45
|
+
true_expected_rewards: list[float]
|
|
46
|
+
step_count: int
|
|
47
|
+
|
|
48
|
+
|
|
49
|
+
@dataclass
|
|
50
|
+
class BanditEngineSnapshot(StatefulEngineSnapshot):
|
|
51
|
+
task_instance_dict: dict[str, Any]
|
|
52
|
+
engine_snapshot: dict[str, Any]
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
class BanditEngine(StatefulEngine, IReproducibleEngine):
|
|
56
|
+
def __init__(self, task_instance: TaskInstance):
|
|
57
|
+
self.task_instance = task_instance
|
|
58
|
+
|
|
59
|
+
metadata = getattr(task_instance, "metadata", None)
|
|
60
|
+
self.bandit_type: str = getattr(metadata, "bandit_type", "bernoulli")
|
|
61
|
+
self.max_steps: int = int(getattr(metadata, "max_steps", 100))
|
|
62
|
+
self.seed: int | None = getattr(metadata, "seed", None)
|
|
63
|
+
|
|
64
|
+
self.arm_probabilities: list[float] | None = None
|
|
65
|
+
self.arm_means: list[float] | None = None
|
|
66
|
+
self.arm_stds: list[float] | None = None
|
|
67
|
+
|
|
68
|
+
if self.bandit_type.lower() == "bernoulli":
|
|
69
|
+
probs = list(getattr(metadata, "arm_probabilities", []) or [])
|
|
70
|
+
if not probs:
|
|
71
|
+
probs = [0.1, 0.5, 0.9]
|
|
72
|
+
self.arm_probabilities = [float(p) for p in probs]
|
|
73
|
+
self.true_expected_rewards = self.arm_probabilities.copy()
|
|
74
|
+
elif self.bandit_type.lower() == "gaussian":
|
|
75
|
+
means = list(getattr(metadata, "arm_means", []) or [])
|
|
76
|
+
if not means:
|
|
77
|
+
means = [0.0, 0.5, 1.0]
|
|
78
|
+
stds = getattr(metadata, "arm_stds", None)
|
|
79
|
+
if stds is None:
|
|
80
|
+
stds_list = [0.1] * len(means)
|
|
81
|
+
elif isinstance(stds, int | float):
|
|
82
|
+
stds_list = [float(stds)] * len(means)
|
|
83
|
+
else:
|
|
84
|
+
stds_list = [float(s) for s in stds]
|
|
85
|
+
if len(stds_list) != len(means):
|
|
86
|
+
raise ValueError("arm_stds must match arm_means length")
|
|
87
|
+
self.arm_means = [float(m) for m in means]
|
|
88
|
+
self.arm_stds = stds_list
|
|
89
|
+
self.true_expected_rewards = self.arm_means.copy()
|
|
90
|
+
else:
|
|
91
|
+
raise ValueError(f"Unsupported bandit_type: {self.bandit_type}")
|
|
92
|
+
|
|
93
|
+
self.arm_count = len(self.true_expected_rewards)
|
|
94
|
+
if self.arm_count == 0:
|
|
95
|
+
raise ValueError("Bandit must have at least one arm")
|
|
96
|
+
|
|
97
|
+
self._rng = np.random.default_rng(self.seed)
|
|
98
|
+
|
|
99
|
+
# Runtime state
|
|
100
|
+
self.step_count: int = 0
|
|
101
|
+
self.total_reward: float = 0.0
|
|
102
|
+
self.last_reward: float = 0.0
|
|
103
|
+
self.last_arm: int | None = None
|
|
104
|
+
self.reward_history: list[float] = []
|
|
105
|
+
self.arm_history: list[int] = []
|
|
106
|
+
self.arm_pull_counts: list[int] = [0 for _ in range(self.arm_count)]
|
|
107
|
+
self.terminated: bool = False
|
|
108
|
+
self.status: str = "in_progress"
|
|
109
|
+
|
|
110
|
+
async def _reset_engine(self) -> tuple[BanditPrivateState, BanditPublicState]:
|
|
111
|
+
if self.seed is not None:
|
|
112
|
+
self._rng = np.random.default_rng(self.seed)
|
|
113
|
+
else:
|
|
114
|
+
self._rng = np.random.default_rng()
|
|
115
|
+
|
|
116
|
+
self.step_count = 0
|
|
117
|
+
self.total_reward = 0.0
|
|
118
|
+
self.last_reward = 0.0
|
|
119
|
+
self.last_arm = None
|
|
120
|
+
self.reward_history = []
|
|
121
|
+
self.arm_history = []
|
|
122
|
+
self.arm_pull_counts = [0 for _ in range(self.arm_count)]
|
|
123
|
+
self.terminated = False
|
|
124
|
+
self.status = "in_progress"
|
|
125
|
+
|
|
126
|
+
private_state = self._build_private_state(reward=0.0)
|
|
127
|
+
public_state = self._build_public_state(reward=None)
|
|
128
|
+
return private_state, public_state
|
|
129
|
+
|
|
130
|
+
async def _step_engine(self, arm_index: int) -> tuple[BanditPrivateState, BanditPublicState]:
|
|
131
|
+
if self.terminated:
|
|
132
|
+
raise RuntimeError("Bandit episode already terminated")
|
|
133
|
+
|
|
134
|
+
if not isinstance(arm_index, int):
|
|
135
|
+
raise TypeError("arm_index must be an integer")
|
|
136
|
+
if arm_index < 0 or arm_index >= self.arm_count:
|
|
137
|
+
raise ValueError(f"arm_index {arm_index} out of range 0..{self.arm_count - 1}")
|
|
138
|
+
|
|
139
|
+
reward = float(self._sample_reward(arm_index))
|
|
140
|
+
|
|
141
|
+
self.step_count += 1
|
|
142
|
+
self.total_reward += reward
|
|
143
|
+
self.last_reward = reward
|
|
144
|
+
self.last_arm = arm_index
|
|
145
|
+
self.reward_history.append(reward)
|
|
146
|
+
self.arm_history.append(arm_index)
|
|
147
|
+
self.arm_pull_counts[arm_index] += 1
|
|
148
|
+
|
|
149
|
+
if self.step_count >= self.max_steps:
|
|
150
|
+
self.terminated = True
|
|
151
|
+
self.status = "completed"
|
|
152
|
+
|
|
153
|
+
private_state = self._build_private_state(reward=reward)
|
|
154
|
+
public_state = self._build_public_state(reward=reward)
|
|
155
|
+
return private_state, public_state
|
|
156
|
+
|
|
157
|
+
def _sample_reward(self, arm_index: int) -> float:
|
|
158
|
+
if self.bandit_type.lower() == "bernoulli":
|
|
159
|
+
assert self.arm_probabilities is not None
|
|
160
|
+
success_prob = self.arm_probabilities[arm_index]
|
|
161
|
+
return 1.0 if self._rng.random() < success_prob else 0.0
|
|
162
|
+
|
|
163
|
+
if self.bandit_type.lower() == "gaussian":
|
|
164
|
+
assert self.arm_means is not None and self.arm_stds is not None
|
|
165
|
+
mean = self.arm_means[arm_index]
|
|
166
|
+
std = self.arm_stds[arm_index]
|
|
167
|
+
return float(self._rng.normal(loc=mean, scale=std))
|
|
168
|
+
|
|
169
|
+
raise RuntimeError(f"Unknown bandit_type during sampling: {self.bandit_type}")
|
|
170
|
+
|
|
171
|
+
def get_current_states_for_observation(
|
|
172
|
+
self,
|
|
173
|
+
) -> tuple[BanditPrivateState, BanditPublicState]:
|
|
174
|
+
private_state = self._build_private_state(reward=self.last_reward)
|
|
175
|
+
public_state = self._build_public_state(reward=self.last_reward)
|
|
176
|
+
return private_state, public_state
|
|
177
|
+
|
|
178
|
+
def _build_private_state(self, reward: float) -> BanditPrivateState:
|
|
179
|
+
return BanditPrivateState(
|
|
180
|
+
reward_last=float(reward),
|
|
181
|
+
total_reward=float(self.total_reward),
|
|
182
|
+
terminated=self.terminated,
|
|
183
|
+
truncated=False,
|
|
184
|
+
true_expected_rewards=self.true_expected_rewards.copy(),
|
|
185
|
+
step_count=self.step_count,
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
def _build_public_state(self, reward: float | None) -> BanditPublicState:
|
|
189
|
+
return BanditPublicState(
|
|
190
|
+
arm_count=self.arm_count,
|
|
191
|
+
step_count=self.step_count,
|
|
192
|
+
max_steps=self.max_steps,
|
|
193
|
+
last_arm=self.last_arm,
|
|
194
|
+
last_reward=float(reward) if reward is not None else (self.last_reward if self.step_count else None),
|
|
195
|
+
cumulative_reward=float(self.total_reward),
|
|
196
|
+
reward_history=self.reward_history.copy(),
|
|
197
|
+
arm_pull_counts=self.arm_pull_counts.copy(),
|
|
198
|
+
terminated=self.terminated,
|
|
199
|
+
status=self.status,
|
|
200
|
+
)
|
|
201
|
+
|
|
202
|
+
async def _serialize_engine(self) -> BanditEngineSnapshot:
|
|
203
|
+
snapshot = {
|
|
204
|
+
"bandit_type": self.bandit_type,
|
|
205
|
+
"arm_probabilities": self.arm_probabilities,
|
|
206
|
+
"arm_means": self.arm_means,
|
|
207
|
+
"arm_stds": self.arm_stds,
|
|
208
|
+
"max_steps": self.max_steps,
|
|
209
|
+
"seed": self.seed,
|
|
210
|
+
"step_count": self.step_count,
|
|
211
|
+
"total_reward": self.total_reward,
|
|
212
|
+
"last_reward": self.last_reward,
|
|
213
|
+
"last_arm": self.last_arm,
|
|
214
|
+
"reward_history": self.reward_history,
|
|
215
|
+
"arm_history": self.arm_history,
|
|
216
|
+
"arm_pull_counts": self.arm_pull_counts,
|
|
217
|
+
"terminated": self.terminated,
|
|
218
|
+
"status": self.status,
|
|
219
|
+
"true_expected_rewards": self.true_expected_rewards,
|
|
220
|
+
"rng_state": self._rng.bit_generator.state,
|
|
221
|
+
}
|
|
222
|
+
return BanditEngineSnapshot(
|
|
223
|
+
task_instance_dict=await self.task_instance.serialize(),
|
|
224
|
+
engine_snapshot=snapshot,
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
@classmethod
|
|
228
|
+
async def _deserialize_engine(cls, snapshot: BanditEngineSnapshot) -> BanditEngine:
|
|
229
|
+
from .taskset import BanditTaskInstance
|
|
230
|
+
|
|
231
|
+
task_instance = await BanditTaskInstance.deserialize(snapshot.task_instance_dict)
|
|
232
|
+
engine = cls(task_instance)
|
|
233
|
+
|
|
234
|
+
data = snapshot.engine_snapshot
|
|
235
|
+
engine.bandit_type = data.get("bandit_type", engine.bandit_type)
|
|
236
|
+
engine.max_steps = int(data.get("max_steps", engine.max_steps))
|
|
237
|
+
engine.seed = data.get("seed", engine.seed)
|
|
238
|
+
engine.arm_probabilities = data.get("arm_probabilities", engine.arm_probabilities)
|
|
239
|
+
engine.arm_means = data.get("arm_means", engine.arm_means)
|
|
240
|
+
engine.arm_stds = data.get("arm_stds", engine.arm_stds)
|
|
241
|
+
engine.true_expected_rewards = list(data.get("true_expected_rewards", engine.true_expected_rewards))
|
|
242
|
+
engine.arm_count = len(engine.true_expected_rewards)
|
|
243
|
+
|
|
244
|
+
engine.step_count = int(data.get("step_count", 0))
|
|
245
|
+
engine.total_reward = float(data.get("total_reward", 0.0))
|
|
246
|
+
engine.last_reward = float(data.get("last_reward", 0.0))
|
|
247
|
+
engine.last_arm = data.get("last_arm")
|
|
248
|
+
engine.reward_history = list(data.get("reward_history", []))
|
|
249
|
+
engine.arm_history = list(data.get("arm_history", []))
|
|
250
|
+
engine.arm_pull_counts = list(data.get("arm_pull_counts", [0 for _ in range(engine.arm_count)]))
|
|
251
|
+
engine.terminated = bool(data.get("terminated", False))
|
|
252
|
+
engine.status = data.get("status", "in_progress")
|
|
253
|
+
|
|
254
|
+
engine._rng = np.random.default_rng()
|
|
255
|
+
rng_state = data.get("rng_state")
|
|
256
|
+
if rng_state is not None:
|
|
257
|
+
engine._rng.bit_generator.state = rng_state
|
|
258
|
+
|
|
259
|
+
return engine
|
|
260
|
+
|
|
261
|
+
|
|
262
|
+
class SynthBanditObservationCallable(GetObservationCallable):
|
|
263
|
+
async def get_observation(
|
|
264
|
+
self, pub: BanditPublicState, priv: BanditPrivateState
|
|
265
|
+
) -> InternalObservation:
|
|
266
|
+
observation: InternalObservation = {
|
|
267
|
+
"arm_count": pub.arm_count,
|
|
268
|
+
"steps_taken": pub.step_count,
|
|
269
|
+
"steps_remaining": pub.steps_remaining,
|
|
270
|
+
"last_arm": pub.last_arm,
|
|
271
|
+
"last_reward": pub.last_reward,
|
|
272
|
+
"cumulative_reward": priv.total_reward,
|
|
273
|
+
"average_reward": pub.average_reward,
|
|
274
|
+
"arm_pull_counts": pub.arm_pull_counts,
|
|
275
|
+
"reward_history": pub.reward_history,
|
|
276
|
+
"terminated": pub.terminated,
|
|
277
|
+
"status": pub.status,
|
|
278
|
+
}
|
|
279
|
+
return observation
|
|
280
|
+
|
|
281
|
+
|
|
282
|
+
class SynthBanditCheckpointObservationCallable(GetObservationCallable):
|
|
283
|
+
async def get_observation(
|
|
284
|
+
self, pub: BanditPublicState, priv: BanditPrivateState
|
|
285
|
+
) -> InternalObservation:
|
|
286
|
+
observation: InternalObservation = {
|
|
287
|
+
"arm_count": pub.arm_count,
|
|
288
|
+
"total_reward": priv.total_reward,
|
|
289
|
+
"steps_taken": pub.step_count,
|
|
290
|
+
"best_expected_reward": max(priv.true_expected_rewards) if priv.true_expected_rewards else None,
|
|
291
|
+
"terminated": pub.terminated,
|
|
292
|
+
"status": pub.status,
|
|
293
|
+
}
|
|
294
|
+
return observation
|
|
@@ -0,0 +1,194 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from typing import Any
|
|
4
|
+
|
|
5
|
+
from pydantic import BaseModel, Field, ValidationError
|
|
6
|
+
|
|
7
|
+
from synth_ai.environments.environment.shared_engine import (
|
|
8
|
+
GetObservationCallable,
|
|
9
|
+
InternalObservation,
|
|
10
|
+
)
|
|
11
|
+
from synth_ai.environments.environment.tools import (
|
|
12
|
+
AbstractTool,
|
|
13
|
+
EnvToolCall,
|
|
14
|
+
ToolResult,
|
|
15
|
+
)
|
|
16
|
+
from synth_ai.environments.reproducibility.core import ReproducibleEnvironment
|
|
17
|
+
from synth_ai.environments.stateful.core import StatefulEnvironment
|
|
18
|
+
from synth_ai.environments.tasks.core import TaskInstance
|
|
19
|
+
|
|
20
|
+
from .engine import (
|
|
21
|
+
BanditEngine,
|
|
22
|
+
BanditEngineSnapshot,
|
|
23
|
+
SynthBanditCheckpointObservationCallable,
|
|
24
|
+
SynthBanditObservationCallable,
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
|
|
28
|
+
class BanditActionInput(BaseModel):
|
|
29
|
+
arm: int = Field(..., ge=0, description="Index of the arm to pull (0-based)")
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class BanditInteractTool(AbstractTool):
|
|
33
|
+
name = "pull_arm"
|
|
34
|
+
description = "Pull a specific bandit arm to receive a stochastic reward."
|
|
35
|
+
call_schema = BanditActionInput
|
|
36
|
+
result_schema = ToolResult
|
|
37
|
+
|
|
38
|
+
def __init__(self, engine: BanditEngine):
|
|
39
|
+
self.engine = engine
|
|
40
|
+
|
|
41
|
+
async def __call__(self, call: EnvToolCall) -> ToolResult:
|
|
42
|
+
try:
|
|
43
|
+
parsed = self.call_schema(**call.args)
|
|
44
|
+
except ValidationError as exc:
|
|
45
|
+
return ToolResult(ok=False, error=str(exc))
|
|
46
|
+
|
|
47
|
+
try:
|
|
48
|
+
private_state, public_state = await self.engine._step_engine(parsed.arm)
|
|
49
|
+
except Exception as exc: # noqa: BLE001 - propagate as tool error
|
|
50
|
+
priv, pub = self.engine.get_current_states_for_observation()
|
|
51
|
+
return ToolResult(
|
|
52
|
+
ok=False,
|
|
53
|
+
error=str(exc),
|
|
54
|
+
payload={"private_state": priv, "public_state": pub},
|
|
55
|
+
)
|
|
56
|
+
|
|
57
|
+
return ToolResult(
|
|
58
|
+
ok=True,
|
|
59
|
+
payload={"private_state": private_state, "public_state": public_state},
|
|
60
|
+
)
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class BanditEnvironment(StatefulEnvironment, ReproducibleEnvironment[BanditEngine]):
|
|
64
|
+
def __init__(
|
|
65
|
+
self,
|
|
66
|
+
task_instance: TaskInstance,
|
|
67
|
+
custom_step_obs: GetObservationCallable | None = None,
|
|
68
|
+
custom_ckpt_obs: GetObservationCallable | None = None,
|
|
69
|
+
) -> None:
|
|
70
|
+
self.name = "Bandit"
|
|
71
|
+
self.task_instance = task_instance
|
|
72
|
+
self.custom_step_observation_callable = custom_step_obs or SynthBanditObservationCallable()
|
|
73
|
+
self.custom_checkpoint_observation_callable = (
|
|
74
|
+
custom_ckpt_obs or SynthBanditCheckpointObservationCallable()
|
|
75
|
+
)
|
|
76
|
+
self.engine = BanditEngine(task_instance)
|
|
77
|
+
self._interact_tool = BanditInteractTool(self.engine)
|
|
78
|
+
|
|
79
|
+
async def initialize(self) -> InternalObservation:
|
|
80
|
+
priv, pub = await self.engine._reset_engine()
|
|
81
|
+
return await self._to_observation(priv, pub, self.custom_step_observation_callable)
|
|
82
|
+
|
|
83
|
+
async def step(self, tool_calls: list[EnvToolCall] | EnvToolCall | Any) -> InternalObservation:
|
|
84
|
+
validated_call = self.validate_tool_calls(tool_calls)
|
|
85
|
+
result = await self._interact_tool(validated_call)
|
|
86
|
+
|
|
87
|
+
if result.ok and result.payload:
|
|
88
|
+
priv = result.payload["private_state"]
|
|
89
|
+
pub = result.payload["public_state"]
|
|
90
|
+
return await self._to_observation(priv, pub, self.custom_step_observation_callable)
|
|
91
|
+
|
|
92
|
+
priv, pub = self.engine.get_current_states_for_observation()
|
|
93
|
+
return await self._to_observation(
|
|
94
|
+
priv,
|
|
95
|
+
pub,
|
|
96
|
+
self.custom_step_observation_callable,
|
|
97
|
+
extra_obs={"error": result.error} if result.error else None,
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
async def checkpoint(self) -> InternalObservation:
|
|
101
|
+
priv, pub = self.engine.get_current_states_for_observation()
|
|
102
|
+
return await self._to_observation(priv, pub, self.custom_checkpoint_observation_callable)
|
|
103
|
+
|
|
104
|
+
async def terminate(self) -> InternalObservation:
|
|
105
|
+
priv, pub = self.engine.get_current_states_for_observation()
|
|
106
|
+
self.engine.terminated = True
|
|
107
|
+
pub.terminated = True
|
|
108
|
+
priv.terminated = True
|
|
109
|
+
if pub.status != "completed":
|
|
110
|
+
pub.status = "terminated"
|
|
111
|
+
return await self._to_observation(priv, pub, self.custom_checkpoint_observation_callable)
|
|
112
|
+
|
|
113
|
+
def validate_tool_calls(self, tool_calls: Any) -> EnvToolCall:
|
|
114
|
+
if isinstance(tool_calls, EnvToolCall):
|
|
115
|
+
candidate = tool_calls
|
|
116
|
+
elif isinstance(tool_calls, dict):
|
|
117
|
+
if "tool" in tool_calls:
|
|
118
|
+
candidate = EnvToolCall(tool=tool_calls["tool"], args=tool_calls.get("args", {}))
|
|
119
|
+
elif "name" in tool_calls:
|
|
120
|
+
candidate = EnvToolCall(
|
|
121
|
+
tool=tool_calls["name"], args=tool_calls.get("parameters", {})
|
|
122
|
+
)
|
|
123
|
+
elif "function" in tool_calls:
|
|
124
|
+
func_spec = tool_calls["function"]
|
|
125
|
+
candidate = EnvToolCall(
|
|
126
|
+
tool=func_spec.get("name", "pull_arm"),
|
|
127
|
+
args=func_spec.get("arguments", {}),
|
|
128
|
+
)
|
|
129
|
+
else:
|
|
130
|
+
candidate = EnvToolCall(tool="pull_arm", args=tool_calls)
|
|
131
|
+
elif isinstance(tool_calls, list):
|
|
132
|
+
if not tool_calls:
|
|
133
|
+
raise ValueError("Empty tool calls list")
|
|
134
|
+
return self.validate_tool_calls(tool_calls[0])
|
|
135
|
+
else:
|
|
136
|
+
if isinstance(tool_calls, int):
|
|
137
|
+
return EnvToolCall(tool="pull_arm", args={"arm": tool_calls})
|
|
138
|
+
try:
|
|
139
|
+
return EnvToolCall(tool="pull_arm", args={"arm": int(tool_calls)})
|
|
140
|
+
except (TypeError, ValueError) as exc:
|
|
141
|
+
raise TypeError("Unsupported tool_calls format for bandit environment") from exc
|
|
142
|
+
|
|
143
|
+
tool_name = candidate.tool
|
|
144
|
+
if tool_name not in {"pull_arm", "interact"}:
|
|
145
|
+
raise ValueError(f"Unknown tool: {tool_name}")
|
|
146
|
+
|
|
147
|
+
args = dict(candidate.args or {})
|
|
148
|
+
if "arm" not in args:
|
|
149
|
+
for alias in ("action", "index", "arm_index", "armId", "choice"):
|
|
150
|
+
if alias in args:
|
|
151
|
+
args["arm"] = args[alias]
|
|
152
|
+
break
|
|
153
|
+
if "arm" not in args:
|
|
154
|
+
raise ValueError("Missing required 'arm' argument")
|
|
155
|
+
|
|
156
|
+
try:
|
|
157
|
+
arm_idx = int(args["arm"])
|
|
158
|
+
except (TypeError, ValueError) as exc:
|
|
159
|
+
raise ValueError("'arm' argument must be an integer") from exc
|
|
160
|
+
|
|
161
|
+
if arm_idx < 0:
|
|
162
|
+
raise ValueError("'arm' argument must be non-negative")
|
|
163
|
+
|
|
164
|
+
return EnvToolCall(tool="pull_arm", args={"arm": arm_idx})
|
|
165
|
+
|
|
166
|
+
async def _to_observation(
|
|
167
|
+
self,
|
|
168
|
+
priv,
|
|
169
|
+
pub,
|
|
170
|
+
obs_cb: GetObservationCallable | None,
|
|
171
|
+
extra_obs: dict[str, Any] | None = None,
|
|
172
|
+
) -> InternalObservation:
|
|
173
|
+
observation: InternalObservation
|
|
174
|
+
if obs_cb:
|
|
175
|
+
observation = await obs_cb.get_observation(pub, priv)
|
|
176
|
+
else:
|
|
177
|
+
observation = {}
|
|
178
|
+
if extra_obs and isinstance(observation, dict):
|
|
179
|
+
observation.update(extra_obs)
|
|
180
|
+
return observation
|
|
181
|
+
|
|
182
|
+
async def _serialize_engine(self) -> BanditEngineSnapshot:
|
|
183
|
+
return await self.engine._serialize_engine()
|
|
184
|
+
|
|
185
|
+
@classmethod
|
|
186
|
+
async def _deserialize_engine(
|
|
187
|
+
cls,
|
|
188
|
+
snapshot: BanditEngineSnapshot,
|
|
189
|
+
task_instance: TaskInstance,
|
|
190
|
+
) -> BanditEnvironment:
|
|
191
|
+
env = cls(task_instance)
|
|
192
|
+
env.engine = await BanditEngine._deserialize_engine(snapshot)
|
|
193
|
+
env._interact_tool = BanditInteractTool(env.engine)
|
|
194
|
+
return env
|
|
@@ -0,0 +1,200 @@
|
|
|
1
|
+
from __future__ import annotations
|
|
2
|
+
|
|
3
|
+
from collections.abc import Iterable
|
|
4
|
+
from dataclasses import dataclass
|
|
5
|
+
from typing import Any
|
|
6
|
+
from uuid import UUID, uuid4
|
|
7
|
+
|
|
8
|
+
from synth_ai.environments.tasks.core import (
|
|
9
|
+
Impetus,
|
|
10
|
+
Intent,
|
|
11
|
+
SplitInfo,
|
|
12
|
+
TaskInstance,
|
|
13
|
+
TaskInstanceMetadata,
|
|
14
|
+
TaskInstanceSet,
|
|
15
|
+
)
|
|
16
|
+
|
|
17
|
+
|
|
18
|
+
@dataclass
|
|
19
|
+
class BanditTaskInstanceMetadata(TaskInstanceMetadata):
|
|
20
|
+
name: str
|
|
21
|
+
bandit_type: str
|
|
22
|
+
arm_probabilities: list[float] | None
|
|
23
|
+
arm_means: list[float] | None
|
|
24
|
+
arm_stds: list[float] | None
|
|
25
|
+
max_steps: int
|
|
26
|
+
seed: int | None = None
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
@dataclass
|
|
30
|
+
class BanditTaskInstance(TaskInstance):
|
|
31
|
+
async def serialize(self) -> dict[str, Any]:
|
|
32
|
+
return {
|
|
33
|
+
"id": str(self.id),
|
|
34
|
+
"impetus": {"instructions": self.impetus.instructions},
|
|
35
|
+
"intent": {
|
|
36
|
+
"rubric": self.intent.rubric,
|
|
37
|
+
"gold_trajectories": self.intent.gold_trajectories,
|
|
38
|
+
"gold_state_diff": self.intent.gold_state_diff,
|
|
39
|
+
},
|
|
40
|
+
"metadata": {
|
|
41
|
+
"name": self.metadata.name,
|
|
42
|
+
"bandit_type": self.metadata.bandit_type,
|
|
43
|
+
"arm_probabilities": self.metadata.arm_probabilities,
|
|
44
|
+
"arm_means": self.metadata.arm_means,
|
|
45
|
+
"arm_stds": self.metadata.arm_stds,
|
|
46
|
+
"max_steps": self.metadata.max_steps,
|
|
47
|
+
"seed": self.metadata.seed,
|
|
48
|
+
},
|
|
49
|
+
"is_reproducible": self.is_reproducible,
|
|
50
|
+
"initial_engine_snapshot": self.initial_engine_snapshot,
|
|
51
|
+
}
|
|
52
|
+
|
|
53
|
+
@classmethod
|
|
54
|
+
async def deserialize(cls, data: dict[str, Any]) -> BanditTaskInstance:
|
|
55
|
+
metadata = BanditTaskInstanceMetadata(
|
|
56
|
+
name=data["metadata"].get("name", "bandit"),
|
|
57
|
+
bandit_type=data["metadata"].get("bandit_type", "bernoulli"),
|
|
58
|
+
arm_probabilities=data["metadata"].get("arm_probabilities"),
|
|
59
|
+
arm_means=data["metadata"].get("arm_means"),
|
|
60
|
+
arm_stds=data["metadata"].get("arm_stds"),
|
|
61
|
+
max_steps=int(data["metadata"].get("max_steps", 100)),
|
|
62
|
+
seed=data["metadata"].get("seed"),
|
|
63
|
+
)
|
|
64
|
+
return cls(
|
|
65
|
+
id=UUID(data["id"]),
|
|
66
|
+
impetus=Impetus(instructions=data["impetus"]["instructions"]),
|
|
67
|
+
intent=Intent(
|
|
68
|
+
rubric=data["intent"].get("rubric", {}),
|
|
69
|
+
gold_trajectories=data["intent"].get("gold_trajectories"),
|
|
70
|
+
gold_state_diff=data["intent"].get("gold_state_diff", {}),
|
|
71
|
+
),
|
|
72
|
+
metadata=metadata,
|
|
73
|
+
is_reproducible=bool(data.get("is_reproducible", True)),
|
|
74
|
+
initial_engine_snapshot=data.get("initial_engine_snapshot"),
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
|
|
78
|
+
def _expected_rewards(metadata: BanditTaskInstanceMetadata) -> list[float]:
|
|
79
|
+
if metadata.bandit_type.lower() == "bernoulli" and metadata.arm_probabilities:
|
|
80
|
+
return [float(p) for p in metadata.arm_probabilities]
|
|
81
|
+
if metadata.bandit_type.lower() == "gaussian" and metadata.arm_means:
|
|
82
|
+
return [float(m) for m in metadata.arm_means]
|
|
83
|
+
return []
|
|
84
|
+
|
|
85
|
+
|
|
86
|
+
def _default_bandit_configs() -> list[dict[str, Any]]:
|
|
87
|
+
return [
|
|
88
|
+
{
|
|
89
|
+
"name": "bernoulli-easy",
|
|
90
|
+
"bandit_type": "bernoulli",
|
|
91
|
+
"arm_probabilities": [0.1, 0.4, 0.8],
|
|
92
|
+
"max_steps": 50,
|
|
93
|
+
"seed": 7,
|
|
94
|
+
},
|
|
95
|
+
{
|
|
96
|
+
"name": "bernoulli-close",
|
|
97
|
+
"bandit_type": "bernoulli",
|
|
98
|
+
"arm_probabilities": [0.45, 0.5, 0.55],
|
|
99
|
+
"max_steps": 75,
|
|
100
|
+
"seed": 21,
|
|
101
|
+
},
|
|
102
|
+
{
|
|
103
|
+
"name": "gaussian-wide",
|
|
104
|
+
"bandit_type": "gaussian",
|
|
105
|
+
"arm_means": [0.0, 0.3, 1.0],
|
|
106
|
+
"arm_stds": [0.2, 0.2, 0.4],
|
|
107
|
+
"max_steps": 60,
|
|
108
|
+
"seed": 14,
|
|
109
|
+
},
|
|
110
|
+
]
|
|
111
|
+
|
|
112
|
+
|
|
113
|
+
def _build_impetus(metadata: BanditTaskInstanceMetadata, arm_count: int) -> Impetus:
|
|
114
|
+
bandit_desc = metadata.bandit_type.capitalize()
|
|
115
|
+
return Impetus(
|
|
116
|
+
instructions=(
|
|
117
|
+
f"You are interacting with a {bandit_desc} multi-armed bandit task. "
|
|
118
|
+
f"There are {arm_count} arms, indexed from 0 to {arm_count - 1}. "
|
|
119
|
+
f"You may pull up to {metadata.max_steps} arms. "
|
|
120
|
+
"Your objective is to maximize the cumulative reward by learning which arm has the highest expected payoff."
|
|
121
|
+
)
|
|
122
|
+
)
|
|
123
|
+
|
|
124
|
+
|
|
125
|
+
def _build_intent(expected_rewards: Iterable[float]) -> Intent:
|
|
126
|
+
rewards = list(expected_rewards)
|
|
127
|
+
best_arm = max(range(len(rewards)), key=rewards.__getitem__) if rewards else 0
|
|
128
|
+
return Intent(
|
|
129
|
+
rubric={
|
|
130
|
+
"goal": "Maximize cumulative reward over the episode",
|
|
131
|
+
"measurement": "Higher total reward indicates better performance",
|
|
132
|
+
},
|
|
133
|
+
gold_trajectories=None,
|
|
134
|
+
gold_state_diff={
|
|
135
|
+
"best_arm_index": best_arm,
|
|
136
|
+
"expected_rewards": rewards,
|
|
137
|
+
},
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
async def create_bandit_taskset(
|
|
142
|
+
configs: list[dict[str, Any]] | None = None,
|
|
143
|
+
) -> TaskInstanceSet:
|
|
144
|
+
configs = configs or _default_bandit_configs()
|
|
145
|
+
|
|
146
|
+
instances: list[BanditTaskInstance] = []
|
|
147
|
+
for config in configs:
|
|
148
|
+
metadata = BanditTaskInstanceMetadata(
|
|
149
|
+
name=config.get("name", "bandit"),
|
|
150
|
+
bandit_type=config.get("bandit_type", "bernoulli"),
|
|
151
|
+
arm_probabilities=config.get("arm_probabilities"),
|
|
152
|
+
arm_means=config.get("arm_means"),
|
|
153
|
+
arm_stds=config.get("arm_stds"),
|
|
154
|
+
max_steps=int(config.get("max_steps", 100)),
|
|
155
|
+
seed=config.get("seed"),
|
|
156
|
+
)
|
|
157
|
+
|
|
158
|
+
expected = _expected_rewards(metadata)
|
|
159
|
+
arm_count = len(expected) if expected else (
|
|
160
|
+
len(metadata.arm_probabilities or [])
|
|
161
|
+
or len(metadata.arm_means or [])
|
|
162
|
+
or 0
|
|
163
|
+
)
|
|
164
|
+
if arm_count == 0:
|
|
165
|
+
arm_count = 1
|
|
166
|
+
|
|
167
|
+
impetus = _build_impetus(metadata, arm_count)
|
|
168
|
+
intent = _build_intent(expected)
|
|
169
|
+
|
|
170
|
+
instance = BanditTaskInstance(
|
|
171
|
+
id=uuid4(),
|
|
172
|
+
impetus=impetus,
|
|
173
|
+
intent=intent,
|
|
174
|
+
metadata=metadata,
|
|
175
|
+
is_reproducible=True,
|
|
176
|
+
initial_engine_snapshot=None,
|
|
177
|
+
)
|
|
178
|
+
instances.append(instance)
|
|
179
|
+
|
|
180
|
+
# Simple deterministic splits by index
|
|
181
|
+
val_ids = {instances[i].id for i in range(0, len(instances), 3)}
|
|
182
|
+
test_ids = {instances[i].id for i in range(1, len(instances), 3)}
|
|
183
|
+
|
|
184
|
+
split_info = SplitInfo(
|
|
185
|
+
val_instance_ids=val_ids,
|
|
186
|
+
test_instance_ids=test_ids,
|
|
187
|
+
_is_split_defined=bool(instances),
|
|
188
|
+
)
|
|
189
|
+
|
|
190
|
+
return TaskInstanceSet(
|
|
191
|
+
name="Bandit Example TaskSet",
|
|
192
|
+
description="Lightweight Bernoulli and Gaussian bandit tasks inspired by OpenAI Gym bandits.",
|
|
193
|
+
instances=instances,
|
|
194
|
+
split_info=split_info,
|
|
195
|
+
)
|
|
196
|
+
|
|
197
|
+
|
|
198
|
+
# Alias for convenience
|
|
199
|
+
|
|
200
|
+
taskset = create_bandit_taskset
|