synth-ai 0.2.2.dev0__py3-none-any.whl → 0.2.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (98) hide show
  1. synth_ai/cli/__init__.py +66 -0
  2. synth_ai/cli/balance.py +205 -0
  3. synth_ai/cli/calc.py +70 -0
  4. synth_ai/cli/demo.py +74 -0
  5. synth_ai/{cli.py → cli/legacy_root_backup.py} +60 -15
  6. synth_ai/cli/man.py +103 -0
  7. synth_ai/cli/recent.py +126 -0
  8. synth_ai/cli/root.py +184 -0
  9. synth_ai/cli/status.py +126 -0
  10. synth_ai/cli/traces.py +136 -0
  11. synth_ai/cli/watch.py +508 -0
  12. synth_ai/config/base_url.py +53 -0
  13. synth_ai/environments/examples/crafter_classic/agent_demos/analyze_semantic_words_markdown.py +252 -0
  14. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_traces_sft_duckdb_v2_backup.py +413 -0
  15. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/filter_traces_sft_turso.py +646 -0
  16. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/kick_off_ft_synth.py +34 -0
  17. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/test_crafter_react_agent_lm_synth.py +1740 -0
  18. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_modal_ft/test_crafter_react_agent_lm_synth_v2_backup.py +1318 -0
  19. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/filter_traces_sft_duckdb_v2_backup.py +386 -0
  20. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/filter_traces_sft_turso.py +580 -0
  21. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/run_rollouts_for_models_and_compare_v2_backup.py +1352 -0
  22. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_openai_ft/test_crafter_react_agent_openai_v2_backup.py +2551 -0
  23. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1 -1
  24. synth_ai/environments/examples/crafter_classic/agent_demos/old/traces/session_crafter_episode_16_15227b68-2906-416f-acc4-d6a9b4fa5828_20250725_001154.json +1363 -1
  25. synth_ai/environments/examples/crafter_classic/agent_demos/test_crafter_react_agent.py +3 -3
  26. synth_ai/environments/examples/enron/dataset/corbt___enron_emails_sample_questions/default/0.0.0/293c9fe8170037e01cc9cf5834e0cd5ef6f1a6bb/dataset_info.json +1 -0
  27. synth_ai/environments/examples/nethack/helpers/achievements.json +64 -0
  28. synth_ai/environments/examples/red/units/test_exploration_strategy.py +1 -1
  29. synth_ai/environments/examples/red/units/test_menu_bug_reproduction.py +5 -5
  30. synth_ai/environments/examples/red/units/test_movement_debug.py +2 -2
  31. synth_ai/environments/examples/red/units/test_retry_movement.py +1 -1
  32. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/available_envs.json +122 -0
  33. synth_ai/environments/examples/sokoban/verified_puzzles.json +54987 -0
  34. synth_ai/experimental/synth_oss.py +446 -0
  35. synth_ai/learning/core.py +21 -0
  36. synth_ai/learning/gateway.py +4 -0
  37. synth_ai/learning/prompts/mipro.py +0 -0
  38. synth_ai/lm/__init__.py +3 -0
  39. synth_ai/lm/core/main.py +4 -0
  40. synth_ai/lm/core/main_v3.py +68 -13
  41. synth_ai/lm/core/vendor_clients.py +4 -0
  42. synth_ai/lm/provider_support/openai.py +11 -2
  43. synth_ai/lm/vendors/base.py +7 -0
  44. synth_ai/lm/vendors/openai_standard.py +339 -4
  45. synth_ai/lm/vendors/openai_standard_responses.py +243 -0
  46. synth_ai/lm/vendors/synth_client.py +155 -5
  47. synth_ai/lm/warmup.py +54 -17
  48. synth_ai/tracing/__init__.py +18 -0
  49. synth_ai/tracing_v1/__init__.py +29 -14
  50. synth_ai/tracing_v3/config.py +13 -7
  51. synth_ai/tracing_v3/db_config.py +6 -6
  52. synth_ai/tracing_v3/turso/manager.py +8 -8
  53. synth_ai/tui/__main__.py +13 -0
  54. synth_ai/tui/dashboard.py +329 -0
  55. synth_ai/v0/tracing/__init__.py +0 -0
  56. synth_ai/{tracing → v0/tracing}/base_client.py +3 -3
  57. synth_ai/{tracing → v0/tracing}/client_manager.py +1 -1
  58. synth_ai/{tracing → v0/tracing}/context.py +1 -1
  59. synth_ai/{tracing → v0/tracing}/decorators.py +11 -11
  60. synth_ai/v0/tracing/events/__init__.py +0 -0
  61. synth_ai/{tracing → v0/tracing}/events/manage.py +4 -4
  62. synth_ai/{tracing → v0/tracing}/events/scope.py +6 -6
  63. synth_ai/{tracing → v0/tracing}/events/store.py +3 -3
  64. synth_ai/{tracing → v0/tracing}/immediate_client.py +6 -6
  65. synth_ai/{tracing → v0/tracing}/log_client_base.py +2 -2
  66. synth_ai/{tracing → v0/tracing}/retry_queue.py +3 -3
  67. synth_ai/{tracing → v0/tracing}/trackers.py +2 -2
  68. synth_ai/{tracing → v0/tracing}/upload.py +4 -4
  69. synth_ai/v0/tracing_v1/__init__.py +16 -0
  70. synth_ai/{tracing_v1 → v0/tracing_v1}/base_client.py +3 -3
  71. synth_ai/{tracing_v1 → v0/tracing_v1}/client_manager.py +1 -1
  72. synth_ai/{tracing_v1 → v0/tracing_v1}/context.py +1 -1
  73. synth_ai/{tracing_v1 → v0/tracing_v1}/decorators.py +11 -11
  74. synth_ai/v0/tracing_v1/events/__init__.py +0 -0
  75. synth_ai/{tracing_v1 → v0/tracing_v1}/events/manage.py +4 -4
  76. synth_ai/{tracing_v1 → v0/tracing_v1}/events/scope.py +6 -6
  77. synth_ai/{tracing_v1 → v0/tracing_v1}/events/store.py +3 -3
  78. synth_ai/{tracing_v1 → v0/tracing_v1}/immediate_client.py +6 -6
  79. synth_ai/{tracing_v1 → v0/tracing_v1}/log_client_base.py +2 -2
  80. synth_ai/{tracing_v1 → v0/tracing_v1}/retry_queue.py +3 -3
  81. synth_ai/{tracing_v1 → v0/tracing_v1}/trackers.py +2 -2
  82. synth_ai/{tracing_v1 → v0/tracing_v1}/upload.py +4 -4
  83. {synth_ai-0.2.2.dev0.dist-info → synth_ai-0.2.3.dist-info}/METADATA +98 -4
  84. {synth_ai-0.2.2.dev0.dist-info → synth_ai-0.2.3.dist-info}/RECORD +98 -62
  85. /synth_ai/{tracing/events/__init__.py → environments/examples/crafter_classic/debug_translation.py} +0 -0
  86. /synth_ai/{tracing_v1/events/__init__.py → learning/prompts/gepa.py} +0 -0
  87. /synth_ai/{tracing → v0/tracing}/abstractions.py +0 -0
  88. /synth_ai/{tracing → v0/tracing}/config.py +0 -0
  89. /synth_ai/{tracing → v0/tracing}/local.py +0 -0
  90. /synth_ai/{tracing → v0/tracing}/utils.py +0 -0
  91. /synth_ai/{tracing_v1 → v0/tracing_v1}/abstractions.py +0 -0
  92. /synth_ai/{tracing_v1 → v0/tracing_v1}/config.py +0 -0
  93. /synth_ai/{tracing_v1 → v0/tracing_v1}/local.py +0 -0
  94. /synth_ai/{tracing_v1 → v0/tracing_v1}/utils.py +0 -0
  95. {synth_ai-0.2.2.dev0.dist-info → synth_ai-0.2.3.dist-info}/WHEEL +0 -0
  96. {synth_ai-0.2.2.dev0.dist-info → synth_ai-0.2.3.dist-info}/entry_points.txt +0 -0
  97. {synth_ai-0.2.2.dev0.dist-info → synth_ai-0.2.3.dist-info}/licenses/LICENSE +0 -0
  98. {synth_ai-0.2.2.dev0.dist-info → synth_ai-0.2.3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,646 @@
1
+ #!/usr/bin/env python3
2
+ """
3
+ Filter traces from Turso/SQLite (v3) to create Modal/Synth SFT-ready .jsonl files
4
+ Supports two modes:
5
+ 1. Trajectory-level filtering: Include entire trajectories above a score threshold
6
+ 2. Window-based filtering: Extract high-scoring windows of actions
7
+
8
+ This is the v3 version using the new async Turso-based tracing system.
9
+ """
10
+
11
+ import json
12
+ import argparse
13
+ import asyncio
14
+ from pathlib import Path
15
+ from typing import List, Dict, Any, Tuple, Optional
16
+ from collections import defaultdict
17
+ import numpy as np
18
+ import os
19
+ import sys
20
+ import toml
21
+ import pandas as pd
22
+
23
+ # Add synth_ai to path
24
+ sys.path.insert(0, str(Path(__file__).parent.parent.parent.parent.parent.parent))
25
+
26
+ from synth_ai.tracing_v3 import SessionTracer
27
+ from synth_ai.tracing_v3.turso.manager import AsyncSQLTraceManager
28
+ from synth_ai.tracing_v3.abstractions import LMCAISEvent, EnvironmentEvent, RuntimeEvent
29
+
30
+
31
+ def create_histogram(data: List[float], bins: int = 20, width: int = 60, height: int = 15,
32
+ title: str = "", x_label: str = "", y_label: str = "") -> str:
33
+ """Create a beautiful ASCII histogram."""
34
+ if not data:
35
+ return "No data to display"
36
+
37
+ # Create histogram
38
+ counts, edges = np.histogram(data, bins=bins)
39
+ max_count = max(counts) if len(counts) > 0 else 1
40
+
41
+ # Normalize heights
42
+ if max_count > 0:
43
+ heights = [int(c * height / max_count) for c in counts]
44
+ else:
45
+ heights = [0] * len(counts)
46
+
47
+ # Build the plot
48
+ lines = []
49
+
50
+ # Title
51
+ if title:
52
+ lines.append(f"\n{title.center(width + 10)}")
53
+ lines.append("=" * (width + 10))
54
+
55
+ # Y-axis label
56
+ if y_label:
57
+ lines.append(f"{y_label}")
58
+
59
+ # Plot area with y-axis
60
+ for y in range(height, 0, -1):
61
+ # Y-axis value
62
+ y_val = int(max_count * y / height)
63
+ line = f"{y_val:>6} │"
64
+
65
+ # Bars
66
+ for h in heights:
67
+ if h >= y:
68
+ line += "█"
69
+ else:
70
+ line += " "
71
+
72
+ lines.append(line)
73
+
74
+ # X-axis
75
+ lines.append(f"{'':>6} └" + "─" * len(heights))
76
+
77
+ # X-axis labels
78
+ x_labels_line = " " * 8
79
+ min_val, max_val = min(data), max(data)
80
+
81
+ # Add labels at key positions
82
+ label_positions = [0, len(heights)//4, len(heights)//2, 3*len(heights)//4, len(heights)-1]
83
+ for i, pos in enumerate(label_positions):
84
+ if pos < len(edges) - 1:
85
+ val = edges[pos]
86
+ label = f"{val:.1f}"
87
+ # Calculate position
88
+ target_pos = 8 + pos
89
+ if i == 0:
90
+ x_labels_line = label + x_labels_line[len(label):]
91
+ elif i == len(label_positions) - 1:
92
+ start = max(0, target_pos - len(label))
93
+ x_labels_line = x_labels_line[:start] + label
94
+ else:
95
+ start = max(0, target_pos - len(label)//2)
96
+ end = min(len(x_labels_line), start + len(label))
97
+ if start < len(x_labels_line):
98
+ x_labels_line = x_labels_line[:start] + label[:end-start] + x_labels_line[end:]
99
+
100
+ lines.append(x_labels_line)
101
+
102
+ # X-axis label
103
+ if x_label:
104
+ lines.append(f"\n{x_label.center(width + 10)}")
105
+
106
+ return "\n".join(lines)
107
+
108
+
109
+ def create_bar_chart(categories: List[str], values: List[int], width: int = 60,
110
+ title: str = "", show_values: bool = True) -> str:
111
+ """Create a horizontal bar chart."""
112
+ if not categories or not values:
113
+ return "No data to display"
114
+
115
+ max_val = max(values) if values else 1
116
+ lines = []
117
+
118
+ # Title
119
+ if title:
120
+ lines.append(f"\n{title}")
121
+ lines.append("=" * (width + 20))
122
+
123
+ # Find longest category name for alignment
124
+ max_cat_len = max(len(cat) for cat in categories)
125
+
126
+ # Create bars
127
+ for cat, val in zip(categories, values):
128
+ # Normalize bar length
129
+ bar_len = int(val * width / max_val) if max_val > 0 else 0
130
+ bar = "█" * bar_len
131
+
132
+ # Format line
133
+ if show_values:
134
+ line = f"{cat:<{max_cat_len}} │ {bar} {val}"
135
+ else:
136
+ line = f"{cat:<{max_cat_len}} │ {bar}"
137
+
138
+ lines.append(line)
139
+
140
+ return "\n".join(lines)
141
+
142
+
143
+ class FinetuningDataExtractorV3:
144
+ """Extract fine-tuning data from v3 Turso traces."""
145
+
146
+ def __init__(self, db_url: str):
147
+ self.db_manager = AsyncSQLTraceManager(db_url)
148
+ self._initialized = False
149
+
150
+ async def __aenter__(self):
151
+ await self.db_manager.initialize()
152
+ self._initialized = True
153
+ return self
154
+
155
+ async def __aexit__(self, exc_type, exc_val, exc_tb):
156
+ await self.db_manager.close()
157
+
158
+ async def get_all_sessions(self) -> pd.DataFrame:
159
+ """Get all session IDs from the database."""
160
+ query = """
161
+ SELECT DISTINCT session_id, created_at
162
+ FROM session_traces
163
+ ORDER BY created_at DESC
164
+ """
165
+ return await self.db_manager.query_traces(query)
166
+
167
+ async def get_session_metrics(self, session_id: str) -> Dict[str, Any]:
168
+ """Get metrics for a specific session."""
169
+ # Get total reward from environment events
170
+ # Now that rewards are properly saved in the DB, we can use them directly
171
+ reward_query = """
172
+ SELECT COALESCE(SUM(reward), 0) as total_reward
173
+ FROM events
174
+ WHERE session_id = :session_id
175
+ AND event_type = 'environment'
176
+ AND reward IS NOT NULL
177
+ """
178
+ reward_df = await self.db_manager.query_traces(reward_query, {"session_id": session_id})
179
+ total_reward = float(reward_df['total_reward'].iloc[0]) if not reward_df.empty else 0.0
180
+
181
+ # Get total tokens and cost from LM events
182
+ lm_query = """
183
+ SELECT
184
+ COALESCE(SUM(total_tokens), 0) as total_tokens,
185
+ COALESCE(SUM(cost_usd) / 100.0, 0) as total_cost
186
+ FROM events
187
+ WHERE session_id = :session_id
188
+ AND event_type = 'cais'
189
+ """
190
+ lm_df = await self.db_manager.query_traces(lm_query, {"session_id": session_id})
191
+
192
+ total_tokens = int(lm_df['total_tokens'].iloc[0]) if not lm_df.empty else 0
193
+ total_cost = float(lm_df['total_cost'].iloc[0]) if not lm_df.empty else 0.0
194
+
195
+ return {
196
+ 'session_id': session_id,
197
+ 'total_reward': total_reward,
198
+ 'total_tokens': total_tokens,
199
+ 'total_cost': total_cost
200
+ }
201
+
202
+ async def get_session_achievements(self, session_id: str) -> List[str]:
203
+ """Get list of achievements unlocked in a session."""
204
+ # Look for achievement events in environment data
205
+ # In v3, system_state_after is a direct column
206
+ query = """
207
+ SELECT system_state_after
208
+ FROM events
209
+ WHERE session_id = :session_id
210
+ AND event_type = 'environment'
211
+ AND system_state_after IS NOT NULL
212
+ ORDER BY id DESC
213
+ LIMIT 1
214
+ """
215
+ df = await self.db_manager.query_traces(query, {"session_id": session_id})
216
+
217
+ if df.empty:
218
+ return []
219
+
220
+ try:
221
+ # Parse the system_state_after JSON
222
+ state_after = df['system_state_after'].iloc[0]
223
+ if state_after:
224
+ # If it's a string, parse it
225
+ if isinstance(state_after, str):
226
+ state_after = json.loads(state_after)
227
+
228
+ # Look for achievements in public_state
229
+ if isinstance(state_after, dict) and 'public_state' in state_after:
230
+ public_state = state_after['public_state']
231
+ if 'achievements_status' in public_state:
232
+ achievements = public_state['achievements_status']
233
+ # Return list of unlocked achievements
234
+ return [k for k, v in achievements.items() if v]
235
+ except Exception as e:
236
+ print(f"Error parsing achievements: {e}")
237
+ pass
238
+
239
+ return []
240
+
241
+ async def filter_by_achievements(self, min_achievements: int) -> List[str]:
242
+ """Get sessions with at least min_achievements unlocked."""
243
+ all_sessions = await self.get_all_sessions()
244
+ qualifying_sessions = []
245
+
246
+ for _, row in all_sessions.iterrows():
247
+ session_id = row['session_id']
248
+ achievements = await self.get_session_achievements(session_id)
249
+ if len(achievements) >= min_achievements:
250
+ qualifying_sessions.append(session_id)
251
+
252
+ return qualifying_sessions
253
+
254
+ async def extract_openai_format(self, session_ids: List[str], min_reward: float = 0.0) -> List[Dict[str, Any]]:
255
+ """Extract training data in OpenAI format from filtered sessions."""
256
+ training_data = []
257
+
258
+ for session_id in session_ids:
259
+ # Get messages directly from the messages table
260
+ messages_query = """
261
+ SELECT m.message_type, m.content, m.message_time, st.turn_number
262
+ FROM messages m
263
+ LEFT JOIN session_timesteps st ON m.timestep_id = st.id
264
+ WHERE m.session_id = :session_id
265
+ ORDER BY COALESCE(st.turn_number, m.message_time), m.id
266
+ """
267
+
268
+ messages_df = await self.db_manager.query_traces(messages_query, {"session_id": session_id})
269
+
270
+ if len(messages_df) == 0:
271
+ continue
272
+
273
+ # Build conversation history
274
+ messages = []
275
+ system_message = None
276
+
277
+ for _, row in messages_df.iterrows():
278
+ msg_type = row['message_type']
279
+ content = row['content']
280
+
281
+ # Parse content if it's JSON (from origin_system_id format)
282
+ try:
283
+ import json
284
+ content_data = json.loads(content)
285
+ if isinstance(content_data, dict) and 'payload' in content_data:
286
+ content = content_data['payload']
287
+ except:
288
+ pass
289
+
290
+ if msg_type == 'system' and system_message is None:
291
+ # Extract system message from the first system message
292
+ if isinstance(content, str):
293
+ system_message = content
294
+
295
+ elif msg_type == 'user':
296
+ # Format user messages
297
+ if isinstance(content, dict):
298
+ # Convert observation dict to formatted string
299
+ content = self._format_observation_content(content)
300
+ messages.append({"role": "user", "content": str(content)})
301
+
302
+ elif msg_type == 'assistant':
303
+ messages.append({"role": "assistant", "content": str(content)})
304
+
305
+ # Add system message at the beginning if found
306
+ if system_message:
307
+ messages.insert(0, {"role": "system", "content": system_message})
308
+
309
+ # Only include if we have a complete conversation
310
+ if len(messages) > 1:
311
+ # Get total reward for this session
312
+ reward_query = """
313
+ SELECT COALESCE(SUM(reward), 0) as total_reward
314
+ FROM events
315
+ WHERE session_id = :session_id
316
+ AND event_type = 'environment'
317
+ AND reward IS NOT NULL
318
+ """
319
+ reward_df = await self.db_manager.query_traces(reward_query, {"session_id": session_id})
320
+ total_reward = reward_df.iloc[0]['total_reward'] if len(reward_df) > 0 else 0
321
+
322
+ training_data.append({
323
+ "messages": messages,
324
+ "metadata": {
325
+ "session_id": session_id,
326
+ "total_reward": float(total_reward) # Convert to float for JSON serialization
327
+ }
328
+ })
329
+
330
+ return training_data
331
+
332
+ def _format_observation_content(self, obs: Dict[str, Any]) -> str:
333
+ """Format observation dict into a readable string."""
334
+ if not isinstance(obs, dict):
335
+ return str(obs)
336
+
337
+ # Extract key fields for a concise representation
338
+ parts = []
339
+
340
+ if 'inventory' in obs:
341
+ inv = obs['inventory']
342
+ inv_str = ", ".join([f"{k}: {v}" for k, v in inv.items() if v > 0])
343
+ if inv_str:
344
+ parts.append(f"Inventory: {inv_str}")
345
+
346
+ if 'achievements_status' in obs:
347
+ achievements = [k for k, v in obs['achievements_status'].items() if v]
348
+ if achievements:
349
+ parts.append(f"Achievements: {', '.join(achievements)}")
350
+
351
+ if 'health' in obs:
352
+ parts.append(f"Health: {obs.get('health', 0)}")
353
+
354
+ return "; ".join(parts) if parts else "Empty observation"
355
+
356
+
357
+ async def filter_traces_from_turso(
358
+ db_url: str,
359
+ output_path: str,
360
+ config: Dict[str, Any]
361
+ ) -> Tuple[int, Dict[str, Any]]:
362
+ """
363
+ Filter traces from Turso/SQLite v3 database based on configuration.
364
+
365
+ Returns:
366
+ Tuple of (num_examples, statistics_dict)
367
+ """
368
+ mode = config.get("mode", "trajectory")
369
+ filters = config.get("filters", {})
370
+
371
+ # Extract filtering parameters
372
+ min_reward = filters.get("min_total_reward", 0.0)
373
+ min_achievements = filters.get("min_achievements", 0)
374
+ max_cost = filters.get("max_cost", float('inf'))
375
+ max_tokens = filters.get("max_tokens", float('inf'))
376
+
377
+ # Modal/Synth specific: filter by model if specified
378
+ target_models = filters.get("models", [])
379
+
380
+ statistics = {
381
+ "total_sessions": 0,
382
+ "filtered_sessions": 0,
383
+ "total_examples": 0,
384
+ "reward_distribution": [],
385
+ "token_distribution": [],
386
+ "cost_distribution": [],
387
+ "model_distribution": defaultdict(int)
388
+ }
389
+
390
+ async with FinetuningDataExtractorV3(db_url) as extractor:
391
+ # Get all sessions
392
+ all_sessions = await extractor.get_all_sessions()
393
+ statistics["total_sessions"] = len(all_sessions)
394
+
395
+ # Filter sessions based on criteria
396
+ filtered_sessions = []
397
+
398
+ for _, row in all_sessions.iterrows():
399
+ session_id = row['session_id']
400
+ metrics = await extractor.get_session_metrics(session_id)
401
+
402
+ # Apply filters
403
+ if metrics['total_reward'] < min_reward:
404
+ continue
405
+ if metrics['total_cost'] > max_cost:
406
+ continue
407
+ if metrics['total_tokens'] > max_tokens:
408
+ continue
409
+
410
+ # Check achievements if required
411
+ if min_achievements > 0:
412
+ achievements = await extractor.get_session_achievements(session_id)
413
+ if len(achievements) < min_achievements:
414
+ continue
415
+
416
+ # Check model filter if specified
417
+ if target_models:
418
+ model_query = """
419
+ SELECT DISTINCT model_name
420
+ FROM events
421
+ WHERE session_id = :session_id
422
+ AND event_type = 'cais'
423
+ AND model_name IS NOT NULL
424
+ """
425
+ model_df = await extractor.db_manager.query_traces(
426
+ model_query, {"session_id": session_id}
427
+ )
428
+ session_models = model_df['model_name'].tolist() if not model_df.empty else []
429
+ if not any(model in target_models for model in session_models):
430
+ continue
431
+
432
+ filtered_sessions.append(session_id)
433
+
434
+ # Collect statistics
435
+ statistics["reward_distribution"].append(metrics['total_reward'])
436
+ statistics["token_distribution"].append(metrics['total_tokens'])
437
+ statistics["cost_distribution"].append(metrics['total_cost'])
438
+
439
+ statistics["filtered_sessions"] = len(filtered_sessions)
440
+
441
+ # Extract training data
442
+ if mode == "trajectory":
443
+ training_data = await extractor.extract_openai_format(
444
+ session_ids=filtered_sessions,
445
+ min_reward=min_reward
446
+ )
447
+ else: # window mode
448
+ # For window mode, we need to implement window extraction
449
+ # For now, use trajectory mode
450
+ training_data = await extractor.extract_openai_format(
451
+ session_ids=filtered_sessions,
452
+ min_reward=min_reward
453
+ )
454
+
455
+ statistics["total_examples"] = len(training_data)
456
+
457
+ # Write to output file
458
+ output_file = Path(output_path)
459
+ output_file.parent.mkdir(exist_ok=True)
460
+
461
+ with open(output_file, 'w') as f:
462
+ for example in training_data:
463
+ f.write(json.dumps(example) + '\n')
464
+
465
+ # Get model distribution
466
+ model_query = """
467
+ SELECT model_name, COUNT(*) as count
468
+ FROM events
469
+ WHERE event_type = 'cais'
470
+ AND model_name IS NOT NULL
471
+ GROUP BY model_name
472
+ """
473
+ model_stats = await extractor.db_manager.query_traces(model_query)
474
+ for _, row in model_stats.iterrows():
475
+ statistics["model_distribution"][row['model_name']] = int(row['count'])
476
+
477
+ return len(training_data), statistics
478
+
479
+
480
+ def print_statistics(stats: Dict[str, Any]):
481
+ """Print filtering statistics with visualizations."""
482
+ print("\n" + "="*80)
483
+ print("FILTERING STATISTICS (Modal/Synth - v3)")
484
+ print("="*80)
485
+
486
+ # Basic counts
487
+ print(f"\nTotal sessions in database: {stats['total_sessions']}")
488
+ print(f"Sessions after filtering: {stats['filtered_sessions']}")
489
+ print(f"Training examples generated: {stats['total_examples']}")
490
+
491
+ filter_rate = (stats['filtered_sessions'] / stats['total_sessions'] * 100) if stats['total_sessions'] > 0 else 0
492
+ print(f"Filter pass rate: {filter_rate:.1f}%")
493
+
494
+ # Reward distribution
495
+ if stats['reward_distribution'] and any(not np.isnan(x) for x in stats['reward_distribution']):
496
+ valid_rewards = [x for x in stats['reward_distribution'] if not np.isnan(x)]
497
+ if valid_rewards:
498
+ print(create_histogram(
499
+ valid_rewards,
500
+ bins=20,
501
+ title="Reward Distribution",
502
+ x_label="Total Reward",
503
+ y_label="Count"
504
+ ))
505
+
506
+ print(f"\nReward statistics:")
507
+ print(f" Min: {min(valid_rewards):.2f}")
508
+ print(f" Max: {max(valid_rewards):.2f}")
509
+ print(f" Mean: {np.mean(valid_rewards):.2f}")
510
+ print(f" Median: {np.median(valid_rewards):.2f}")
511
+ else:
512
+ print("\nNo valid reward data to display.")
513
+
514
+ # Token distribution
515
+ if stats['token_distribution'] and any(not np.isnan(x) for x in stats['token_distribution']):
516
+ valid_tokens = [x for x in stats['token_distribution'] if not np.isnan(x)]
517
+ if valid_tokens:
518
+ print(create_histogram(
519
+ valid_tokens,
520
+ bins=20,
521
+ title="Token Usage Distribution",
522
+ x_label="Total Tokens",
523
+ y_label="Count"
524
+ ))
525
+
526
+ # Model distribution
527
+ if stats['model_distribution']:
528
+ models = list(stats['model_distribution'].keys())
529
+ counts = list(stats['model_distribution'].values())
530
+ print(create_bar_chart(
531
+ models,
532
+ counts,
533
+ title="Model Usage",
534
+ show_values=True
535
+ ))
536
+
537
+ print("\n" + "="*80)
538
+
539
+
540
+ def main():
541
+ parser = argparse.ArgumentParser(
542
+ description="Filter traces from Turso/SQLite v3 for Modal/Synth fine-tuning",
543
+ formatter_class=argparse.RawDescriptionHelpFormatter,
544
+ epilog="""
545
+ Example usage:
546
+ # Use default config
547
+ python filter_traces_sft_turso.py -d sqlite:///traces.db -o ft_data/training.jsonl
548
+
549
+ # Use custom config file
550
+ python filter_traces_sft_turso.py -d sqlite:///traces.db -c filter_config.toml
551
+
552
+ # Override config parameters
553
+ python filter_traces_sft_turso.py -d sqlite:///traces.db --min-reward 5.0 --max-cost 0.1
554
+
555
+ # Filter by model
556
+ python filter_traces_sft_turso.py -d sqlite:///traces.db --models "Qwen/Qwen2.5-7B-Instruct"
557
+ """
558
+ )
559
+
560
+ parser.add_argument('-d', '--database', required=True, help='Path to Turso/SQLite database or connection URL')
561
+ parser.add_argument('-o', '--output', default='ft_data/training_modal.jsonl', help='Output JSONL file')
562
+ parser.add_argument('-c', '--config', help='Configuration TOML file')
563
+
564
+ # Filter overrides
565
+ parser.add_argument('--mode', choices=['trajectory', 'window'], help='Filtering mode')
566
+ parser.add_argument('--min-reward', type=float, help='Minimum total reward')
567
+ parser.add_argument('--min-achievements', type=int, help='Minimum achievements')
568
+ parser.add_argument('--max-cost', type=float, help='Maximum cost')
569
+ parser.add_argument('--max-tokens', type=int, help='Maximum tokens')
570
+ parser.add_argument('--models', nargs='+', help='Filter by model names (e.g., Qwen/Qwen2.5-7B-Instruct)')
571
+
572
+ parser.add_argument('--dry-run', action='store_true', help='Show statistics without writing output')
573
+
574
+ args = parser.parse_args()
575
+
576
+ # Load config
577
+ config = {
578
+ "mode": "trajectory",
579
+ "filters": {
580
+ "min_total_reward": 1.0,
581
+ "min_achievements": 0,
582
+ "max_cost": 10.0,
583
+ "max_tokens": 100000,
584
+ "models": [] # Empty means all models
585
+ }
586
+ }
587
+
588
+ if args.config:
589
+ with open(args.config, 'r') as f:
590
+ loaded_config = toml.load(f)
591
+ config.update(loaded_config)
592
+
593
+ # Apply command-line overrides
594
+ if args.mode:
595
+ config["mode"] = args.mode
596
+ if args.min_reward is not None:
597
+ config["filters"]["min_total_reward"] = args.min_reward
598
+ if args.min_achievements is not None:
599
+ config["filters"]["min_achievements"] = args.min_achievements
600
+ if args.max_cost is not None:
601
+ config["filters"]["max_cost"] = args.max_cost
602
+ if args.max_tokens is not None:
603
+ config["filters"]["max_tokens"] = args.max_tokens
604
+ if args.models:
605
+ config["filters"]["models"] = args.models
606
+
607
+ # Convert database path to proper URL format if needed
608
+ db_url = args.database
609
+ if db_url.startswith("sqlite:///"):
610
+ # Already in URL format
611
+ pass
612
+ elif db_url.endswith(".db"):
613
+ # Convert file path to URL
614
+ db_url = f"sqlite+aiosqlite:///{db_url}"
615
+
616
+ print(f"🤖 Modal/Synth Fine-Tuning Data Filter (v3)")
617
+ print(f"Using database: {db_url}")
618
+ print(f"Output file: {args.output}")
619
+ print(f"Mode: {config['mode']}")
620
+ print(f"Filters: {json.dumps(config['filters'], indent=2)}")
621
+
622
+ if args.dry_run:
623
+ print("\n🔍 DRY RUN - No output will be written")
624
+
625
+ # Run filtering
626
+ async def run():
627
+ num_examples, stats = await filter_traces_from_turso(
628
+ db_url,
629
+ args.output if not args.dry_run else "/dev/null",
630
+ config
631
+ )
632
+
633
+ # Print statistics
634
+ print_statistics(stats)
635
+
636
+ if not args.dry_run:
637
+ print(f"\n✅ Successfully wrote {num_examples} training examples to {args.output}")
638
+ print(f" Ready for Modal/Synth fine-tuning!")
639
+ else:
640
+ print(f"\n✅ Would write {num_examples} training examples (dry run)")
641
+
642
+ asyncio.run(run())
643
+
644
+
645
+ if __name__ == "__main__":
646
+ main()
@@ -0,0 +1,34 @@
1
+ #!/usr/bin/env python3
2
+ """Kick off Synth fine-tuning runs using the same production backend
3
+ configuration that our integration tests rely on.
4
+
5
+ This script doesn't launch the actual fine-tuning process (that lives on the
6
+ backend service) – it simply ensures that the current environment is
7
+ correctly configured to talk to the production API so that any subsequent CLI
8
+ commands or library calls inherit the right base URL and API key.
9
+
10
+ It re-uses the `setup_synth_environment` helper from
11
+ `test_crafter_react_agent_lm_synth.py` to resolve the correct endpoint and
12
+ authentication details.
13
+ """
14
+
15
+ # Re-use the helper we already maintain in the neighbouring test module.
16
+ from test_crafter_react_agent_lm_synth import setup_synth_environment # type: ignore
17
+
18
+
19
+ def main() -> None:
20
+ base_url, api_key = setup_synth_environment()
21
+
22
+ # Print info so that callers know what endpoint they are using.
23
+ print("✅ Synth/Modal backend configured")
24
+ print(f" BASE_URL: {base_url}")
25
+ print(" API_KEY: [hidden]")
26
+
27
+ # Optionally, you could kick off a fine-tune job here. For now we simply
28
+ # confirm that the environment variables are set so that users can run
29
+ # whatever downstream command they need (e.g. `uv run python some_ft.py`).
30
+
31
+
32
+ if __name__ == "__main__":
33
+ main()
34
+