synth-ai 0.2.0__py3-none-any.whl → 0.2.1.dev0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (266) hide show
  1. synth_ai/__init__.py +28 -2
  2. synth_ai/core/system.py +4 -0
  3. synth_ai/environments/__init__.py +35 -0
  4. synth_ai/environments/environment/__init__.py +1 -0
  5. synth_ai/environments/environment/artifacts/__init__.py +1 -0
  6. synth_ai/environments/environment/artifacts/base.py +50 -0
  7. synth_ai/environments/environment/core.py +22 -0
  8. synth_ai/environments/environment/db/__init__.py +1 -0
  9. synth_ai/environments/environment/db/sqlite.py +45 -0
  10. synth_ai/environments/environment/registry.py +24 -0
  11. synth_ai/environments/environment/resources/sqlite.py +46 -0
  12. synth_ai/environments/environment/results.py +1 -0
  13. synth_ai/environments/environment/rewards/__init__.py +1 -0
  14. synth_ai/environments/environment/rewards/core.py +28 -0
  15. synth_ai/environments/environment/shared_engine.py +26 -0
  16. synth_ai/environments/environment/tools/__init__.py +34 -0
  17. synth_ai/environments/examples/__init__.py +1 -0
  18. synth_ai/environments/examples/crafter_classic/__init__.py +8 -0
  19. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_comprehensive_evaluation.py +58 -0
  20. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_browser.py +152 -0
  21. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_evaluation_framework.py +1194 -0
  22. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_quick_evaluation.py +51 -0
  23. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_react_agent.py +872 -0
  24. synth_ai/environments/examples/crafter_classic/agent_demos/crafter_trace_evaluation.py +1412 -0
  25. synth_ai/environments/examples/crafter_classic/agent_demos/test_crafter_react_agent.py +1110 -0
  26. synth_ai/environments/examples/crafter_classic/config_logging.py +111 -0
  27. synth_ai/environments/examples/crafter_classic/engine.py +502 -0
  28. synth_ai/environments/examples/crafter_classic/engine_deterministic_patch.py +63 -0
  29. synth_ai/environments/examples/crafter_classic/engine_helpers/action_map.py +5 -0
  30. synth_ai/environments/examples/crafter_classic/engine_helpers/serialization.py +74 -0
  31. synth_ai/environments/examples/crafter_classic/environment.py +255 -0
  32. synth_ai/environments/examples/crafter_classic/taskset.py +228 -0
  33. synth_ai/environments/examples/enron/agent_demos/test_synth_react.py +535 -0
  34. synth_ai/environments/examples/enron/art_helpers/email_search_tools.py +156 -0
  35. synth_ai/environments/examples/enron/art_helpers/local_email_db.py +280 -0
  36. synth_ai/environments/examples/enron/art_helpers/types_enron.py +24 -0
  37. synth_ai/environments/examples/enron/engine.py +291 -0
  38. synth_ai/environments/examples/enron/environment.py +165 -0
  39. synth_ai/environments/examples/enron/taskset.py +112 -0
  40. synth_ai/environments/examples/enron/units/keyword_stats.py +111 -0
  41. synth_ai/environments/examples/enron/units/test_email_index.py +8 -0
  42. synth_ai/environments/examples/minigrid/__init__.py +48 -0
  43. synth_ai/environments/examples/minigrid/agent_demos/minigrid_evaluation_framework.py +1188 -0
  44. synth_ai/environments/examples/minigrid/agent_demos/minigrid_quick_evaluation.py +47 -0
  45. synth_ai/environments/examples/minigrid/agent_demos/minigrid_react_agent.py +562 -0
  46. synth_ai/environments/examples/minigrid/agent_demos/minigrid_trace_evaluation.py +220 -0
  47. synth_ai/environments/examples/minigrid/agent_demos/test_minigrid_react_agent.py +393 -0
  48. synth_ai/environments/examples/minigrid/engine.py +589 -0
  49. synth_ai/environments/examples/minigrid/environment.py +274 -0
  50. synth_ai/environments/examples/minigrid/environment_mapping.py +242 -0
  51. synth_ai/environments/examples/minigrid/puzzle_loader.py +416 -0
  52. synth_ai/environments/examples/minigrid/taskset.py +583 -0
  53. synth_ai/environments/examples/minigrid/units/test_action_behavior.py +226 -0
  54. synth_ai/environments/examples/minigrid/units/test_debug_messages.py +83 -0
  55. synth_ai/environments/examples/minigrid/units/test_exploration.py +120 -0
  56. synth_ai/environments/examples/minigrid/units/test_minigrid_engine.py +214 -0
  57. synth_ai/environments/examples/minigrid/units/test_minigrid_environment.py +238 -0
  58. synth_ai/environments/examples/minigrid/units/test_minigrid_environment_mapping.py +301 -0
  59. synth_ai/environments/examples/minigrid/units/test_minigrid_taskset.py +210 -0
  60. synth_ai/environments/examples/nethack/__init__.py +7 -0
  61. synth_ai/environments/examples/nethack/achievements.py +337 -0
  62. synth_ai/environments/examples/nethack/agent_demos/nethack_evaluation_framework.py +981 -0
  63. synth_ai/environments/examples/nethack/agent_demos/nethack_quick_evaluation.py +74 -0
  64. synth_ai/environments/examples/nethack/agent_demos/nethack_react_agent.py +832 -0
  65. synth_ai/environments/examples/nethack/agent_demos/test_nethack_react_agent.py +1112 -0
  66. synth_ai/environments/examples/nethack/engine.py +738 -0
  67. synth_ai/environments/examples/nethack/environment.py +255 -0
  68. synth_ai/environments/examples/nethack/helpers/__init__.py +42 -0
  69. synth_ai/environments/examples/nethack/helpers/action_mapping.py +301 -0
  70. synth_ai/environments/examples/nethack/helpers/nle_wrapper.py +401 -0
  71. synth_ai/environments/examples/nethack/helpers/observation_utils.py +433 -0
  72. synth_ai/environments/examples/nethack/helpers/recording_wrapper.py +201 -0
  73. synth_ai/environments/examples/nethack/helpers/trajectory_recorder.py +268 -0
  74. synth_ai/environments/examples/nethack/helpers/visualization/replay_viewer.py +308 -0
  75. synth_ai/environments/examples/nethack/helpers/visualization/visualizer.py +430 -0
  76. synth_ai/environments/examples/nethack/taskset.py +323 -0
  77. synth_ai/environments/examples/nethack/units/test_nethack_engine.py +277 -0
  78. synth_ai/environments/examples/nethack/units/test_nethack_environment.py +281 -0
  79. synth_ai/environments/examples/nethack/units/test_nethack_taskset.py +213 -0
  80. synth_ai/environments/examples/nethack/units/test_recording.py +307 -0
  81. synth_ai/environments/examples/red/__init__.py +7 -0
  82. synth_ai/environments/examples/red/agent_demos/__init__.py +1 -0
  83. synth_ai/environments/examples/red/agent_demos/test_synth_react.py +1471 -0
  84. synth_ai/environments/examples/red/config_logging.py +110 -0
  85. synth_ai/environments/examples/red/engine.py +693 -0
  86. synth_ai/environments/examples/red/engine_helpers/__init__.py +1 -0
  87. synth_ai/environments/examples/red/engine_helpers/memory_map.py +28 -0
  88. synth_ai/environments/examples/red/engine_helpers/reward_components.py +275 -0
  89. synth_ai/environments/examples/red/engine_helpers/reward_library/__init__.py +142 -0
  90. synth_ai/environments/examples/red/engine_helpers/reward_library/adaptive_rewards.py +56 -0
  91. synth_ai/environments/examples/red/engine_helpers/reward_library/battle_rewards.py +283 -0
  92. synth_ai/environments/examples/red/engine_helpers/reward_library/composite_rewards.py +149 -0
  93. synth_ai/environments/examples/red/engine_helpers/reward_library/economy_rewards.py +137 -0
  94. synth_ai/environments/examples/red/engine_helpers/reward_library/efficiency_rewards.py +56 -0
  95. synth_ai/environments/examples/red/engine_helpers/reward_library/exploration_rewards.py +330 -0
  96. synth_ai/environments/examples/red/engine_helpers/reward_library/novelty_rewards.py +120 -0
  97. synth_ai/environments/examples/red/engine_helpers/reward_library/pallet_town_rewards.py +558 -0
  98. synth_ai/environments/examples/red/engine_helpers/reward_library/pokemon_rewards.py +312 -0
  99. synth_ai/environments/examples/red/engine_helpers/reward_library/social_rewards.py +147 -0
  100. synth_ai/environments/examples/red/engine_helpers/reward_library/story_rewards.py +246 -0
  101. synth_ai/environments/examples/red/engine_helpers/screen_analysis.py +367 -0
  102. synth_ai/environments/examples/red/engine_helpers/state_extraction.py +139 -0
  103. synth_ai/environments/examples/red/environment.py +235 -0
  104. synth_ai/environments/examples/red/taskset.py +77 -0
  105. synth_ai/environments/examples/red/test_fixes.py +125 -0
  106. synth_ai/environments/examples/red/test_fixes_mock.py +148 -0
  107. synth_ai/environments/examples/red/units/__init__.py +1 -0
  108. synth_ai/environments/examples/red/units/test_basic_functionality.py +97 -0
  109. synth_ai/environments/examples/red/units/test_button_press_requirements.py +217 -0
  110. synth_ai/environments/examples/red/units/test_engine.py +192 -0
  111. synth_ai/environments/examples/red/units/test_environment.py +455 -0
  112. synth_ai/environments/examples/red/units/test_exploration_strategy.py +227 -0
  113. synth_ai/environments/examples/red/units/test_integration.py +217 -0
  114. synth_ai/environments/examples/red/units/test_memory_extraction.py +111 -0
  115. synth_ai/environments/examples/red/units/test_menu_bug_reproduction.py +1100 -0
  116. synth_ai/environments/examples/red/units/test_movement_debug.py +255 -0
  117. synth_ai/environments/examples/red/units/test_pokemon_mcts_debug.py +163 -0
  118. synth_ai/environments/examples/red/units/test_pokemon_mcts_verbose.py +117 -0
  119. synth_ai/environments/examples/red/units/test_red_basic.py +145 -0
  120. synth_ai/environments/examples/red/units/test_red_comprehensive.py +323 -0
  121. synth_ai/environments/examples/red/units/test_retry_movement.py +195 -0
  122. synth_ai/environments/examples/red/units/test_reward_components.py +186 -0
  123. synth_ai/environments/examples/red/units/test_rom_integration.py +260 -0
  124. synth_ai/environments/examples/red/units/test_taskset.py +116 -0
  125. synth_ai/environments/examples/red/units/test_tree.py +448 -0
  126. synth_ai/environments/examples/sokoban/__init__.py +1 -0
  127. synth_ai/environments/examples/sokoban/agent_demos/sokoban_full_eval.py +900 -0
  128. synth_ai/environments/examples/sokoban/agent_demos/test_dspy_react.py +1 -0
  129. synth_ai/environments/examples/sokoban/agent_demos/test_sokoban_react_agent.py +498 -0
  130. synth_ai/environments/examples/sokoban/agent_demos/test_synth_lats.py +1 -0
  131. synth_ai/environments/examples/sokoban/agent_demos/test_synth_react_locally.py +748 -0
  132. synth_ai/environments/examples/sokoban/agent_demos/test_synth_react_service.py +296 -0
  133. synth_ai/environments/examples/sokoban/engine.py +675 -0
  134. synth_ai/environments/examples/sokoban/engine_helpers/__init__.py +1 -0
  135. synth_ai/environments/examples/sokoban/engine_helpers/room_utils.py +656 -0
  136. synth_ai/environments/examples/sokoban/engine_helpers/vendored/__init__.py +17 -0
  137. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/__init__.py +3 -0
  138. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/boxoban_env.py +129 -0
  139. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/render_utils.py +370 -0
  140. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/room_utils.py +331 -0
  141. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env.py +305 -0
  142. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_fixed_targets.py +66 -0
  143. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_pull.py +114 -0
  144. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_two_player.py +122 -0
  145. synth_ai/environments/examples/sokoban/engine_helpers/vendored/envs/sokoban_env_variations.py +394 -0
  146. synth_ai/environments/examples/sokoban/environment.py +228 -0
  147. synth_ai/environments/examples/sokoban/generate_verified_puzzles.py +438 -0
  148. synth_ai/environments/examples/sokoban/puzzle_loader.py +311 -0
  149. synth_ai/environments/examples/sokoban/taskset.py +425 -0
  150. synth_ai/environments/examples/sokoban/units/astar_common.py +94 -0
  151. synth_ai/environments/examples/sokoban/units/test_building_task_set.py +49 -0
  152. synth_ai/environments/examples/sokoban/units/test_false_positive.py +120 -0
  153. synth_ai/environments/examples/sokoban/units/test_simple_run_through_environment.py +119 -0
  154. synth_ai/environments/examples/sokoban/units/test_sokoban_environment.py +98 -0
  155. synth_ai/environments/examples/sokoban/units/test_tree.py +364 -0
  156. synth_ai/environments/examples/tictactoe/__init__.py +1 -0
  157. synth_ai/environments/examples/tictactoe/agent_demos/test_synth_react.py +266 -0
  158. synth_ai/environments/examples/tictactoe/agent_demos/test_tictactoe_react_agent.py +470 -0
  159. synth_ai/environments/examples/tictactoe/engine.py +368 -0
  160. synth_ai/environments/examples/tictactoe/environment.py +239 -0
  161. synth_ai/environments/examples/tictactoe/taskset.py +214 -0
  162. synth_ai/environments/examples/tictactoe/units/test_tictactoe_engine.py +393 -0
  163. synth_ai/environments/examples/tictactoe/units/test_tictactoe_environment.py +493 -0
  164. synth_ai/environments/examples/tictactoe/units/test_tictactoe_taskset.py +191 -0
  165. synth_ai/environments/examples/verilog/__init__.py +10 -0
  166. synth_ai/environments/examples/verilog/agent_demos/test_synth_react.py +520 -0
  167. synth_ai/environments/examples/verilog/engine.py +328 -0
  168. synth_ai/environments/examples/verilog/environment.py +349 -0
  169. synth_ai/environments/examples/verilog/taskset.py +418 -0
  170. synth_ai/environments/examples/verilog/units/test_verilog_engine.py +466 -0
  171. synth_ai/environments/examples/verilog/units/test_verilog_environment.py +585 -0
  172. synth_ai/environments/examples/verilog/units/test_verilog_integration.py +383 -0
  173. synth_ai/environments/examples/verilog/units/test_verilog_taskset.py +457 -0
  174. synth_ai/environments/reproducibility/core.py +42 -0
  175. synth_ai/environments/reproducibility/tree.py +364 -0
  176. synth_ai/environments/service/app.py +78 -0
  177. synth_ai/environments/service/core_routes.py +775 -0
  178. synth_ai/environments/service/external_registry.py +57 -0
  179. synth_ai/environments/service/registry.py +9 -0
  180. synth_ai/environments/stateful/__init__.py +1 -0
  181. synth_ai/environments/stateful/core.py +28 -0
  182. synth_ai/environments/stateful/engine.py +21 -0
  183. synth_ai/environments/stateful/state.py +7 -0
  184. synth_ai/environments/tasks/api.py +19 -0
  185. synth_ai/environments/tasks/core.py +78 -0
  186. synth_ai/environments/tasks/filters.py +39 -0
  187. synth_ai/environments/tasks/utils.py +89 -0
  188. synth_ai/environments/v0_observability/history.py +3 -0
  189. synth_ai/environments/v0_observability/log.py +2 -0
  190. synth_ai/lm/caching/constants.py +1 -0
  191. synth_ai/{zyk/lms → lm}/caching/ephemeral.py +4 -8
  192. synth_ai/{zyk/lms → lm}/caching/handler.py +15 -15
  193. synth_ai/{zyk/lms → lm}/caching/initialize.py +2 -4
  194. synth_ai/{zyk/lms → lm}/caching/persistent.py +4 -10
  195. synth_ai/{zyk/lms → lm}/config.py +2 -1
  196. synth_ai/{zyk/lms → lm}/constants.py +2 -2
  197. synth_ai/{zyk/lms → lm}/core/all.py +10 -10
  198. synth_ai/{zyk/lms → lm}/core/main.py +57 -33
  199. synth_ai/{zyk/lms → lm}/core/vendor_clients.py +12 -10
  200. synth_ai/lm/cost/monitor.py +1 -0
  201. synth_ai/lm/cost/statefulness.py +1 -0
  202. synth_ai/lm/provider_support/__init__.py +8 -0
  203. synth_ai/lm/provider_support/anthropic.py +945 -0
  204. synth_ai/lm/provider_support/openai.py +1115 -0
  205. synth_ai/lm/provider_support/suppress_logging.py +31 -0
  206. synth_ai/{zyk/lms → lm}/structured_outputs/handler.py +58 -80
  207. synth_ai/{zyk/lms → lm}/structured_outputs/inject.py +6 -20
  208. synth_ai/{zyk/lms → lm}/structured_outputs/rehabilitate.py +6 -12
  209. synth_ai/{zyk/lms → lm}/vendors/core/anthropic_api.py +21 -30
  210. synth_ai/{zyk/lms → lm}/vendors/core/gemini_api.py +35 -32
  211. synth_ai/{zyk/lms → lm}/vendors/core/mistral_api.py +19 -28
  212. synth_ai/{zyk/lms → lm}/vendors/core/openai_api.py +26 -36
  213. synth_ai/{zyk/lms → lm}/vendors/openai_standard.py +29 -33
  214. synth_ai/{zyk/lms → lm}/vendors/retries.py +1 -1
  215. synth_ai/lm/vendors/supported/__init__.py +0 -0
  216. synth_ai/{zyk/lms → lm}/vendors/supported/custom_endpoint.py +131 -118
  217. synth_ai/{zyk/lms → lm}/vendors/supported/deepseek.py +4 -8
  218. synth_ai/{zyk/lms → lm}/vendors/supported/grok.py +6 -8
  219. synth_ai/{zyk/lms → lm}/vendors/supported/groq.py +1 -1
  220. synth_ai/{zyk/lms → lm}/vendors/supported/ollama.py +2 -2
  221. synth_ai/{zyk/lms → lm}/vendors/supported/openrouter.py +18 -16
  222. synth_ai/{zyk/lms → lm}/vendors/supported/together.py +1 -1
  223. synth_ai/tracing/__init__.py +0 -0
  224. synth_ai/tracing/abstractions.py +224 -0
  225. synth_ai/tracing/base_client.py +91 -0
  226. synth_ai/tracing/client_manager.py +131 -0
  227. synth_ai/tracing/config.py +140 -0
  228. synth_ai/tracing/context.py +146 -0
  229. synth_ai/tracing/decorators.py +679 -0
  230. synth_ai/tracing/events/__init__.py +0 -0
  231. synth_ai/tracing/events/manage.py +147 -0
  232. synth_ai/tracing/events/scope.py +86 -0
  233. synth_ai/tracing/events/store.py +227 -0
  234. synth_ai/tracing/immediate_client.py +152 -0
  235. synth_ai/tracing/local.py +18 -0
  236. synth_ai/tracing/log_client_base.py +74 -0
  237. synth_ai/tracing/retry_queue.py +187 -0
  238. synth_ai/tracing/trackers.py +515 -0
  239. synth_ai/tracing/upload.py +504 -0
  240. synth_ai/tracing/utils.py +9 -0
  241. synth_ai/zyk/__init__.py +28 -2
  242. synth_ai-0.2.1.dev0.dist-info/METADATA +349 -0
  243. synth_ai-0.2.1.dev0.dist-info/RECORD +261 -0
  244. {synth_ai-0.2.0.dist-info → synth_ai-0.2.1.dev0.dist-info}/WHEEL +1 -1
  245. synth_ai/zyk/lms/caching/constants.py +0 -1
  246. synth_ai/zyk/lms/cost/monitor.py +0 -1
  247. synth_ai/zyk/lms/cost/statefulness.py +0 -1
  248. synth_ai-0.2.0.dist-info/METADATA +0 -36
  249. synth_ai-0.2.0.dist-info/RECORD +0 -50
  250. /synth_ai/{zyk/lms/__init__.py → environments/reproducibility/helpers.py} +0 -0
  251. /synth_ai/{zyk/lms/caching → lm}/__init__.py +0 -0
  252. /synth_ai/{zyk/lms/core → lm/caching}/__init__.py +0 -0
  253. /synth_ai/{zyk/lms → lm}/caching/dbs.py +0 -0
  254. /synth_ai/{zyk/lms/cost → lm/core}/__init__.py +0 -0
  255. /synth_ai/{zyk/lms → lm}/core/exceptions.py +0 -0
  256. /synth_ai/{zyk/lms/structured_outputs → lm/cost}/__init__.py +0 -0
  257. /synth_ai/{zyk/lms/vendors → lm/structured_outputs}/__init__.py +0 -0
  258. /synth_ai/{zyk/lms → lm}/tools/__init__.py +0 -0
  259. /synth_ai/{zyk/lms → lm}/tools/base.py +0 -0
  260. /synth_ai/{zyk/lms/vendors/core → lm/vendors}/__init__.py +0 -0
  261. /synth_ai/{zyk/lms → lm}/vendors/base.py +0 -0
  262. /synth_ai/{zyk/lms/vendors/local → lm/vendors/core}/__init__.py +0 -0
  263. /synth_ai/{zyk/lms/vendors/supported → lm/vendors/local}/__init__.py +0 -0
  264. /synth_ai/{zyk/lms → lm}/vendors/local/ollama.py +0 -0
  265. {synth_ai-0.2.0.dist-info → synth_ai-0.2.1.dev0.dist-info/licenses}/LICENSE +0 -0
  266. {synth_ai-0.2.0.dist-info → synth_ai-0.2.1.dev0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1188 @@
1
+ """
2
+ MiniGrid Evaluation Framework
3
+ Provides detailed metrics, trajectory analysis, and achievement statistics for MiniGrid environments.
4
+ """
5
+
6
+ import asyncio
7
+ import json
8
+ import time
9
+ import math
10
+ from dataclasses import dataclass, asdict
11
+ from typing import Dict, List, Optional, Set, Tuple, Any
12
+ from collections import defaultdict
13
+ import uuid
14
+ import os
15
+ from pathlib import Path
16
+
17
+ import pandas as pd
18
+ from tqdm import tqdm
19
+
20
+ # Synth-SDK tracing imports
21
+ from synth_sdk.tracing.context import trace_context
22
+ from synth_sdk.tracing.events.store import event_store
23
+
24
+ # MiniGrid-specific achievements based on task complexity
25
+ MINIGRID_ACHIEVEMENTS = {
26
+ "basic": [
27
+ "reach_goal", # Complete any goal-reaching task
28
+ "first_pickup", # Pick up first object
29
+ "first_door_open", # Open first door
30
+ "first_key_use", # Use key to unlock door
31
+ "navigate_empty_room", # Complete Empty room tasks
32
+ "complete_5_tasks", # Complete 5 different tasks
33
+ ],
34
+ "intermediate": [
35
+ "door_key_master", # Complete DoorKey tasks consistently
36
+ "multi_room_navigator", # Complete MultiRoom tasks
37
+ "unlock_pickup_combo", # Complete UnlockPickup tasks
38
+ "four_rooms_explorer", # Complete FourRooms tasks
39
+ "complete_20_tasks", # Complete 20 different tasks
40
+ "efficiency_expert", # Complete task in <50% of max steps
41
+ ],
42
+ "advanced": [
43
+ "lava_crosser", # Complete LavaCrossing tasks
44
+ "large_room_master", # Complete 16x16+ room tasks
45
+ "complex_multi_room", # Complete N6+ MultiRoom tasks
46
+ "speed_runner", # Complete task in <25% of max steps
47
+ "complete_50_tasks", # Complete 50 different tasks
48
+ "perfect_navigator", # 90%+ success rate across all task types
49
+ ],
50
+ }
51
+
52
+ ALL_ACHIEVEMENTS = [ach for category in MINIGRID_ACHIEVEMENTS.values() for ach in category]
53
+
54
+ TERMINATION_REASONS = [
55
+ "timeout",
56
+ "goal_reached",
57
+ "agent_quit",
58
+ "environment_error",
59
+ "lava_death",
60
+ ]
61
+
62
+ # Task difficulty mapping
63
+ MINIGRID_DIFFICULTY_MAPPING = {
64
+ "easy": [
65
+ "MiniGrid-Empty-5x5-v0",
66
+ "MiniGrid-Empty-6x6-v0",
67
+ "MiniGrid-Empty-8x8-v0",
68
+ "MiniGrid-FourRooms-v0",
69
+ ],
70
+ "medium": [
71
+ "MiniGrid-DoorKey-5x5-v0",
72
+ "MiniGrid-DoorKey-6x6-v0",
73
+ "MiniGrid-DoorKey-8x8-v0",
74
+ "MiniGrid-Unlock-v0",
75
+ "MiniGrid-UnlockPickup-v0",
76
+ ],
77
+ "hard": [
78
+ "MiniGrid-DoorKey-16x16-v0",
79
+ "MiniGrid-MultiRoom-N2-S4-v0",
80
+ "MiniGrid-MultiRoom-N4-S5-v0",
81
+ "MiniGrid-MultiRoom-N6-v0",
82
+ "MiniGrid-LavaGapS5-v0",
83
+ "MiniGrid-LavaGapS6-v0",
84
+ "MiniGrid-LavaGapS7-v0",
85
+ "MiniGrid-LavaCrossingS9N1-v0",
86
+ "MiniGrid-LavaCrossingS9N2-v0",
87
+ "MiniGrid-LavaCrossingS9N3-v0",
88
+ ],
89
+ }
90
+
91
+
92
+ def minigrid_composite_score(
93
+ achievements_unlocked: int,
94
+ task_completion_rate: float,
95
+ avg_efficiency: float,
96
+ exploration_coverage: float,
97
+ ) -> float:
98
+ """
99
+ MiniGrid composite scoring based on:
100
+ - Achievement unlocking (30%)
101
+ - Task completion rate (40%)
102
+ - Movement efficiency (20%)
103
+ - Exploration coverage (10%)
104
+ """
105
+ achievement_score = (achievements_unlocked / len(ALL_ACHIEVEMENTS)) * 30
106
+ completion_score = task_completion_rate * 40
107
+ efficiency_score = avg_efficiency * 20
108
+ exploration_score = exploration_coverage * 10
109
+ return achievement_score + completion_score + efficiency_score + exploration_score
110
+
111
+
112
+ def minigrid_navigation_score(
113
+ success_rate: float, efficiency_ratio: float, wall_collision_rate: float
114
+ ) -> float:
115
+ """Navigation-specific score focusing on pathfinding ability."""
116
+ # Penalize wall collisions
117
+ collision_penalty = min(wall_collision_rate * 10, 20) # Cap at 20% penalty
118
+ base_score = (success_rate * 70) + (efficiency_ratio * 30)
119
+ return max(0, base_score - collision_penalty)
120
+
121
+
122
+ @dataclass
123
+ class MiniGridTrajectoryResult:
124
+ """Results from a single MiniGrid trajectory/episode."""
125
+
126
+ trajectory_id: str
127
+ model_name: str
128
+ difficulty: str
129
+ task_type: str # "Empty", "DoorKey", "MultiRoom", etc.
130
+ seed: int
131
+
132
+ # Core metrics
133
+ success: bool
134
+ total_steps: int
135
+ total_turns: int # Number of agent decision turns
136
+ total_reward: float
137
+
138
+ # MiniGrid-specific fields
139
+ grid_size: Tuple[int, int] # (width, height)
140
+ steps_to_goal: int # Actual steps taken
141
+ optimal_steps: Optional[int] # Theoretical minimum steps
142
+ efficiency_ratio: float # optimal_steps / steps_to_goal (higher is better)
143
+ objects_interacted: List[str] # ["door", "key", "goal"]
144
+ rooms_visited: int # Number of different rooms visited
145
+
146
+ # Navigation metrics
147
+ backtrack_count: int # Number of revisited positions
148
+ wall_collision_count: int # Number of invalid moves
149
+ exploration_coverage: float # % of accessible area explored
150
+
151
+ # Achievement tracking
152
+ achievements_unlocked: Set[str]
153
+ achievement_turn_unlocked: Dict[str, int] # achievement -> turn when unlocked
154
+
155
+ # Multi-action metrics
156
+ actions_per_turn: List[int] # Number of actions per turn
157
+ avg_actions_per_turn: float
158
+
159
+ # Termination analysis
160
+ termination_reason: (
161
+ str # "timeout", "goal_reached", "agent_quit", "environment_error", "lava_death"
162
+ )
163
+ final_position: Optional[Tuple[int, int]]
164
+ final_direction: Optional[int]
165
+
166
+ # Trajectory data for detailed analysis
167
+ turn_by_turn_data: Optional[List[Dict[str, Any]]] = None
168
+
169
+
170
+ @dataclass
171
+ class MiniGridAggregateResults:
172
+ """Aggregate results across multiple MiniGrid trajectories."""
173
+
174
+ model_name: str
175
+ difficulty: str
176
+ num_trajectories: int
177
+
178
+ # Success metrics
179
+ success_rate: float
180
+ avg_total_steps: float
181
+ avg_total_turns: float
182
+ avg_total_reward: float
183
+
184
+ # MiniGrid-specific metrics
185
+ task_completion_rates: Dict[str, float] # task_type -> completion rate
186
+ avg_efficiency_ratio: float
187
+ avg_exploration_coverage: float
188
+ avg_wall_collisions: float
189
+ avg_backtrack_count: float
190
+
191
+ # Achievement metrics
192
+ unique_achievements_unlocked: Set[str]
193
+ total_achievement_count: int
194
+ avg_achievements_per_trajectory: float
195
+ achievement_unlock_rates: Dict[str, float] # achievement -> % of trajectories that unlocked it
196
+
197
+ # MiniGrid-specific scores
198
+ composite_score_avg: float # Average composite score across trajectories
199
+ composite_score_best: float # Best single composite score
200
+ navigation_score_avg: float # Average navigation score
201
+ navigation_score_best: float # Best navigation score
202
+
203
+ # Multi-action metrics
204
+ avg_actions_per_turn_overall: float
205
+ actions_per_turn_distribution: Dict[int, int] # num_actions -> count
206
+
207
+ # Termination analysis
208
+ termination_breakdown: Dict[str, float] # reason -> percentage
209
+ avg_final_position: Optional[Tuple[float, float]]
210
+
211
+
212
+ def get_pure_success_scores(
213
+ aggregate_results: List[MiniGridAggregateResults],
214
+ ) -> Dict[str, float]:
215
+ """
216
+ Extract pure success scores - the percentage of tasks completed successfully.
217
+
218
+ This is the simplest, most direct metric: did the agent reach the goal?
219
+
220
+ Returns:
221
+ Dict mapping "model_name (difficulty)" to success rate percentage (0-100)
222
+ """
223
+ success_scores = {}
224
+ for agg in aggregate_results:
225
+ key = f"{agg.model_name} ({agg.difficulty})"
226
+ success_scores[key] = agg.success_rate * 100.0 # Convert to percentage
227
+
228
+ return success_scores
229
+
230
+
231
+ def print_pure_success_summary(aggregate_results: List[MiniGridAggregateResults]):
232
+ """Print a clean summary focused on pure success rates."""
233
+ print("\n🎯 PURE SUCCESS RATES (Task Completion)")
234
+ print("=" * 50)
235
+
236
+ success_scores = get_pure_success_scores(aggregate_results)
237
+
238
+ # Sort by success rate (highest first)
239
+ sorted_results = sorted(aggregate_results, key=lambda x: x.success_rate, reverse=True)
240
+
241
+ for agg in sorted_results:
242
+ success_pct = agg.success_rate * 100.0
243
+ print(f"{agg.model_name:25} ({agg.difficulty:6}): {success_pct:5.1f}%")
244
+
245
+ print("=" * 50)
246
+ print("✓ Success = Agent reached the goal")
247
+ print("✗ Failure = Timeout, quit, or error")
248
+
249
+
250
+ def get_success_rate(report: Dict[str, Any], model_name: str, difficulty: str = None) -> float:
251
+ """
252
+ Quick helper to get the success rate for a specific model.
253
+
254
+ Args:
255
+ report: Evaluation report from run_minigrid_eval()
256
+ model_name: Name of the model
257
+ difficulty: Specific difficulty, or None for all difficulties
258
+
259
+ Returns:
260
+ Success rate as percentage (0-100)
261
+ """
262
+ if "pure_success_scores" not in report:
263
+ return 0.0
264
+
265
+ success_scores = report["pure_success_scores"]
266
+
267
+ if difficulty:
268
+ key = f"{model_name} ({difficulty})"
269
+ return success_scores.get(key, 0.0)
270
+ else:
271
+ # Return average across all difficulties for this model
272
+ matching_scores = [
273
+ score for key, score in success_scores.items() if key.startswith(model_name)
274
+ ]
275
+ return sum(matching_scores) / len(matching_scores) if matching_scores else 0.0
276
+
277
+
278
+ class MiniGridEvalFramework:
279
+ """Evaluation framework for MiniGrid environments."""
280
+
281
+ def __init__(self):
282
+ self.trajectory_results: List[MiniGridTrajectoryResult] = []
283
+
284
+ async def run_single_trajectory(
285
+ self,
286
+ model_name: str,
287
+ difficulty: str,
288
+ task_type: str,
289
+ seed: int,
290
+ max_turns: int = 30,
291
+ collect_detailed_data: bool = True,
292
+ ) -> MiniGridTrajectoryResult:
293
+ """Run a single trajectory and collect detailed metrics."""
294
+ import sys
295
+ import os
296
+
297
+ # Add the agent_demos directory to path
298
+ agent_demos_dir = os.path.dirname(os.path.abspath(__file__))
299
+ sys.path.insert(0, agent_demos_dir)
300
+ # Add the minigrid directory to path
301
+ minigrid_dir = os.path.dirname(agent_demos_dir)
302
+ sys.path.insert(0, minigrid_dir)
303
+
304
+ from test_synth_react import MiniGridReActAgent
305
+ from environment import MiniGridEnvironment
306
+ from taskset import MiniGridTaskInstance, MiniGridTaskInstanceMetadata
307
+ from synth_ai.environments.tasks.core import Impetus, Intent
308
+ from synth_ai.zyk import LM
309
+
310
+ # Create task instance based on task type
311
+ # Extract grid size from task name
312
+ grid_size = (6, 6) # Default
313
+ if "5x5" in task_type:
314
+ grid_size = (5, 5)
315
+ elif "6x6" in task_type:
316
+ grid_size = (6, 6)
317
+ elif "8x8" in task_type:
318
+ grid_size = (8, 8)
319
+ elif "16x16" in task_type:
320
+ grid_size = (16, 16)
321
+
322
+ # Determine features
323
+ has_key = "DoorKey" in task_type or "Unlock" in task_type
324
+ has_door = "Door" in task_type or "Room" in task_type
325
+ has_lava = "Lava" in task_type
326
+
327
+ metadata = MiniGridTaskInstanceMetadata(
328
+ env_name=task_type,
329
+ grid_size=grid_size,
330
+ difficulty=difficulty,
331
+ has_key=has_key,
332
+ has_door=has_door,
333
+ has_lava=has_lava,
334
+ num_objects=1 if has_key or has_door else 0,
335
+ seed=seed,
336
+ )
337
+
338
+ instance = MiniGridTaskInstance(
339
+ id=uuid.uuid4(),
340
+ impetus=Impetus(instructions=f"Navigate and complete the {task_type} environment."),
341
+ intent=Intent(rubric={}, gold_trajectories=None, gold_state_diff={}),
342
+ metadata=metadata,
343
+ is_reproducible=True,
344
+ initial_engine_snapshot=None,
345
+ )
346
+
347
+ # Setup environment and agent
348
+ env = MiniGridEnvironment(instance)
349
+
350
+ llm = LM(model_name=model_name, formatting_model_name=model_name, temperature=0.0)
351
+ agent = MiniGridReActAgent(llm, max_turns=max_turns, verbose=True)
352
+
353
+ # Initialize tracking
354
+ trajectory_id = str(uuid.uuid4())
355
+ achievements_unlocked = set()
356
+ achievement_turn_unlocked = {}
357
+ actions_per_turn = []
358
+ turn_by_turn_data = [] if collect_detailed_data else None
359
+
360
+ # Navigation tracking
361
+ positions_visited = set()
362
+ wall_collisions = 0
363
+ backtrack_count = 0
364
+ objects_interacted = []
365
+
366
+ # Wrap in trace context for synth-sdk tracing
367
+ with trace_context(
368
+ system_name="minigrid_evaluation",
369
+ system_id="minigrid_evaluation",
370
+ system_instance_id=trajectory_id,
371
+ ):
372
+ # Run episode
373
+ obs_payload = await env.initialize()
374
+ turn_count = 0
375
+ termination_reason = "unknown"
376
+
377
+ # Extract grid size from initial observation
378
+ grid_size = self._extract_grid_size(obs_payload)
379
+
380
+ # Create progress bar for this trajectory
381
+ pbar = tqdm(
382
+ total=max_turns,
383
+ desc=f"{model_name} ({difficulty}) {task_type} Seed {seed}",
384
+ unit="turn",
385
+ leave=False,
386
+ ncols=100,
387
+ )
388
+
389
+ try:
390
+ while turn_count < max_turns:
391
+ turn_count += 1
392
+ pbar.update(1)
393
+
394
+ # Track achievements
395
+ easy_count = len(
396
+ [a for a in achievements_unlocked if a in MINIGRID_ACHIEVEMENTS["basic"]]
397
+ )
398
+ medium_count = len(
399
+ [
400
+ a
401
+ for a in achievements_unlocked
402
+ if a in MINIGRID_ACHIEVEMENTS["intermediate"]
403
+ ]
404
+ )
405
+ hard_count = len(
406
+ [a for a in achievements_unlocked if a in MINIGRID_ACHIEVEMENTS["advanced"]]
407
+ )
408
+ total_count = len(achievements_unlocked)
409
+
410
+ achievement_display = f"{total_count}({easy_count}/{medium_count}/{hard_count})"
411
+
412
+ pbar.set_postfix(
413
+ {
414
+ "achievements": achievement_display,
415
+ "steps": obs_payload.get("public", {}).step_count
416
+ if hasattr(obs_payload.get("public", {}), "step_count")
417
+ else 0,
418
+ }
419
+ )
420
+
421
+ current_formatted_obs = obs_payload.get("formatted_obs", "")
422
+
423
+ # Track current position
424
+ current_position = self._extract_position(obs_payload)
425
+ if current_position:
426
+ if current_position in positions_visited:
427
+ backtrack_count += 1
428
+ positions_visited.add(current_position)
429
+
430
+ # Check for new achievements
431
+ new_achievements = self._check_achievements(
432
+ obs_payload, achievements_unlocked, turn_count, task_type
433
+ )
434
+ for ach in new_achievements:
435
+ achievements_unlocked.add(ach)
436
+ achievement_turn_unlocked[ach] = turn_count
437
+
438
+ # Agent decision
439
+ task_description = f"Complete the {task_type} task"
440
+ action_decision = await agent.decide(
441
+ current_formatted_obs, task_description, turn_count
442
+ )
443
+
444
+ if action_decision["name"] == "terminate":
445
+ termination_reason = "agent_quit"
446
+ break
447
+
448
+ # Convert to environment action format
449
+ env_action = self._convert_action_format(action_decision)
450
+ actions_per_turn.append(1) # MiniGrid typically uses single actions
451
+
452
+ # Collect turn data
453
+ if collect_detailed_data:
454
+ turn_data = {
455
+ "turn": turn_count,
456
+ "action_planned": action_decision,
457
+ "achievements_at_start": list(achievements_unlocked),
458
+ "new_achievements_this_turn": list(new_achievements),
459
+ "position": current_position,
460
+ "steps_before_turn": obs_payload.get("public", {}).step_count
461
+ if hasattr(obs_payload.get("public", {}), "step_count")
462
+ else 0,
463
+ }
464
+ turn_by_turn_data.append(turn_data)
465
+
466
+ # Execute action
467
+ obs_payload = await env.step(env_action)
468
+
469
+ # Check for wall collision
470
+ if "blocked" in obs_payload.get("formatted_obs", "").lower():
471
+ wall_collisions += 1
472
+
473
+ # Check for object interaction
474
+ objects_interacted.extend(self._extract_object_interactions(obs_payload))
475
+
476
+ if "error" in obs_payload:
477
+ termination_reason = "environment_error"
478
+ break
479
+
480
+ # Fix the terminated/truncated check
481
+ private_data = obs_payload.get("private", {})
482
+ if (hasattr(private_data, "terminated") and private_data.terminated) or (
483
+ hasattr(private_data, "truncated") and private_data.truncated
484
+ ):
485
+ if "lava" in obs_payload.get("formatted_obs", "").lower():
486
+ termination_reason = "lava_death"
487
+ elif hasattr(private_data, "terminated") and private_data.terminated:
488
+ termination_reason = "goal_reached"
489
+ else:
490
+ termination_reason = "timeout"
491
+ break
492
+
493
+ # Final metrics
494
+ if termination_reason == "unknown":
495
+ termination_reason = "timeout"
496
+
497
+ final_private = obs_payload.get("private", {})
498
+ final_public = obs_payload.get("public", {})
499
+
500
+ total_steps = getattr(final_public, "step_count", 0)
501
+ total_reward = getattr(final_private, "total_reward", 0.0)
502
+
503
+ # Calculate efficiency
504
+ optimal_steps = self._estimate_optimal_steps(task_type, grid_size)
505
+ efficiency_ratio = optimal_steps / max(total_steps, 1) if optimal_steps else 1.0
506
+
507
+ # Calculate exploration coverage
508
+ total_accessible_cells = self._estimate_accessible_cells(grid_size, task_type)
509
+ exploration_coverage = len(positions_visited) / max(total_accessible_cells, 1)
510
+
511
+ # Success determination
512
+ success = termination_reason == "goal_reached"
513
+
514
+ # Final position and direction
515
+ final_position = self._extract_position(obs_payload)
516
+ final_direction = self._extract_direction(obs_payload)
517
+
518
+ avg_actions_per_turn = (
519
+ sum(actions_per_turn) / len(actions_per_turn) if actions_per_turn else 0.0
520
+ )
521
+
522
+ return MiniGridTrajectoryResult(
523
+ trajectory_id=trajectory_id,
524
+ model_name=model_name,
525
+ difficulty=difficulty,
526
+ task_type=task_type,
527
+ seed=seed,
528
+ success=success,
529
+ total_steps=total_steps,
530
+ total_turns=turn_count,
531
+ total_reward=total_reward,
532
+ grid_size=grid_size,
533
+ steps_to_goal=total_steps,
534
+ optimal_steps=optimal_steps,
535
+ efficiency_ratio=efficiency_ratio,
536
+ objects_interacted=list(set(objects_interacted)),
537
+ rooms_visited=1, # TODO: Implement room detection
538
+ backtrack_count=backtrack_count,
539
+ wall_collision_count=wall_collisions,
540
+ exploration_coverage=exploration_coverage,
541
+ achievements_unlocked=achievements_unlocked,
542
+ achievement_turn_unlocked=achievement_turn_unlocked,
543
+ actions_per_turn=actions_per_turn,
544
+ avg_actions_per_turn=avg_actions_per_turn,
545
+ termination_reason=termination_reason,
546
+ final_position=final_position,
547
+ final_direction=final_direction,
548
+ turn_by_turn_data=turn_by_turn_data,
549
+ )
550
+ finally:
551
+ pbar.close()
552
+
553
+ async def run_evaluation(
554
+ self,
555
+ model_names: List[str],
556
+ difficulties: List[str] = ["easy", "medium"],
557
+ task_types: List[str] = None,
558
+ num_trajectories_per_condition: int = 3,
559
+ max_turns: int = 30,
560
+ collect_detailed_data: bool = True,
561
+ ) -> Dict[str, Any]:
562
+ """Run comprehensive evaluation across models and difficulties."""
563
+
564
+ if task_types is None:
565
+ task_types = ["MiniGrid-Empty-6x6-v0", "MiniGrid-DoorKey-5x5-v0"]
566
+
567
+ print(f"🎯 Starting MiniGrid Evaluation")
568
+ print(f" Models: {model_names}")
569
+ print(f" Difficulties: {difficulties}")
570
+ print(f" Task Types: {task_types}")
571
+ print(f" Trajectories per condition: {num_trajectories_per_condition}")
572
+ print(f" Max turns per trajectory: {max_turns}")
573
+
574
+ all_results = []
575
+
576
+ for model_name in model_names:
577
+ for difficulty in difficulties:
578
+ for task_type in task_types:
579
+ print(f"\n🔄 Running {model_name} on {difficulty} difficulty, {task_type}...")
580
+
581
+ # Run trajectories for this condition
582
+ trajectory_tasks = []
583
+ for i in range(num_trajectories_per_condition):
584
+ seed = hash(f"{difficulty}_{task_type}_{i}") % 10000
585
+ trajectory_tasks.append(
586
+ self.run_single_trajectory(
587
+ model_name=model_name,
588
+ difficulty=difficulty,
589
+ task_type=task_type,
590
+ seed=seed,
591
+ max_turns=max_turns,
592
+ collect_detailed_data=collect_detailed_data,
593
+ )
594
+ )
595
+
596
+ condition_results = await asyncio.gather(*trajectory_tasks)
597
+ all_results.extend(condition_results)
598
+
599
+ self.trajectory_results = all_results
600
+
601
+ # Save synth-sdk traces after evaluation
602
+ self._save_traces()
603
+
604
+ return self._generate_comprehensive_report()
605
+
606
+ def _extract_grid_size(self, obs_payload: Dict[str, Any]) -> Tuple[int, int]:
607
+ """Extract grid size from observation."""
608
+ # Try to extract from public state
609
+ public = obs_payload.get("public", {})
610
+ if hasattr(public, "grid_array"):
611
+ grid = public.grid_array
612
+ return (grid.shape[1], grid.shape[0]) # (width, height)
613
+
614
+ # Default fallback
615
+ return (6, 6)
616
+
617
+ def _extract_position(self, obs_payload: Dict[str, Any]) -> Optional[Tuple[int, int]]:
618
+ """Extract agent position from observation."""
619
+ public = obs_payload.get("public", {})
620
+ if hasattr(public, "agent_pos"):
621
+ return public.agent_pos
622
+ return None
623
+
624
+ def _extract_direction(self, obs_payload: Dict[str, Any]) -> Optional[int]:
625
+ """Extract agent direction from observation."""
626
+ public = obs_payload.get("public", {})
627
+ if hasattr(public, "agent_dir"):
628
+ return public.agent_dir
629
+ return None
630
+
631
+ def _extract_object_interactions(self, obs_payload: Dict[str, Any]) -> List[str]:
632
+ """Extract object interactions from observation."""
633
+ interactions = []
634
+ formatted_obs = obs_payload.get("formatted_obs", "").lower()
635
+
636
+ if "pickup" in formatted_obs:
637
+ interactions.append("pickup")
638
+ if "door" in formatted_obs:
639
+ interactions.append("door")
640
+ if "key" in formatted_obs:
641
+ interactions.append("key")
642
+ if "goal" in formatted_obs:
643
+ interactions.append("goal")
644
+
645
+ return interactions
646
+
647
+ def _check_achievements(
648
+ self,
649
+ obs_payload: Dict[str, Any],
650
+ current_achievements: Set[str],
651
+ turn: int,
652
+ task_type: str,
653
+ ) -> Set[str]:
654
+ """Check for new achievements based on current state."""
655
+ new_achievements = set()
656
+ formatted_obs = obs_payload.get("formatted_obs", "").lower()
657
+
658
+ # Basic achievements
659
+ if "reach_goal" not in current_achievements and "goal" in formatted_obs:
660
+ new_achievements.add("reach_goal")
661
+
662
+ if "first_pickup" not in current_achievements and "pickup" in formatted_obs:
663
+ new_achievements.add("first_pickup")
664
+
665
+ if (
666
+ "first_door_open" not in current_achievements
667
+ and "door" in formatted_obs
668
+ and "open" in formatted_obs
669
+ ):
670
+ new_achievements.add("first_door_open")
671
+
672
+ if "first_key_use" not in current_achievements and "key" in formatted_obs:
673
+ new_achievements.add("first_key_use")
674
+
675
+ # Task-specific achievements
676
+ if "navigate_empty_room" not in current_achievements and "empty" in task_type.lower():
677
+ private_data = obs_payload.get("private", {})
678
+ if hasattr(private_data, "terminated") and private_data.terminated:
679
+ new_achievements.add("navigate_empty_room")
680
+
681
+ # Count-based achievements
682
+ task_completions = len([a for a in current_achievements if "complete" not in a])
683
+ if task_completions >= 5 and "complete_5_tasks" not in current_achievements:
684
+ new_achievements.add("complete_5_tasks")
685
+
686
+ return new_achievements
687
+
688
+ def _convert_action_format(self, action_decision: Dict[str, Any]) -> Dict[str, Any]:
689
+ """Convert agent action decision to environment format."""
690
+ if action_decision["name"] == "minigrid_act":
691
+ action = action_decision["parameters"]["action"]
692
+ return {"tool": "minigrid_act", "args": {"action": action}}
693
+
694
+ # Fail fast if not minigrid_act
695
+ raise ValueError(f"Expected minigrid_act tool, got {action_decision['name']}")
696
+
697
+ def _estimate_optimal_steps(self, task_type: str, grid_size: Tuple[int, int]) -> Optional[int]:
698
+ """Estimate optimal steps for a task type."""
699
+ width, height = grid_size
700
+
701
+ if "empty" in task_type.lower():
702
+ # Manhattan distance estimate
703
+ return width + height - 2
704
+ elif "doorkey" in task_type.lower():
705
+ # Need to find key, then door, then goal
706
+ return (width + height) * 2
707
+ else:
708
+ # Conservative estimate
709
+ return width * height // 2
710
+
711
+ def _estimate_accessible_cells(self, grid_size: Tuple[int, int], task_type: str) -> int:
712
+ """Estimate number of accessible cells."""
713
+ width, height = grid_size
714
+ total_cells = width * height
715
+
716
+ # Account for walls (rough estimate)
717
+ if "empty" in task_type.lower():
718
+ return int(total_cells * 0.8) # 80% accessible
719
+ else:
720
+ return int(total_cells * 0.6) # 60% accessible with obstacles
721
+
722
+ def _generate_comprehensive_report(self) -> Dict[str, Any]:
723
+ """Generate comprehensive evaluation report with all metrics and tables."""
724
+
725
+ # Group results by model and difficulty
726
+ grouped_results = defaultdict(lambda: defaultdict(list))
727
+ for result in self.trajectory_results:
728
+ grouped_results[result.model_name][result.difficulty].append(result)
729
+
730
+ # Generate aggregate results
731
+ aggregate_results = []
732
+ for model_name, difficulties in grouped_results.items():
733
+ for difficulty, trajectories in difficulties.items():
734
+ agg = self._compute_aggregate_metrics(model_name, difficulty, trajectories)
735
+ aggregate_results.append(agg)
736
+
737
+ # Generate all tables and analyses
738
+ report = {
739
+ "evaluation_summary": self._generate_summary_table(aggregate_results),
740
+ "achievement_percentage_table": self._generate_achievement_percentage_table(
741
+ grouped_results
742
+ ),
743
+ "task_completion_breakdown": self._generate_task_completion_table(aggregate_results),
744
+ "navigation_analysis": self._generate_navigation_analysis(aggregate_results),
745
+ "trajectory_by_trajectory_breakdown": self._generate_trajectory_breakdown(),
746
+ "raw_aggregate_results": [asdict(agg) for agg in aggregate_results],
747
+ "raw_trajectory_results": [asdict(traj) for traj in self.trajectory_results],
748
+ }
749
+
750
+ return report
751
+
752
+ def _compute_aggregate_metrics(
753
+ self,
754
+ model_name: str,
755
+ difficulty: str,
756
+ trajectories: List[MiniGridTrajectoryResult],
757
+ ) -> MiniGridAggregateResults:
758
+ """Compute aggregate metrics for a model-difficulty condition."""
759
+
760
+ num_trajectories = len(trajectories)
761
+ if num_trajectories == 0:
762
+ return MiniGridAggregateResults(
763
+ model_name=model_name,
764
+ difficulty=difficulty,
765
+ num_trajectories=0,
766
+ success_rate=0.0,
767
+ avg_total_steps=0.0,
768
+ avg_total_turns=0.0,
769
+ avg_total_reward=0.0,
770
+ task_completion_rates={},
771
+ avg_efficiency_ratio=0.0,
772
+ avg_exploration_coverage=0.0,
773
+ avg_wall_collisions=0.0,
774
+ avg_backtrack_count=0.0,
775
+ unique_achievements_unlocked=set(),
776
+ total_achievement_count=0,
777
+ avg_achievements_per_trajectory=0.0,
778
+ achievement_unlock_rates={},
779
+ composite_score_avg=0.0,
780
+ composite_score_best=0.0,
781
+ navigation_score_avg=0.0,
782
+ navigation_score_best=0.0,
783
+ avg_actions_per_turn_overall=0.0,
784
+ actions_per_turn_distribution={},
785
+ termination_breakdown={},
786
+ avg_final_position=None,
787
+ )
788
+
789
+ # Success metrics
790
+ success_rate = sum(1 for t in trajectories if t.success) / num_trajectories
791
+ avg_total_steps = sum(t.total_steps for t in trajectories) / num_trajectories
792
+ avg_total_turns = sum(t.total_turns for t in trajectories) / num_trajectories
793
+ avg_total_reward = sum(t.total_reward for t in trajectories) / num_trajectories
794
+
795
+ # MiniGrid-specific metrics
796
+ task_completion_rates = {}
797
+ task_counts = defaultdict(int)
798
+ task_successes = defaultdict(int)
799
+
800
+ for traj in trajectories:
801
+ task_counts[traj.task_type] += 1
802
+ if traj.success:
803
+ task_successes[traj.task_type] += 1
804
+
805
+ for task_type in task_counts:
806
+ task_completion_rates[task_type] = task_successes[task_type] / task_counts[task_type]
807
+
808
+ avg_efficiency_ratio = sum(t.efficiency_ratio for t in trajectories) / num_trajectories
809
+ avg_exploration_coverage = (
810
+ sum(t.exploration_coverage for t in trajectories) / num_trajectories
811
+ )
812
+ avg_wall_collisions = sum(t.wall_collision_count for t in trajectories) / num_trajectories
813
+ avg_backtrack_count = sum(t.backtrack_count for t in trajectories) / num_trajectories
814
+
815
+ # Achievement analysis
816
+ all_achievements = set()
817
+ total_achievement_count = 0
818
+ achievement_counts = defaultdict(int)
819
+
820
+ for traj in trajectories:
821
+ all_achievements.update(traj.achievements_unlocked)
822
+ total_achievement_count += len(traj.achievements_unlocked)
823
+ for ach in traj.achievements_unlocked:
824
+ achievement_counts[ach] += 1
825
+
826
+ achievement_unlock_rates = {
827
+ ach: count / num_trajectories for ach, count in achievement_counts.items()
828
+ }
829
+ avg_achievements_per_trajectory = total_achievement_count / num_trajectories
830
+
831
+ # Compute MiniGrid-specific scores
832
+ composite_scores = [
833
+ minigrid_composite_score(
834
+ len(traj.achievements_unlocked),
835
+ 1.0 if traj.success else 0.0,
836
+ traj.efficiency_ratio,
837
+ traj.exploration_coverage,
838
+ )
839
+ for traj in trajectories
840
+ ]
841
+ composite_score_avg = (
842
+ sum(composite_scores) / len(composite_scores) if composite_scores else 0.0
843
+ )
844
+ composite_score_best = max(composite_scores) if composite_scores else 0.0
845
+
846
+ # Navigation scores
847
+ navigation_scores = [
848
+ minigrid_navigation_score(
849
+ 1.0 if traj.success else 0.0,
850
+ traj.efficiency_ratio,
851
+ traj.wall_collision_count / max(traj.total_turns, 1),
852
+ )
853
+ for traj in trajectories
854
+ ]
855
+ navigation_score_avg = (
856
+ sum(navigation_scores) / len(navigation_scores) if navigation_scores else 0.0
857
+ )
858
+ navigation_score_best = max(navigation_scores) if navigation_scores else 0.0
859
+
860
+ # Multi-action analysis
861
+ all_actions_per_turn = []
862
+ actions_per_turn_dist = defaultdict(int)
863
+ for traj in trajectories:
864
+ all_actions_per_turn.extend(traj.actions_per_turn)
865
+ for count in traj.actions_per_turn:
866
+ actions_per_turn_dist[count] += 1
867
+
868
+ avg_actions_per_turn_overall = (
869
+ sum(all_actions_per_turn) / len(all_actions_per_turn) if all_actions_per_turn else 0.0
870
+ )
871
+
872
+ # Termination analysis
873
+ termination_counts = defaultdict(int)
874
+ for traj in trajectories:
875
+ termination_counts[traj.termination_reason] += 1
876
+ termination_breakdown = {
877
+ reason: count / num_trajectories for reason, count in termination_counts.items()
878
+ }
879
+
880
+ # Average final position
881
+ final_positions = [t.final_position for t in trajectories if t.final_position is not None]
882
+ avg_final_position = None
883
+ if final_positions:
884
+ avg_x = sum(pos[0] for pos in final_positions) / len(final_positions)
885
+ avg_y = sum(pos[1] for pos in final_positions) / len(final_positions)
886
+ avg_final_position = (avg_x, avg_y)
887
+
888
+ return MiniGridAggregateResults(
889
+ model_name=model_name,
890
+ difficulty=difficulty,
891
+ num_trajectories=num_trajectories,
892
+ success_rate=success_rate,
893
+ avg_total_steps=avg_total_steps,
894
+ avg_total_turns=avg_total_turns,
895
+ avg_total_reward=avg_total_reward,
896
+ task_completion_rates=task_completion_rates,
897
+ avg_efficiency_ratio=avg_efficiency_ratio,
898
+ avg_exploration_coverage=avg_exploration_coverage,
899
+ avg_wall_collisions=avg_wall_collisions,
900
+ avg_backtrack_count=avg_backtrack_count,
901
+ unique_achievements_unlocked=all_achievements,
902
+ total_achievement_count=total_achievement_count,
903
+ avg_achievements_per_trajectory=avg_achievements_per_trajectory,
904
+ achievement_unlock_rates=achievement_unlock_rates,
905
+ avg_actions_per_turn_overall=avg_actions_per_turn_overall,
906
+ actions_per_turn_distribution=dict(actions_per_turn_dist),
907
+ termination_breakdown=termination_breakdown,
908
+ avg_final_position=avg_final_position,
909
+ composite_score_avg=composite_score_avg,
910
+ composite_score_best=composite_score_best,
911
+ navigation_score_avg=navigation_score_avg,
912
+ navigation_score_best=navigation_score_best,
913
+ )
914
+
915
+ def _generate_summary_table(
916
+ self, aggregate_results: List[MiniGridAggregateResults]
917
+ ) -> pd.DataFrame:
918
+ """Generate main summary table with key metrics."""
919
+
920
+ data = []
921
+ for agg in aggregate_results:
922
+ data.append(
923
+ {
924
+ "Model": agg.model_name,
925
+ "Difficulty": agg.difficulty,
926
+ "✓ Success Rate": f"{agg.success_rate:.1%}", # Made more prominent with checkmark
927
+ "Composite Score": f"{agg.composite_score_avg:.1f}",
928
+ "Navigation Score": f"{agg.navigation_score_avg:.1f}",
929
+ "Avg Steps": f"{agg.avg_total_steps:.1f}",
930
+ "Avg Turns": f"{agg.avg_total_turns:.1f}",
931
+ "Efficiency": f"{agg.avg_efficiency_ratio:.2f}",
932
+ "Exploration": f"{agg.avg_exploration_coverage:.1%}",
933
+ "Wall Collisions": f"{agg.avg_wall_collisions:.1f}",
934
+ "Achievements": len(agg.unique_achievements_unlocked),
935
+ "Avg Actions/Turn": f"{agg.avg_actions_per_turn_overall:.1f}",
936
+ }
937
+ )
938
+
939
+ return pd.DataFrame(data)
940
+
941
+ def _generate_achievement_percentage_table(
942
+ self, grouped_results: Dict[str, Dict[str, List[MiniGridTrajectoryResult]]]
943
+ ) -> pd.DataFrame:
944
+ """Generate table showing percentage of trajectories achieving each achievement."""
945
+
946
+ data = []
947
+
948
+ for model_name, difficulties in grouped_results.items():
949
+ for difficulty, trajectories in difficulties.items():
950
+ if not trajectories:
951
+ continue
952
+
953
+ num_trajectories = len(trajectories)
954
+ row = {"Model": model_name, "Difficulty": difficulty}
955
+
956
+ # Count achievements
957
+ achievement_counts = defaultdict(int)
958
+ for traj in trajectories:
959
+ for ach in traj.achievements_unlocked:
960
+ achievement_counts[ach] += 1
961
+
962
+ # Add percentage for each achievement
963
+ for achievement in ALL_ACHIEVEMENTS:
964
+ count = achievement_counts[achievement]
965
+ percentage = count / num_trajectories if num_trajectories > 0 else 0.0
966
+ row[achievement] = f"{percentage:.1%}"
967
+
968
+ data.append(row)
969
+
970
+ df = pd.DataFrame(data)
971
+
972
+ # Reorder columns: Model, Difficulty, then achievements by category
973
+ base_cols = ["Model", "Difficulty"]
974
+ achievement_cols = []
975
+ for category in ["basic", "intermediate", "advanced"]:
976
+ for ach in MINIGRID_ACHIEVEMENTS[category]:
977
+ if ach in df.columns:
978
+ achievement_cols.append(ach)
979
+
980
+ return df[base_cols + achievement_cols]
981
+
982
+ def _generate_task_completion_table(
983
+ self, aggregate_results: List[MiniGridAggregateResults]
984
+ ) -> pd.DataFrame:
985
+ """Generate table showing completion rates by task type."""
986
+
987
+ data = []
988
+ for agg in aggregate_results:
989
+ row = {
990
+ "Model": agg.model_name,
991
+ "Difficulty": agg.difficulty,
992
+ }
993
+
994
+ for task_type, completion_rate in agg.task_completion_rates.items():
995
+ row[task_type] = f"{completion_rate:.1%}"
996
+
997
+ data.append(row)
998
+
999
+ return pd.DataFrame(data)
1000
+
1001
+ def _generate_navigation_analysis(
1002
+ self, aggregate_results: List[MiniGridAggregateResults]
1003
+ ) -> pd.DataFrame:
1004
+ """Generate analysis of navigation metrics."""
1005
+
1006
+ data = []
1007
+ for agg in aggregate_results:
1008
+ data.append(
1009
+ {
1010
+ "Model": agg.model_name,
1011
+ "Difficulty": agg.difficulty,
1012
+ "Efficiency Ratio": f"{agg.avg_efficiency_ratio:.3f}",
1013
+ "Exploration Coverage": f"{agg.avg_exploration_coverage:.1%}",
1014
+ "Wall Collisions": f"{agg.avg_wall_collisions:.1f}",
1015
+ "Backtrack Count": f"{agg.avg_backtrack_count:.1f}",
1016
+ "Navigation Score": f"{agg.navigation_score_avg:.1f}",
1017
+ "Final Position": f"({agg.avg_final_position[0]:.1f}, {agg.avg_final_position[1]:.1f})"
1018
+ if agg.avg_final_position
1019
+ else "N/A",
1020
+ }
1021
+ )
1022
+
1023
+ return pd.DataFrame(data)
1024
+
1025
+ def _generate_trajectory_breakdown(self) -> pd.DataFrame:
1026
+ """Generate detailed trajectory-by-trajectory breakdown."""
1027
+
1028
+ data = []
1029
+ for traj in self.trajectory_results:
1030
+ # Achievement category breakdown
1031
+ easy_achievements = len(
1032
+ [a for a in traj.achievements_unlocked if a in MINIGRID_ACHIEVEMENTS["basic"]]
1033
+ )
1034
+ medium_achievements = len(
1035
+ [
1036
+ a
1037
+ for a in traj.achievements_unlocked
1038
+ if a in MINIGRID_ACHIEVEMENTS["intermediate"]
1039
+ ]
1040
+ )
1041
+ hard_achievements = len(
1042
+ [a for a in traj.achievements_unlocked if a in MINIGRID_ACHIEVEMENTS["advanced"]]
1043
+ )
1044
+
1045
+ data.append(
1046
+ {
1047
+ "Trajectory ID": traj.trajectory_id[:8], # Short ID
1048
+ "Model": traj.model_name,
1049
+ "Difficulty": traj.difficulty,
1050
+ "Task Type": traj.task_type,
1051
+ "Seed": traj.seed,
1052
+ "Success": "✓" if traj.success else "✗",
1053
+ "Steps": traj.total_steps,
1054
+ "Turns": traj.total_turns,
1055
+ "Efficiency": f"{traj.efficiency_ratio:.3f}",
1056
+ "Exploration": f"{traj.exploration_coverage:.1%}",
1057
+ "Wall Collisions": traj.wall_collision_count,
1058
+ "Total Achievements": len(traj.achievements_unlocked),
1059
+ "Basic": easy_achievements,
1060
+ "Intermediate": medium_achievements,
1061
+ "Advanced": hard_achievements,
1062
+ "Termination": traj.termination_reason,
1063
+ "Final Position": f"({traj.final_position[0]}, {traj.final_position[1]})"
1064
+ if traj.final_position
1065
+ else "N/A",
1066
+ "Achievements": ", ".join(sorted(traj.achievements_unlocked))
1067
+ if traj.achievements_unlocked
1068
+ else "None",
1069
+ }
1070
+ )
1071
+
1072
+ return pd.DataFrame(data)
1073
+
1074
+ def print_report(self, report: Dict[str, Any]):
1075
+ """Print a formatted evaluation report."""
1076
+
1077
+ print("\n" + "=" * 80)
1078
+ print("🎯 MINIGRID EVALUATION REPORT")
1079
+ print("=" * 80)
1080
+
1081
+ # Pure success summary first - the most important metric
1082
+ aggregate_results = [
1083
+ MiniGridAggregateResults(**agg) for agg in report["raw_aggregate_results"]
1084
+ ]
1085
+ print_pure_success_summary(aggregate_results)
1086
+
1087
+ # Summary table
1088
+ print("\n📊 EVALUATION SUMMARY")
1089
+ summary_df = report["evaluation_summary"]
1090
+ print(summary_df.to_string(index=False, max_colwidth=12))
1091
+
1092
+ # Achievement breakdown
1093
+ print("\n🏆 ACHIEVEMENT UNLOCK RATES")
1094
+ achievement_df = report["achievement_percentage_table"]
1095
+ if not achievement_df.empty:
1096
+ print("Format: percentage of trajectories that unlocked each achievement")
1097
+
1098
+ # Print by category for better readability
1099
+ for category in ["basic", "intermediate", "advanced"]:
1100
+ category_cols = ["Model", "Difficulty"] + [
1101
+ col for col in achievement_df.columns if col in MINIGRID_ACHIEVEMENTS[category]
1102
+ ]
1103
+ if len(category_cols) > 2:
1104
+ category_data = achievement_df[category_cols]
1105
+ if not category_data.empty:
1106
+ print(f"\n{category.upper()} ACHIEVEMENTS:")
1107
+ print(category_data.to_string(index=False))
1108
+
1109
+ # Task completion breakdown
1110
+ print("\n📋 TASK COMPLETION RATES")
1111
+ task_df = report["task_completion_breakdown"]
1112
+ print(task_df.to_string(index=False))
1113
+
1114
+ # Navigation analysis
1115
+ print("\n🧭 NAVIGATION ANALYSIS")
1116
+ nav_df = report["navigation_analysis"]
1117
+ print(nav_df.to_string(index=False))
1118
+
1119
+ # Trajectory breakdown (summary stats only for space)
1120
+ traj_df = report["trajectory_by_trajectory_breakdown"]
1121
+ print(f"\n📋 TRAJECTORY BREAKDOWN ({len(traj_df)} total trajectories)")
1122
+ print("Sample trajectories:")
1123
+ sample_cols = [
1124
+ "Model",
1125
+ "Difficulty",
1126
+ "Task Type",
1127
+ "Success",
1128
+ "Steps",
1129
+ "Total Achievements",
1130
+ "Termination",
1131
+ ]
1132
+ sample_df = traj_df[sample_cols].head(5)
1133
+ print(sample_df.to_string(index=False, max_colwidth=12))
1134
+ if len(traj_df) > 5:
1135
+ print(f"... and {len(traj_df) - 5} more trajectories")
1136
+
1137
+ print("\n" + "=" * 80)
1138
+
1139
+ def _save_traces(self):
1140
+ """Save synth-sdk traces to disk."""
1141
+ # Get all traces from event store
1142
+ traces = event_store.get_system_traces()
1143
+
1144
+ if not traces:
1145
+ print("⚠️ No traces found in event store")
1146
+ return
1147
+
1148
+ # Create traces directory
1149
+ traces_dir = Path("src/evals/minigrid") / f"run_{int(time.time())}" / "traces"
1150
+ traces_dir.mkdir(parents=True, exist_ok=True)
1151
+
1152
+ print(f"💾 Saving {len(traces)} traces to {traces_dir}")
1153
+
1154
+ for trace in traces:
1155
+ trace_file = traces_dir / f"minigrid_trace_{trace.system_instance_id}.json"
1156
+ with open(trace_file, "w") as f:
1157
+ json.dump(trace.to_dict(), f, indent=2)
1158
+
1159
+ print(f"✅ Traces saved. To view: ./run_viewer.sh {traces_dir.parent}")
1160
+ return traces_dir
1161
+
1162
+
1163
+ # Convenience function for quick evaluations
1164
+ async def run_minigrid_eval(
1165
+ model_names: List[str],
1166
+ difficulties: List[str] = ["easy", "medium"],
1167
+ task_types: List[str] = None,
1168
+ num_trajectories: int = 3,
1169
+ max_turns: int = 30,
1170
+ ) -> Dict[str, Any]:
1171
+ """Quick evaluation runner with automatic report generation."""
1172
+
1173
+ framework = MiniGridEvalFramework()
1174
+ report = await framework.run_evaluation(
1175
+ model_names=model_names,
1176
+ difficulties=difficulties,
1177
+ task_types=task_types,
1178
+ num_trajectories_per_condition=num_trajectories,
1179
+ max_turns=max_turns,
1180
+ )
1181
+
1182
+ framework.print_report(report)
1183
+
1184
+ # Add pure success scores to the report for easy access
1185
+ aggregate_results = [MiniGridAggregateResults(**agg) for agg in report["raw_aggregate_results"]]
1186
+ report["pure_success_scores"] = get_pure_success_scores(aggregate_results)
1187
+
1188
+ return report