syntaxmatrix 2.5.8.2__py3-none-any.whl → 2.6.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (39) hide show
  1. syntaxmatrix/agentic/agents.py +1149 -54
  2. syntaxmatrix/agentic/agents_orchestrer.py +326 -0
  3. syntaxmatrix/agentic/code_tools_registry.py +27 -32
  4. syntaxmatrix/commentary.py +16 -16
  5. syntaxmatrix/core.py +107 -70
  6. syntaxmatrix/db.py +416 -4
  7. syntaxmatrix/{display.py → display_html.py} +2 -6
  8. syntaxmatrix/gpt_models_latest.py +1 -1
  9. syntaxmatrix/media/__init__.py +0 -0
  10. syntaxmatrix/media/media_pixabay.py +277 -0
  11. syntaxmatrix/models.py +1 -1
  12. syntaxmatrix/page_builder_defaults.py +183 -0
  13. syntaxmatrix/page_builder_generation.py +1122 -0
  14. syntaxmatrix/page_layout_contract.py +644 -0
  15. syntaxmatrix/page_patch_publish.py +1471 -0
  16. syntaxmatrix/preface.py +128 -8
  17. syntaxmatrix/profiles.py +26 -13
  18. syntaxmatrix/routes.py +1347 -427
  19. syntaxmatrix/selftest_page_templates.py +360 -0
  20. syntaxmatrix/settings/client_items.py +28 -0
  21. syntaxmatrix/settings/model_map.py +1022 -208
  22. syntaxmatrix/settings/prompts.py +328 -130
  23. syntaxmatrix/static/assets/hero-default.svg +22 -0
  24. syntaxmatrix/static/icons/bot-icon.png +0 -0
  25. syntaxmatrix/static/icons/favicon.png +0 -0
  26. syntaxmatrix/static/icons/logo.png +0 -0
  27. syntaxmatrix/static/icons/logo2.png +0 -0
  28. syntaxmatrix/static/icons/logo3.png +0 -0
  29. syntaxmatrix/templates/admin_secretes.html +108 -0
  30. syntaxmatrix/templates/dashboard.html +116 -72
  31. syntaxmatrix/templates/edit_page.html +2535 -0
  32. syntaxmatrix/utils.py +2365 -2411
  33. {syntaxmatrix-2.5.8.2.dist-info → syntaxmatrix-2.6.0.dist-info}/METADATA +6 -2
  34. {syntaxmatrix-2.5.8.2.dist-info → syntaxmatrix-2.6.0.dist-info}/RECORD +37 -24
  35. syntaxmatrix/generate_page.py +0 -644
  36. syntaxmatrix/static/icons/hero_bg.jpg +0 -0
  37. {syntaxmatrix-2.5.8.2.dist-info → syntaxmatrix-2.6.0.dist-info}/WHEEL +0 -0
  38. {syntaxmatrix-2.5.8.2.dist-info → syntaxmatrix-2.6.0.dist-info}/licenses/LICENSE.txt +0 -0
  39. {syntaxmatrix-2.5.8.2.dist-info → syntaxmatrix-2.6.0.dist-info}/top_level.txt +0 -0
@@ -4,294 +4,1105 @@ import os
4
4
 
5
5
  PROVIDERS_MODELS = {
6
6
  #1
7
- "openai": [
8
- "gpt-5.1",
9
- "gpt-5.1-chat-latest",
10
- "gpt-5.1-codex-mini",
11
- "gpt-5.1-codex",
12
- "gpt-5",
13
- "gpt-5-nano",
14
- "gpt-5-mini",
15
- "gpt-4.1",
16
- "gpt-4.1-nano",
17
- "gpt-4.1-mini",
18
- "gpt-4o-mini",
19
- "gpt-4o",
7
+ "OpenAI": [
8
+ "gpt-5.2", # $1.75 $0.175 $14.00
9
+ "gpt-5.2-chat-latest", # $1.75 $0.175 $14.00
10
+ "gpt-5.2-pro", # $21.00 - $168.00
11
+ "gpt-5.1", # $1.25 $0.125 $10.00
12
+ "gpt-5.1-chat-latest", # $1.25 $0.125 $10.00
13
+ "gpt-5.1-codex-mini",
14
+ "gpt-5.1-codex-max", # $1.25 $0.125 $10.00
15
+ "gpt-5", # $1.25 $0.125 $10.00
16
+ "gpt-5-nano", # $0.05 $0.005 $0.40
17
+ "gpt-5-mini", # $0.25 $0.025 $2.00
18
+ "gpt-5-pro", # $15.00 - $120.00
19
+ "gpt-4.1", # $2.00 $0.50 $8.00
20
+ "gpt-4.1-nano", # $0.10 $0.025 $0.40
21
+ "gpt-4.1-mini", # $0.40 $0.10 $1.60
22
+ "gpt-4o", # $2.50 $1.25 $10.00
23
+ "gpt-4o-mini", # $0.15 $0.075 $0.60
24
+ # "gpt-4o-mini-search-preview", # $0.15 - $0.60
20
25
  ],
21
26
  #2
22
- "google": [
23
- "gemini-3-pro-preview",
27
+ "Google": [
28
+ "gemini-3-pro-preview",
29
+ "gemini-3-flash-preview",
30
+ "gemini-2.5-pro",
31
+ "gemini-2.5-flash",
24
32
  "gemini-2.5-flash-lite",
25
- "gemini-2.5-flash",
26
- "gemini-2.5-pro",
27
- "gemini-2.0-flash-lite",
28
33
  "gemini-2.0-flash",
34
+ "gemini-2.0-flash-lite",
35
+ # Image models
36
+ # "gemini-3-pro-image-preview",
37
+ # "gemini-2.5-flash-image",
38
+ # "imagen-4.0-generate-001",
39
+ # "imagen-4.0-ultra-generate-001",
40
+ # "imagen-4.0-fast-generate-001",
29
41
  ],
30
42
  #3
31
- "xai": [
32
- "grok-4",
33
- "grok-3-mini-fast",
34
- "grok-3-mini",
35
- "grok-3",
36
-
43
+ "xAI": [
44
+ "grok-4-1-fast-reasoning",
45
+ "grok-4-1-fast-non-reasoning",
46
+ "grok-4",
47
+ "grok-code-fast",
37
48
  ],
38
49
  #4
39
- "deepseek": [
40
- "deepseek-reasoner",
41
- "deepseek-chat",
50
+ "Anthropic": [
51
+ "claude-opus-4-5",
52
+ "claude-sonnet-4-5",
53
+ "claude-4-5-haiku",
42
54
  ],
43
55
  #5
44
- "moonshot": [
45
- "kimi-k2-thinking",
46
- "kimi-k2-instruct",
56
+ "DeepSeek": [
57
+ "deepseek-reasoner",
58
+ "deepseek-chat",
47
59
  ],
48
60
  #6
49
- "alibaba": [
50
- "qwen-flash",
51
- "qwen-plus",
61
+ "Alibaba": [
62
+ "qwen3-max",
52
63
  "qwen3-coder-plus",
53
- "qwen-max",
64
+ "qwen3-coder-flash",
65
+ "qwen-plus",
66
+ "qwen-flash",
67
+
54
68
  ],
69
+
55
70
  #7
56
- "anthropic": [
57
- "claude-opus-4-5",
58
- "claude-opus-4-1",
59
- "claude-sonnet-4-5",
60
- "claude-sonnet-4-0",
61
- "claude-3-5-haiku-latest",
62
- ]
71
+ "MoonShot": [
72
+ "kimi-k2-0905-preview",
73
+ "kimi-k2-turbo-preview",
74
+ "kimi-k2-thinking",
75
+ "kimi-k2-thinking-turbo",
76
+ ],
63
77
  }
64
78
 
65
79
 
80
+ # #8
81
+ # "ZAI": [ # coding ==> https://api.z.ai/api/coding/paas/v4
82
+ # "glm-4.7",
83
+ # "glm-4.6", # general ==> https://api.z.ai/api/paas/v4
84
+ # "glm-4.6v",
85
+ # "glm-4.6v-flash",
86
+ # "glm-4.6v-flashx",
87
+ # "glm-4.5v",
88
+ # "glm-4-32b-0414-128k",
89
+ # "cogView-4-250304",
90
+ # "cogvideox-3",
91
+ # ]
92
+
93
+
66
94
  # Read-only model descriptions for LLM-profile builder
67
95
  # -----------------------------------------------------------------------------
68
96
  MODEL_DESCRIPTIONS = {
69
- #1. OpenAI
70
- "gpt-4o-mini":"Cost-efficient multimodal; $0.15/1M input, $0.60/1M output. Ideal for prototyping vision+text apps on a budget.",
97
+ #1.1 OpenAI
98
+ "gpt-4o":"""
99
+ Model: GPT 4o
100
+ Cost:
101
+ Input = $2.50 <= 1M tokens
102
+ Output = $10.00 <= 1M tokens
103
+
104
+ Data Type:
105
+ Input = (Text, Image)
106
+ Output = Text
107
+
108
+ Context Length:
109
+ Input = 128,000 tokens
110
+ Output = 16,384 tokens
111
+
112
+ Speed, Intelligence, and Training:
113
+ 3x Fast
114
+ 3x Clever
115
+ Cut-off: 01/10/2023
116
+
117
+ Agency:
118
+ - Admin
119
+ - Chat
120
+ - Classifier
121
+ - Summarizer
122
+ - ImageTexter
123
+ """,
124
+
125
+ #1.2 OpenAI
126
+ "gpt-4o-mini":"""
127
+ Model: GPT 4o Mini
128
+ Cost:
129
+ Input = $0.15 <= 1M tokens
130
+ Output = $0.60 <= 1M tokens
131
+
132
+ Data Type:
133
+ Input = (Text, Image)
134
+ Output = Text
135
+
136
+ Context Length:
137
+ Input = 128,000 tokens
138
+ Output = 16,384 tokens
71
139
 
72
- "gpt-4o":"Multimodal powerhouse; $5.00/1M input, $15.00/1M output. Best for high-fidelity chat, complex reasoning & image tasks.",
140
+ Speed, Intelligence, and Training:
141
+ 4x Fast
142
+ 2x Clever
143
+ Cut-off: 01/10/2023
144
+
145
+ Agency:
146
+ - Chat
147
+ - Classifier
148
+ - Summarizer
149
+ - ImageTexter
150
+ """,
73
151
 
74
- "gpt-4.1-nano":"Ultra-fast low-cost (1M-token); $0.10/1M in, $0.40/1M out. Perfect for high-throughput, low-latency tasks.",
152
+ #1.3 OpenAI
153
+ "gpt-4.1":"""
154
+ Model: GPT 4.1
155
+ Cost:
156
+ Input = $2.00 <= 1M tokens
157
+ Output = $8.00 <= 1M tokens
158
+
159
+ Data Type:
160
+ Input = (Text, Image)
161
+ Output = Text
162
+
163
+ Context Length:
164
+ Input = 1M tokens
165
+ Output = 32,768 tokens
166
+
167
+ Speed, Intelligence, and Training:
168
+ 3x Fast
169
+ 4x Clever
170
+ Knowledge: 01/06/2024
171
+
172
+ Agency:
173
+ - Coder
174
+ """,
175
+
176
+ #1.4 OpenAI
177
+ "gpt-4.1-nano":"""
178
+ Model: GPT 4.1 Nano
179
+ Cost:
180
+ Input = $0.10 <= 1M tokens
181
+ Output = $0.40 <= 1M tokens
182
+
183
+ Data Type:
184
+ Input = (Text, Image)
185
+ Output = Text
186
+
187
+ Context Length:
188
+ Input = 1M tokens
189
+ Output = 32,768 tokens
190
+
191
+ Speed, Intelligence, and Training:
192
+ 5x Fast
193
+ 2x Clever
194
+ Knowledge: 01/06/2024
195
+
196
+ Agency:
197
+ - Chat
198
+ - Classifier
199
+ - Summarizer
200
+ - ImageTexter
201
+ """,
202
+
203
+ #1.5 OpenAI
204
+ "gpt-4.1-mini":"""
205
+ Model: GPT 4.1 Mini
206
+ Cost:
207
+ Input = $0.40 <= 1M tokens
208
+ Output = $1.60 <= 1M tokens
209
+
210
+ Data Type:
211
+ Input = (Text, Image)
212
+ Output = Text
213
+
214
+ Context Length:
215
+ Input = 1M tokens
216
+ Output = 32,768 tokens
217
+
218
+ Speed, Intelligence, and Training:
219
+ 4x Fast
220
+ 3x Clever
221
+ Knowledge: 01/06/2024
222
+
223
+ Agency:
224
+ - Admin
225
+ - Chat
226
+ - Classifier
227
+ - Summarizer
228
+ - ImageTexter
229
+ """,
230
+
231
+ #1.6 OpenAI
232
+ "gpt-5":"""
233
+ Model: GPT 5
234
+ Cost:
235
+ Input = $1.25 <= 1M tokens
236
+ Output = $10.00 <= 1M tokens
237
+
238
+ Data Type:
239
+ Input = (Text, Image)
240
+ Output = Text
241
+
242
+ Context Length:
243
+ Input = 400,000 tokens
244
+ Output = 128,000 tokens
245
+
246
+ Misc:
247
+ 3x Fast
248
+ 4x Clever
249
+ Thinking: Yes
250
+ Knowledge: 30/09/2024
75
251
 
76
- "gpt-4.1-mini":"Balanced speed/intel (1M-token context); $0.40/1M in, $1.60/1M out. Great for apps needing wide context at moderate cost.",
252
+ Agency:
253
+ - Coder
254
+ """,
255
+
256
+ #1.7 OpenAI
257
+ "gpt-5-nano":"""
258
+ Model: GPT 5 Nano
259
+ Cost:
260
+ Input = $0.05 <= 1M tokens
261
+ Output = $0.40 <= 1M tokens
77
262
 
78
- "gpt-4.1":"Top general-purpose (1M-token context); $2.00/1M in, $8.00/1M out. Excels at large-doc comprehension, coding, reasoning.",
263
+ Data Type:
264
+ Input = (Text, Image)
265
+ Output = Text
79
266
 
80
- "gpt-5-chat-latest":"""gpt-5-main. """,
267
+ Context Length:
268
+ Input = 400,000 tokens
269
+ Output = 128,000 tokens
81
270
 
82
- "gpt-5-nano":"""gpt-5-thinking-nano. In/Out €0.043/€0.344 (cached in €0.004).
83
- Fastest/lowest cost; ideal for short prompts, tagging, and rewrite flows; tools supported.
84
- Best for:
85
- 1. High-volume classification/moderation
86
- 2. Copy clean-up and templated rewrites
87
- 3. Lightweight summarisation and routing
271
+ Misc:
272
+ 5x Fast
273
+ 2x Clever
274
+ Thinking: Yes
275
+ Knowledge: 31/05/2024
88
276
 
89
- Use cases:
90
- a. Real-time content moderation and policy tagging.
91
- b. Bulk product description normalisation with style rules.
92
- c. News/article triage to decide which items warrant a deeper pass.
277
+ Agency:
278
+ - Chat
279
+ - Classifier
280
+ - Summarizer
281
+ - ImageTexter
93
282
  """,
283
+
284
+ #1.8 OpenAI
285
+ "gpt-5-mini":"""
286
+ Model: GPT 5 Mini
287
+ Cost:
288
+ Input = $0.25 <= 1M tokens
289
+ Output = $2.00 <= 1M tokens
290
+
291
+ Data Type:
292
+ Input = (Text, Image)
293
+ Output = Text
294
+
295
+ Context Length:
296
+ Input = 400,000 tokens
297
+ Output = 128,000 tokens
298
+
299
+ Misc:
300
+ 4x Fast
301
+ 3x Clever
302
+ Thinking: Yes
303
+ Knowledge: 31/05/2024
94
304
 
95
- "gpt-5-mini":"""gpt-5-thinking-mini. In/Out $0.25/$2 (cached in $0.025).
96
- Cheaper, faster variant with broad task coverage; still supports tools and long context.
97
- Best for:
98
- 1. Production chatbots at scale
99
- 2. Mid-complexity RAG/extraction pipelines
100
- 3. Batch summarisation with occasional tool calls
101
- Use cases:
102
- a. Customer support copilot that classifies intent, drafts replies, and calls ticketing APIs.
103
- b. Meeting-notes pipeline: diarised summary, actions, CRM updates.
104
- c. ETL enrichment: pull facts from documents into structured JSON.
305
+ Agency:
306
+ - Admin
307
+ - Chat
308
+ - Classifier
309
+ - Summarizer
310
+ - ImageTexter
105
311
  """,
312
+
313
+ #1.7 OpenAI
314
+
315
+ #1.8 OpenAI
316
+
317
+ #1.8 OpenAI
106
318
 
107
- "gpt-5":"""gpt-5-thinking. In/Out $1.25/$10.00 (cached in $0.125).
108
- Advanced reasoning and tool use; strong code generation/repair; robust long-context handling (400k).
109
- Best for:
110
- 1. Complex agentic workflows and planning
111
- 2. Long-context RAG and analytics
112
- 3. High-stakes coding assistance (multi-file changes & tests)
113
- Use cases:
114
- a. An autonomous “data room” analyst reading hundreds of PDFs and producing audit-ready briefs.
115
- b. A coding copilot that opens tickets, edits PRs, and runs tests via tools.</li>
116
- c. An enterprise chat assistant that reasons over policies and produces compliant outputs.
117
- """,
118
-
119
- # "gpt-o3":"High-accuracy reasoning (200K-token); $2.00/1M in, $8.00/1M out. Best for math, code gen, structured data outputs.",
120
- # "gpt-o4-mini":"Fast lean reasoning (200K-token); $1.10/1M in, $4.40/1M out. Ideal for vision+code when o3 is overkill.",
121
- # "gpt-o4-mini-high":"Enhanced mini-engine; $2.50/1M in (est.), $10.00/1M out (est.). Suited for interactive assistants with visual reasoning.",
122
-
123
- # Google
124
- "gemma-3n-e4b-it":"""Gemma is free.
125
- Best for: Use case:
126
- - Low latency | - Visual and text processing
127
- - Multilingual | - Text translation
128
- - Summarization | - Summarizing text research content
129
- """,
130
-
131
- #2 Google
132
- "gemma-3n-e4b-it": """
133
- Open source for local hosting
134
- """,
319
+ #1.9 OpenAI
320
+ "gpt-5-pro":"""
321
+ Model: GPT 5 Pro
322
+ Cost:
323
+ Input = $15.00 <= 1M tokens
324
+ Output = $120.00 <= 1M tokens
325
+
326
+ Data Type:
327
+ Input = (Text, Image)
328
+ Output = Text
329
+
330
+ Context Length:
331
+ Input = 400,000 tokens
332
+ Output = 272,000 tokens
333
+
334
+ Misc:
335
+ 1x Fast
336
+ 5x Clever
337
+ Thinking: Yes
338
+ Knowledge: 30/09/2024
339
+
340
+ Agency:
341
+ - Coder
342
+ """,
343
+
344
+ #1.10 OpenAI
345
+ "gpt-5.1":"""
346
+ Model: GPT 5.1
347
+ Cost:
348
+ Input = $1.25 <= 1M tokens
349
+ Output = $10.00 <= 1M tokens
350
+
351
+ Data Type:
352
+ Input = (Text, Image)
353
+ Output = Text
354
+
355
+ Context Length:
356
+ Input = 400,000 tokens
357
+ Output = 128,000 tokens
358
+
359
+ Misc:
360
+ 3x Fast
361
+ 4x Clever
362
+ Thinking: Yes
363
+ Knowledge: 30/09/2024
364
+
365
+ Agency:
366
+ - Admin
367
+ - Coder
368
+ """,
369
+
370
+ #1.10 OpenAI
371
+ "gpt-5.1-chat-latest":"""
372
+ Model: GPT 5.1 Chat
373
+ Cost:
374
+ Input = $1.25 <= 1M tokens
375
+ Output = $10.00 <= 1M tokens
376
+
377
+ Data Type:
378
+ Input = (Text, Image)
379
+ Output = Text
135
380
 
136
- "gemini-2.0-flash-lite":"""$0.075 In, $0.30 Out. CoD: Aug 2024"
137
- Best for: Use case:
138
- - Long Context | - rocess 10,000 lines of code
139
- - Realtime streaming | - Call tools natively
140
- - Native tool use | - Stream images and video in realtime
381
+ Context Length:
382
+ Input = 128,000 tokens
383
+ Output = 16,384 tokens
384
+
385
+ Misc:
386
+ 3x Fast
387
+ 3x Clever
388
+ Thinking: Yes
389
+ Knowledge: 30/09/2024
390
+
391
+ Agency:
392
+ - Admin
393
+ - Chat
141
394
  """,
142
395
 
143
- "gemini-2.0-flash": """$0.10 In, $0.40 Out. CoD: Aug 2024
144
- Best for: Use case:
145
- - Multimodal understanding | - Process 10,000 lines of code
146
- - Realtime streaming | - Call tools natively, like Search
147
- - Native tool use | - Stream images & vids in R time
396
+ #1.10 OpenAI
397
+ "gpt-5.1-codex-mini":"""
398
+ Model: GPT 5.1 Codex Mini
399
+ Cost:
400
+ Input = $0.25 <= 1M tokens
401
+ Output = $2.00 <= 1M tokens
402
+
403
+ Data Type:
404
+ Input = (Text, Image)
405
+ Output = Text
406
+
407
+ Context Length:
408
+ Input = 400,000 tokens
409
+ Output = 128,000 tokens
410
+
411
+ Misc:
412
+ 3x Fast
413
+ 4x Clever
414
+ Thinking: Yes
415
+ Knowledge: 30/09/2024
416
+
417
+ Agency:
418
+ - Coder
148
419
  """,
149
420
 
150
- "gemini-2.5-flash-lite": "($0.10 In, $0.40 Out)/1M (est.) CoD: Jan 2025."
151
- " Best for: Use case:"
152
- " - Large scale processing - Data transformation"
153
- " - Low latency, high volume - Translation"
154
- " tasks with thinking - Summarizationt",
421
+ #1.11 OpenAI
422
+ "gpt-5.1-codex-max":"""
423
+ Model: GPT 5.1 Codex Max
424
+ Cost:
425
+ Input = $1.25 <= 1M tokens
426
+ Output = $10.00 <= 1M tokens
427
+
428
+ Data Type:
429
+ Input = (Text, Image)
430
+ Output = Text
431
+
432
+ Context Length:
433
+ Input = 400,000 tokens
434
+ Output = 128,000 tokens
435
+
436
+ Misc:
437
+ 4x Fast
438
+ 4x Clever
439
+ Thinking: Yes
440
+ Knowledge: 30/09/2024
155
441
 
156
- "gemini-2.5-flash": """$0.30. $2.50 Out CoD: Jan 2024.
157
- Best for: Use case:
158
- - Large scale processing - Reason over complex problems
159
- - Low latency, high volume tasks - Show thinking process
160
- - Agentic use cases - Call tools natively
442
+ Agency:
443
+ - Coder
161
444
  """,
162
445
 
163
- "gemini-2.5-pro": """$3.00 In /1M (est.). Advanced analytics, detailed reports & multi-step reasoning.
164
- Best for:
165
- - Coding
166
- - Reasoning
167
- - Multimodal understanding
446
+ #1.12 OpenAI
447
+ "gpt-5.2":"""
448
+ Model: GPT 5.2
449
+ Cost:
450
+ Input = $1.75 <= 1M tokens
451
+ Output = $14.00 <= 1M tokens
168
452
 
169
- Use case:
170
- - Reason over complex problems
171
- - Tackle difficult code, math and STEM problems
172
- - Use the long context for analyzing large datasets, codebases or documents
453
+ Data Type:
454
+ Input = (Text, Image)
455
+ Output = Text
456
+
457
+ Context Length:
458
+ Input = 400,000 tokens
459
+ Output = 128,000 tokens
460
+
461
+ Misc:
462
+ 3x Fast
463
+ 5x Clever
464
+ Thinking: Yes
465
+ Knowledge: 31/08/2025
466
+
467
+ Agency:
468
+ - Coder
173
469
  """,
174
470
 
175
- #3 XAI
176
- "grok-3-mini-fast": "$0.20/1M (est.). "
177
- "Ultra-low latency chat, real-time monitoring & streaming apps.",
471
+ #1.13 OpenAI
472
+ "gpt-5.2-pro":"""
473
+ Model: GPT 5.2 Pro
474
+ Cost:
475
+ Input = $21.00 <= 1M tokens
476
+ Output = $168.00 <= 1M tokens
477
+
478
+ Data Type:
479
+ Input = (Text, Image)
480
+ Output = Text
481
+
482
+ Context Length:
483
+ Input = 400,000 tokens
484
+ Output = 128,000 tokens
485
+
486
+ Misc:
487
+ 1x Fast
488
+ 5x Clever
489
+ Thinking: Yes
490
+ Knowledge: 31/08/2025
178
491
 
179
- "grok-3-mini": "$0.40/1M (est.). Budget-friendly chat & assistant tasks with good accuracy.",
492
+ Agency:
493
+ - Coder
494
+ """,
180
495
 
181
- "grok-3": "$1.00/1M (est.). General-purpose chat & content gen with balanced speed/quality.",
496
+ #2.1 Google
497
+ "gemini-3-pro-preview": """
498
+ Model: Gemini 3 Pro
499
+ Cost:
500
+ Input = $2.00 <= 200k tokens / $4.00 > 200k tokens
501
+ Output = $12.00 <= 200k tokens / $18.00 > 200k tokens
182
502
 
183
- #4 DeepSeek
184
- "deepseek-chat": "DeepSeek Chat; $1.20/1M (est.). Optimized for private-data Q&A, enterprise search & document ingestion.",
503
+ Data Type:
504
+ Input = (Text, Image, Video, Audio, and PDF)
505
+ Output = Text
185
506
 
186
- #5 MoonShot
187
- "kimi-k2-0905-preview": """Mixture-of-Experts (MoE). Context length of 256k.
188
- Enhanced Agentic Coding abilities, improved frontend code aesthetics and practicality, and better context understanding.
507
+ Context Length:
508
+ Input = 1M tokens
509
+ Output = 65.5k tokens
510
+
511
+ Agency:
512
+ - Coder
513
+ """,
189
514
 
190
- Pricing (per 1M tokens):
191
- Input: $0.15
192
- Cache: $0.60
193
- Output: $2.50
515
+ #2.2 Google
516
+ "gemini-3-flash-preview": """
517
+ Model: Gemini 3 Flash
518
+ Cost:
519
+ Input = $0.50 <= 1M tokens
520
+ Output = $3.00 <= 1M tokens
521
+
522
+ Data Type:
523
+ Input = (Text, Image, Video, Audio, PDF)
524
+ Output = Text
525
+
526
+ Context Length:
527
+ Input = 1M tokens
528
+ Output = 65.5k tokens
529
+
530
+ Agencies recommended:
531
+ - Coder
532
+ - Admin
533
+ - Chat
534
+ - Classifier
535
+ - Summarizer
536
+ - ImageTexter
537
+ """,
538
+
539
+ #2.3 Google
540
+ "gemini-2.5-pro": """
541
+ Model: Gemini 2.5 Pro
542
+ Cost:
543
+ Input = $1.25 <= 200k tokens / $10.00 > 200k tokens
544
+ Output = $2.50 > 200k tokens / $15.00 > 200k tokens
545
+
546
+ Data Type:
547
+ Input = (Text, Image, Video, Audio, PDF)
548
+ Output = Text
549
+
550
+ Context Length:
551
+ Input = 1M tokens
552
+ Output = 65.5k tokens
553
+
554
+ Agencies recommended:
555
+ - Coder
556
+ """,
557
+
558
+ #2.4 Google
559
+ "gemini-2.5-flash": """
560
+ Model: Gemini 2.5 Flash
561
+ Cost:
562
+ Input = $0.30 <= 1M tokens
563
+ Output = $2.50 <= 1M tokens
564
+
565
+ Data Type:
566
+ Input = (Text, Image, Video, Audio)
567
+ Output = Text
568
+
569
+ Context Length:
570
+ Input = 1M tokens
571
+ Output = 65.5k tokens
572
+
573
+ Agencies recommended:
574
+ - Admin
575
+ - Chat
576
+ - Classifier
577
+ - Summarizer
578
+ - ImageTexter
579
+ """,
580
+
581
+ #2.5 Google
582
+ "gemini-2.5-flash-lite": """
583
+ Model: Gemini 2.5 Flash Lite
584
+ Cost:
585
+ Input = $0.10 <= 1M tokens
586
+ Output = $0.40 <= 1M tokens
587
+
588
+ Data Type:
589
+ Input = (Text, image, video, audio, PDF)
590
+ Output = Text
591
+
592
+ Context Length:
593
+ Input = 1M tokens
594
+ Output = 65.5k tokens
595
+
596
+ Agencies recommended:
597
+ - Chat
598
+ - ImageTexter
599
+ - Classifier
600
+ - Summarizer
601
+ - ImageTexter
602
+ """,
603
+
604
+ #2.6 Google
605
+ "gemini-2.0-flash": """
606
+ Model: Gemini 2.0 Flash
607
+ Cost:
608
+ Input = $0.10 <= 1M tokens
609
+ Output = $0.40 <= 1M tokens
610
+
611
+ Data Type:
612
+ Input = (Text, Image, Video, Audio)
613
+ Output = Text
614
+
615
+ Context Length:
616
+ Input = 1M tokens
617
+ Output = 8k tokens
618
+
619
+ Agencies recommended:
620
+ - ImageTexter
621
+ - Summarizer
622
+ - Classifier
194
623
  """,
195
624
 
196
- #6 Alibaba
197
- #i
198
- "qwen-flash": """ Qwen-Flash is a lightweight, high-speed large language model from Alibaba Cloud, optimized for efficiency and cost-effectiveness.
625
+ #2.7 Google
626
+ "gemini-2.0-flash-lite": """
627
+ Model: Gemini 2.0 Flash Lite
628
+
629
+ Cost:
630
+ Input = $0.075 <= 1M tokens
631
+ Output = $0.30 <= 1M tokens
632
+
633
+ Data Type:
634
+ Input = (Text, Image, Video, Audio)
635
+ Output = Text
636
+
637
+ Context Length:
638
+ Input = 1M tokens
639
+ Output = 8k tokens
640
+
641
+ Agencies recommended:
642
+ - ImageTexter
643
+ - Summarizer
644
+ - Classifier
645
+ """,
646
+
647
+ #3.1 XAI
648
+ "grok-4-1-fast-reasoning": """
649
+ Model: Grok 4.1 Fast Thinking
650
+ Cost:
651
+ Input = $0.20 <= 1M tokens
652
+ Output = $0.50 <= 1M tokens
199
653
 
200
- Pricing (per 1M tokens):
201
- Input: $0.05
202
- Output: $0.40
654
+ Data Type:
655
+ Input = (Text, Image)
656
+ Output = Text
203
657
 
204
- Best for:
205
- > Simple, high-speed tasks requiring low latency.
206
- > Cost-sensitive applications where budget is a priority.
207
- > Scenarios demanding large context windows (supports up to 1M tokens).
658
+ Context Length:
659
+ Input = 2M tokens
660
+ Output = ?
208
661
 
209
- Use cases:
210
- > Real-time chat and dialogue systems needing quick responses.
211
- > Large-scale text processing (e.g., summarization, polishing).
212
- > Prototyping and development where rapid iteration is key.
662
+ Agencies recommended:
663
+ - Coder
664
+ - ImageTexter
665
+ """,
666
+
667
+ #3.2 XAI
668
+ "grok-4-1-fast-non-reasoning": """
669
+ Model: Grok 4.1 Fast
670
+ Cost:
671
+ Input = $0.20 <= 1M tokens
672
+ Output = $0.50 <= 1M tokens
673
+
674
+ Data Type:
675
+ Input = (Text, Image)
676
+ Output = Text
213
677
 
214
- Note: Lacks advanced reasoning features like "deep thinking" mode found in higher-tier Qwen models (e.g., Qwen-Plus).
678
+ Context Length:
679
+ Input = 2M tokens
680
+ Output = ?
681
+
682
+ Agencies recommended:
683
+ - Admin
684
+ - Chat
685
+ - Summarizer
686
+ - Classifier
687
+ - ImageTexter
215
688
  """,
216
689
 
217
- #ii
218
- "qwen-plus": """LLM offering a balance of performance, speed, and cost. It features a 131,072 token context window and supports both thinking and non-thinking modes for enhanced reasoning.
690
+ #3.3 XAI
691
+ "grok-code-fast-1": """
692
+ Model: Grok Code Fast
693
+ Cost:
694
+ Input = $0.20 <= 1M tokens
695
+ Output = $1.50 <= 1M tokens
219
696
 
220
- Pricing (per 1M tokens):
221
- Input: $0.40
222
- Output: $1.20
697
+ Data Type:
698
+ Input = Text
699
+ Output = Text
223
700
 
224
- Best for:
225
- > Moderately complex reasoning tasks due to its enhanced reasoning capabilities and thinking mode support 16.
226
- > Multilingual applications, with support for over 100 languages, including strong Chinese and English performance 12.
227
- > Cost-sensitive deployments requiring a balance of capability and affordability 13.
701
+ Context Length:
702
+ Input = 256k tokens
703
+ Output = ?
228
704
 
229
- Use cases:
230
- > Customer service automation (e.g., chatbots, virtual assistants) 26.
231
- > Content generation and summarization (e.g., marketing copy, document summarization) 236.
232
- > Code generation and tool-assisted tasks due to its agent capabilities and tool-calling support
705
+ Agencies recommended:
706
+ - Code
707
+ - Chat
708
+ - Summarizer
709
+ - Classifier
233
710
  """,
234
711
 
235
- #iii
236
- "qwen3-Coder-Plus": """A commercial, high-performance coding model optimized for agentic tasks like tool use, browser interaction, and long-context code generation.
237
-
238
- Pricing (per 1M tokens):
239
- Input $1 (0-32K tokens), $1.8 (32K-128K), $3 (128K-256K), $6 (256K-1M).
240
- Output $5 (0-32K), $9 (32K-128K), $15 (128K-256K), $60 (256K-1M)
712
+ #3.4 XAI
713
+ "grok-4": """
714
+ Model: Grok 4
715
+ Cost:
716
+ Input = $3.00 <= 1M tokens
717
+ Output = $15.00 <= 1M tokens
718
+
719
+ Data Type:
720
+ Input = Text
721
+ Output = Text
241
722
 
242
- Best for:
243
- > Repository-scale coding (handles large codebases with long context).
244
- > Agentic workflows (tool calling, multi-step environment interactions).
245
- > Real-world software engineering (debugging, refactoring, SWE-bench tasks).
723
+ Context Length:
724
+ Input = 256k tokens
725
+ Output = ?
246
726
 
247
- Use cases:
248
- > Automating complex coding tasks (e.g., full-stack app generation, data storytelling).
249
- > Debugging and refactoring (identifying bugs, improving code quality).
250
- > Multi-turn coding with feedback (iterative problem-solving with execution).
251
- > Consider this model if you need long-context, agentic coding capabilities comparable to Claude Sonnet 17. Avoid if budget constraints outweigh performance needs.
727
+ Agencies recommended:
728
+ - Code
252
729
  """,
253
730
 
254
- #iv
255
- "qwen-max": """Alibaba Cloud's flagship large-scale Mixture-of-Experts (MoE) model, pretrained on 20+ trillion tokens and refined with SFT/RLHF. Competes with top models like GPT-4o and Claude-3.5-Sonnet in benchmarks.
731
+ #4.1 Anthropic
732
+ "claude-opus-4-5": """
733
+ Model: Claude Opus 4.5
734
+ Cost:
735
+ Input = $5.00 <= 1M tokens
736
+ Output = $25.00 <= 1M tokens
737
+
738
+ Data Type:
739
+ Input = Text, Image
740
+ Output = Text
741
+
742
+ Context Length:
743
+ Input = 200k tokens
744
+ Output = 64k
745
+
746
+ Speed, Intelligence, and Training:
747
+ 3x Fast
748
+ 5x Clever
749
+ Thinking: Yes
750
+ Knowledge: May 2025
751
+
752
+ Agencies recommended:
753
+ - Coder
754
+ """,
256
755
 
257
- Pricing (per 1M tokens):
258
- Input: $1.60 - Output: $6.40
756
+ #4.2 Anthropic
757
+ "claude-sonnet-4-5": """
758
+ Model: Claude Sonnet 4.5
759
+ Cost:
760
+ Input = $3.00 <= 1M tokens
761
+ Output = $15.00 <= 1M tokens
762
+
763
+ Data Type:
764
+ Input = Text, Image
765
+ Output = Text
259
766
 
260
- Best for:
261
- > Complex, multi-step reasoning tasks 113
262
- > Multilingual applications (supports 100+ languages)
263
- > Coding and tool-calling precision 111
767
+ Context Length:
768
+ Input = 200k tokens
769
+ Output = 64k
264
770
 
265
- Use cases:
266
- > Advanced coding assistance and debugging 310
267
- > High-quality content creation (e.g., documents, scripts)
268
- > Large-context analysis (32K token window) for documents or data
771
+ Speed, Intelligence, and Training:
772
+ 4x Fast
773
+ 4x Clever
774
+ Thinking: Yes
775
+ Knowledge: Jan 2025
269
776
 
777
+ Agencies recommended:
778
+ - Code
270
779
  """,
271
780
 
272
- "claude-opus-4-1":""" $15 / MTok $18.75 / MTok $30 / MTok $1.50 / MTok $75 / MTok
781
+ #4.3 Anthropic
782
+ "claude-haiku-4-5":"""
783
+ Model: Claude Haiku 4.5
784
+ Cost:
785
+ Input = $1.00 <= 1M tokens
786
+ Output = $5.00 <= 1M tokens
787
+
788
+ Data Type:
789
+ Input = Text, Image
790
+ Output = Text
791
+
792
+ Context Length:
793
+ Input = 200k tokens
794
+ Output = 64k
795
+
796
+ Speed, Intelligence, and Training:
797
+ 5x Fast
798
+ 3x Clever
799
+ Thinking: Yes
800
+ Knowledge: Feb 2025
801
+
802
+ Agencies recommended:
803
+ - Admin
804
+ - Chat
805
+ - Code
273
806
  """,
807
+
808
+ #5.1 DeepSeek
809
+ "deepseek-chat":"""
810
+ Model: DeepSeek Chat
811
+
812
+ Cost:
813
+ Input = $0.28 <= 1M tokens
814
+ Output = $0.42 <= 1M tokens
815
+
816
+ Data Type:
817
+ Input = Text
818
+ Output = Text
274
819
 
275
- "claude-sonnet-4-0":""" $3 / MTok $3.75 / MTok $6 / MTok $0.30 / MTok $15 / MTok
820
+ Context Length:
821
+ Input = 128,000 tokens
822
+ Output = 4k-Default / 8k-Max tokens
823
+
824
+ Misc:
825
+ 4x Fast
826
+ 4x Clever
827
+ Thinking: No
828
+ Knowledge: 31/05/2024
829
+
830
+ Agency:
831
+ - Chat
832
+ - Classifier
833
+ - Summarizer
276
834
  """,
277
835
 
278
- "claude-haiku-3-5-latest":""" $0.80 / MTok $1 / MTok $1.6 / MTok $0.08 / MTok $4 / MTok
836
+ #5.2 DeepSeek
837
+ "deepseek-reasoner":"""
838
+ Model: DeepSeek Reasoner
839
+
840
+ Cost:
841
+ Input = $0.28 <= 1M tokens
842
+ Output = $0.42 <= 1M tokens
843
+
844
+ Data Type:
845
+ Input = Text
846
+ Output = Text
847
+
848
+ Context Length:
849
+ Input = 128,000 tokens
850
+ Output = 32,000-Default / 64,000-Max tokens
851
+
852
+ Misc:
853
+ 4x Fast
854
+ 4x Clever
855
+ Thinking: Yes
856
+ Knowledge: 31/05/2024
857
+
858
+ Agency:
859
+ - Coder
860
+ - Chat
861
+ - Classifier
862
+ - Summarizer
279
863
  """,
280
864
 
281
- "claude-3-haiku-20240307":""" $0.25 / MTok $0.30 / MTok $0.50 / MTok $0.03 / MTok $1.25 / MTok
865
+ #6.1 Alibaba
866
+ "qwen3-max":"""
867
+ Model: Qwen3 Max
868
+ Cost:
869
+ Input: $1.20 <= 32k tokens/ $2.40 32k-128k tokens/ $3 128k-256k tokens
870
+ Output: $6.00 <= 32k tokens/ $12 32k-128k tokens/ $15 128k-256k tokens
871
+
872
+ Data Type:
873
+ Input = Text
874
+ Output = Text
875
+
876
+ Context Length:
877
+ Input = 252k
878
+ Output = 64k
879
+
880
+ Misc:
881
+ 3x Fast
882
+ 5x Clever
883
+ Thinking: Available
884
+ Knowledge: ?
885
+
886
+ Agency:
887
+ - Code
282
888
  """,
283
889
 
284
- }
890
+ #6.2 Alibaba
891
+ "qwen3-coder-plus":"""
892
+ Model: Qwen3 Coder Plus
893
+ Cost:
894
+ Input: $1.00 <= 32k tokens/ $1.80 <= 128k tokens/ $6 <= 1M tokens
895
+ Output: $5.00 <= 32k tokens/ $9.00 <= 128k tokens/ $60.00 <= 1M tokens
285
896
 
897
+ Data Type:
898
+ Input = Text
899
+ Output = Text
900
+
901
+ Context Length:
902
+ Input = 1M tokens
903
+ Output = 64k tokens
904
+
905
+ Misc:
906
+ 2x Fast
907
+ 5x Clever
908
+ Thinking: Available
909
+ Knowledge: ?
910
+
911
+ Agency:
912
+ - Code
913
+ """,
914
+
915
+ #6.3 Alibaba
916
+ "qwen3-coder-flash":"""
917
+ Model: Qwen3 Coder Flash
918
+ Cost:
919
+ Input: $0.30 <= 32k tokens/ $0.50 <= 128k tokens/ $0.80 <= 256k tokens/ $1.6 <= 1M tokens
920
+ Output: $1.50 <= 32k tokens/ $2.50 <= 128k tokens/ $4.00 <= 256k tokens/ $9.6 <= 1M tokens
921
+
922
+ Data Type:
923
+ Input = Text
924
+ Output = Text
925
+
926
+ Context Length:
927
+ Input = 997k tokens
928
+ Output = 64k tokens
929
+
930
+ Misc:
931
+ 2x Fast
932
+ 5x Clever
933
+ Thinking: Available
934
+ Knowledge: ?
935
+
936
+ Agency:
937
+ - Code
938
+ """,
939
+
940
+ #6.4 Alibaba
941
+ "qwen-plush":"""
942
+ Model: Qwen Plus
943
+ Cost:
944
+ Input: $0.40 <= 256k tokens/ $1.2 <= 1M tokens
945
+ Output: $1.20 <= 256k tokens/ $3.6 <= 1M tokens
946
+
947
+ Data Type:
948
+ Input = Text
949
+ Output = Text
950
+
951
+ Context Length:
952
+ Input = 995k tokens
953
+ Output = 32k
954
+
955
+ Misc:
956
+ 3x Fast
957
+ 4x Clever
958
+ Thinking: Available
959
+ Knowledge: ?
960
+
961
+ Agency:
962
+ - Code
963
+ - Chat
964
+ - Classifier
965
+ - Summarizer
966
+ """,
967
+
968
+ #6.5 Alibaba
969
+ "qwen-flash":"""
970
+ Model: Qwen Flash
971
+ Cost:
972
+ Input: $0.05 <= 256k tokens/ $0.25 <= 1M tokens
973
+ Output: $0.40 <= 256k tokens/ $2.00 <= 1M tokens
974
+
975
+ Data Type:
976
+ Input = Text
977
+ Output = Text
978
+
979
+ Context Length:
980
+ Input = 995k tokens
981
+ Output = 32k tokens
982
+
983
+ Misc:
984
+ 5x Fast
985
+ 3x Clever
986
+ Thinking: Available
987
+ Knowledge: ?
988
+
989
+ Agency:
990
+ - Chat
991
+ - Classifier
992
+ - Summarizer
993
+ """,
994
+
995
+ #7.1 Moonshot
996
+ "kimi-k2-0905-preview":"""
997
+ Model: Kimi K2
998
+ Cost:
999
+ Input = $0.15 <= 1M tokens
1000
+ Output = $2.50 <= 1M tokens
1001
+
1002
+ Data Type:
1003
+ Input = Text
1004
+ Output = Text
1005
+
1006
+ Context Length:
1007
+ Window: 256k tokens
1008
+
1009
+ Misc:
1010
+ 4x Fast
1011
+ 3x Clever
1012
+
1013
+ Agency:
1014
+ - Chat
1015
+ - Classifier
1016
+ - Summarizer
1017
+ """,
1018
+
1019
+
1020
+ #7.2 Moonshot
1021
+ "kimi-k2-turbo-preview":"""
1022
+ Model: Kimi K2 Turbo
1023
+ Cost:
1024
+ Input = $0.15 <= 1M tokens
1025
+ Output = $8.00 <= 1M tokens
1026
+
1027
+ Data Type:
1028
+ Input = Text
1029
+ Output = Text
1030
+
1031
+ Context Length:
1032
+ Window: 256k tokens
1033
+
1034
+ Misc:
1035
+ 5x Fast
1036
+ 3x Clever
1037
+
1038
+ Agency:
1039
+ - Chat
1040
+ - Classifier
1041
+ - Summarizer
1042
+ """,
1043
+
1044
+ #7.3 Moonshot
1045
+ "kimi-k2-thinking":"""
1046
+ Model: Kimi K2 Thinking
1047
+ Cost:
1048
+ Input = $0.15 <= 1M tokens
1049
+ Output = $2.50 <= 1M tokens
1050
+
1051
+ Data Type:
1052
+ Input = (Text, Image)
1053
+ Output = Text
1054
+
1055
+ Context Length:
1056
+ Window: 256k tokens
1057
+
1058
+ Misc:
1059
+ 3x Fast
1060
+ 4x Clever
1061
+
1062
+ Agency:
1063
+ - Coder
1064
+ - Chat
1065
+ - Classifier
1066
+ - Summarizer
1067
+ """,
1068
+
1069
+ #7.4 Moonshot
1070
+ "kimi-k2-thinking-turbo":"""
1071
+ Model: Kimi K2 Thinking Turbo
1072
+ Cost:
1073
+ Input = $0.15 <= 1M tokens
1074
+ Output = $8.00 <= 1M tokens
1075
+
1076
+ Data Type:
1077
+ Input = Text
1078
+ Output = Text
1079
+
1080
+ Context Length:
1081
+ Window: 256k tokens
1082
+
1083
+ Misc:
1084
+ 4x Fast
1085
+ 5x Clever
1086
+
1087
+ Agency:
1088
+ - Coder
1089
+ - Chat
1090
+ - Classifier
1091
+ - Summarizer
1092
+ """,
1093
+ }
286
1094
 
1095
+ # Agencies
287
1096
  # -----------------------------------------------------------------------------
288
1097
  PURPOSE_TAGS = [
289
1098
  "admin",
290
1099
  "chat",
291
- "coding",
292
- "vision2text",
293
- "classification",
294
- "summarization",
1100
+ "coder",
1101
+ "classifier",
1102
+ "summarizer",
1103
+ "imagetexter",
1104
+ "textimager",
1105
+ "imageeditor"
295
1106
  ]
296
1107
 
297
1108
  # -----------------------------------------------------------------------------
@@ -304,11 +1115,14 @@ EMBEDDING_MODELS = {
304
1115
 
305
1116
 
306
1117
  GPT_MODELS_LATEST = [
307
- "gpt-5.1",
308
- "gpt-5.1-chat-latest",
309
- "gpt-5.1-codex-mini",
310
- "gpt-5.1-codex",
1118
+ "gpt-5.2",
1119
+ "gpt-5.2-chat-latest", # $1.75 $0.175 $14.00
1120
+ "gpt-5.2-pro", # $21.00 - $168.00
1121
+ "gpt-5.1", # $1.25 $0.125 $10.00
1122
+ "gpt-5.1-chat-latest", # $1.25 $0.125 $10.00
1123
+ "gpt-5.1-codex-mini",
1124
+ "gpt-5.1-codex-max",
311
1125
  "gpt-5",
312
1126
  "gpt-5-nano",
313
- "gpt-5-mini",
1127
+ "gpt-5-mini",
314
1128
  ]