syntaxmatrix 1.4.6__py3-none-any.whl → 2.5.5.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- syntaxmatrix/__init__.py +13 -8
- syntaxmatrix/agentic/__init__.py +0 -0
- syntaxmatrix/agentic/agent_tools.py +24 -0
- syntaxmatrix/agentic/agents.py +810 -0
- syntaxmatrix/agentic/code_tools_registry.py +37 -0
- syntaxmatrix/agentic/model_templates.py +1790 -0
- syntaxmatrix/auth.py +308 -14
- syntaxmatrix/commentary.py +328 -0
- syntaxmatrix/core.py +993 -375
- syntaxmatrix/dataset_preprocessing.py +218 -0
- syntaxmatrix/db.py +92 -95
- syntaxmatrix/display.py +95 -121
- syntaxmatrix/generate_page.py +634 -0
- syntaxmatrix/gpt_models_latest.py +46 -0
- syntaxmatrix/history_store.py +26 -29
- syntaxmatrix/kernel_manager.py +96 -17
- syntaxmatrix/llm_store.py +1 -1
- syntaxmatrix/plottings.py +6 -0
- syntaxmatrix/profiles.py +64 -8
- syntaxmatrix/project_root.py +55 -43
- syntaxmatrix/routes.py +5072 -1398
- syntaxmatrix/session.py +19 -0
- syntaxmatrix/settings/logging.py +40 -0
- syntaxmatrix/settings/model_map.py +300 -33
- syntaxmatrix/settings/prompts.py +273 -62
- syntaxmatrix/settings/string_navbar.py +3 -3
- syntaxmatrix/static/docs.md +272 -0
- syntaxmatrix/static/icons/favicon.png +0 -0
- syntaxmatrix/static/icons/hero_bg.jpg +0 -0
- syntaxmatrix/templates/dashboard.html +608 -147
- syntaxmatrix/templates/docs.html +71 -0
- syntaxmatrix/templates/error.html +2 -3
- syntaxmatrix/templates/login.html +1 -0
- syntaxmatrix/templates/register.html +1 -0
- syntaxmatrix/ui_modes.py +14 -0
- syntaxmatrix/utils.py +2482 -159
- syntaxmatrix/vectorizer.py +16 -12
- {syntaxmatrix-1.4.6.dist-info → syntaxmatrix-2.5.5.4.dist-info}/METADATA +20 -17
- syntaxmatrix-2.5.5.4.dist-info/RECORD +68 -0
- syntaxmatrix/model_templates.py +0 -30
- syntaxmatrix/static/icons/favicon.ico +0 -0
- syntaxmatrix-1.4.6.dist-info/RECORD +0 -54
- {syntaxmatrix-1.4.6.dist-info → syntaxmatrix-2.5.5.4.dist-info}/WHEEL +0 -0
- {syntaxmatrix-1.4.6.dist-info → syntaxmatrix-2.5.5.4.dist-info}/licenses/LICENSE.txt +0 -0
- {syntaxmatrix-1.4.6.dist-info → syntaxmatrix-2.5.5.4.dist-info}/top_level.txt +0 -0
syntaxmatrix/session.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
# syntaxmatrix/session.py
|
|
2
|
+
import uuid
|
|
3
|
+
from flask import request, g
|
|
4
|
+
|
|
5
|
+
COOKIE_NAME = "smx_session"
|
|
6
|
+
|
|
7
|
+
def ensure_session_cookie():
|
|
8
|
+
"""
|
|
9
|
+
If the visitor has no smx_session cookie, generate a UUID4 and remember
|
|
10
|
+
it for the response phase. Store the final ID in flask.g so the rest
|
|
11
|
+
of the request can reuse it.
|
|
12
|
+
"""
|
|
13
|
+
sid = request.cookies.get(COOKIE_NAME)
|
|
14
|
+
if not sid:
|
|
15
|
+
sid = str(uuid.uuid4())
|
|
16
|
+
g._smx_new_sid = sid # flag for after_request
|
|
17
|
+
else:
|
|
18
|
+
sid = str(sid)
|
|
19
|
+
g.smx_session_id = sid # always available downstream
|
|
@@ -0,0 +1,40 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import sys
|
|
3
|
+
from logging.handlers import RotatingFileHandler
|
|
4
|
+
from syntaxmatrix.project_root import detect_project_root
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
def configure_logging():
|
|
8
|
+
"""Set up robust error logging to file"""
|
|
9
|
+
# Create logger
|
|
10
|
+
logger = logging.getLogger()
|
|
11
|
+
logger.setLevel(logging.ERROR) # Capture only errors and above
|
|
12
|
+
|
|
13
|
+
# File handler with rotation (5MB per file, keep 3 backups)
|
|
14
|
+
file_handler = RotatingFileHandler(
|
|
15
|
+
filename=f'{detect_project_root()}/smx_logs.log',
|
|
16
|
+
maxBytes=5*1024*1024, # 5 MB
|
|
17
|
+
backupCount=3,
|
|
18
|
+
encoding='utf-8'
|
|
19
|
+
)
|
|
20
|
+
|
|
21
|
+
# Error formatting with tracebacks
|
|
22
|
+
formatter = logging.Formatter(
|
|
23
|
+
fmt='%(asctime)s | %(levelname)-8s | %(module)s:%(funcName)s:%(lineno)d - %(message)s',
|
|
24
|
+
datefmt='%Y-%m-%d %H:%M:%S'
|
|
25
|
+
)
|
|
26
|
+
file_handler.setFormatter(formatter)
|
|
27
|
+
|
|
28
|
+
logger.addHandler(file_handler)
|
|
29
|
+
|
|
30
|
+
# Capture unhandled exceptions
|
|
31
|
+
def handle_exception(exc_type, exc_value, exc_traceback):
|
|
32
|
+
if issubclass(exc_type, KeyboardInterrupt):
|
|
33
|
+
sys.__excepthook__(exc_type, exc_value, exc_traceback)
|
|
34
|
+
return
|
|
35
|
+
logger.critical("Unhandled exception", exc_info=(exc_type, exc_value, exc_traceback))
|
|
36
|
+
|
|
37
|
+
sys.excepthook = handle_exception
|
|
38
|
+
|
|
39
|
+
# Initialize logging when module loads
|
|
40
|
+
configure_logging()
|
|
@@ -1,46 +1,313 @@
|
|
|
1
|
+
import json
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
|
|
1
5
|
PROVIDERS_MODELS = {
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
|
|
6
|
+
#1
|
|
7
|
+
"openai": [
|
|
8
|
+
"gpt-5.1",
|
|
9
|
+
"gpt-5.1-chat-latest",
|
|
10
|
+
"gpt-5.1-codex-mini",
|
|
11
|
+
"gpt-5.1-codex",
|
|
12
|
+
"gpt-5",
|
|
13
|
+
"gpt-5-nano",
|
|
14
|
+
"gpt-5-mini",
|
|
15
|
+
"gpt-4.1",
|
|
16
|
+
"gpt-4.1-nano",
|
|
17
|
+
"gpt-4.1-mini",
|
|
18
|
+
"gpt-4o-mini",
|
|
19
|
+
"gpt-4o",
|
|
20
|
+
],
|
|
21
|
+
#2
|
|
22
|
+
"google": [
|
|
23
|
+
"gemini-3-pro-preview",
|
|
24
|
+
"gemini-2.5-flash-lite",
|
|
25
|
+
"gemini-2.5-flash",
|
|
26
|
+
"gemini-2.5-pro",
|
|
27
|
+
"gemini-2.0-flash-lite",
|
|
28
|
+
"gemini-2.0-flash",
|
|
12
29
|
],
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
30
|
+
#3
|
|
31
|
+
"xai": [
|
|
32
|
+
"grok-4",
|
|
33
|
+
"grok-3-mini-fast",
|
|
34
|
+
"grok-3-mini",
|
|
35
|
+
"grok-3",
|
|
36
|
+
|
|
19
37
|
],
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
"grok-3"
|
|
38
|
+
#4
|
|
39
|
+
"deepseek": [
|
|
40
|
+
"deepseek-chat",
|
|
24
41
|
],
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
42
|
+
#5
|
|
43
|
+
"moonshot": [
|
|
44
|
+
"kimi-k2-0905-preview",
|
|
28
45
|
],
|
|
29
|
-
|
|
30
|
-
|
|
46
|
+
#6
|
|
47
|
+
"alibaba": [
|
|
48
|
+
"qwen-flash",
|
|
49
|
+
"qwen-plus",
|
|
50
|
+
"qwen3-coder-plus",
|
|
51
|
+
"qwen-max",
|
|
31
52
|
],
|
|
53
|
+
#7
|
|
54
|
+
"anthropic": [
|
|
55
|
+
"claude-opus-4-5",
|
|
56
|
+
"claude-opus-4-1",
|
|
57
|
+
"claude-sonnet-4-5",
|
|
58
|
+
"claude-sonnet-4-0",
|
|
59
|
+
"claude-3-5-haiku-latest",
|
|
60
|
+
"claude-3-haiku-20240307",
|
|
61
|
+
]
|
|
32
62
|
}
|
|
33
63
|
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
64
|
+
|
|
65
|
+
# Read-only model descriptions for LLM-profile builder
|
|
66
|
+
# -----------------------------------------------------------------------------
|
|
67
|
+
MODEL_DESCRIPTIONS = {
|
|
68
|
+
#1. OpenAI
|
|
69
|
+
"gpt-4o-mini":"Cost-efficient multimodal; $0.15/1M input, $0.60/1M output. Ideal for prototyping vision+text apps on a budget.",
|
|
70
|
+
|
|
71
|
+
"gpt-4o":"Multimodal powerhouse; $5.00/1M input, $15.00/1M output. Best for high-fidelity chat, complex reasoning & image tasks.",
|
|
72
|
+
|
|
73
|
+
"gpt-4.1-nano":"Ultra-fast low-cost (1M-token); $0.10/1M in, $0.40/1M out. Perfect for high-throughput, low-latency tasks.",
|
|
74
|
+
|
|
75
|
+
"gpt-4.1-mini":"Balanced speed/intel (1M-token context); $0.40/1M in, $1.60/1M out. Great for apps needing wide context at moderate cost.",
|
|
76
|
+
|
|
77
|
+
"gpt-4.1":"Top general-purpose (1M-token context); $2.00/1M in, $8.00/1M out. Excels at large-doc comprehension, coding, reasoning.",
|
|
78
|
+
|
|
79
|
+
"gpt-5-chat-latest":"""gpt-5-main. """,
|
|
80
|
+
|
|
81
|
+
"gpt-5-nano":"""gpt-5-thinking-nano. In/Out €0.043/€0.344 (cached in €0.004).
|
|
82
|
+
Fastest/lowest cost; ideal for short prompts, tagging, and rewrite flows; tools supported.
|
|
83
|
+
Best for:
|
|
84
|
+
1. High-volume classification/moderation
|
|
85
|
+
2. Copy clean-up and templated rewrites
|
|
86
|
+
3. Lightweight summarisation and routing
|
|
87
|
+
|
|
88
|
+
Use cases:
|
|
89
|
+
a. Real-time content moderation and policy tagging.
|
|
90
|
+
b. Bulk product description normalisation with style rules.
|
|
91
|
+
c. News/article triage to decide which items warrant a deeper pass.
|
|
92
|
+
""",
|
|
93
|
+
|
|
94
|
+
"gpt-5-mini":"""gpt-5-thinking-mini. In/Out $0.25/$2 (cached in $0.025).
|
|
95
|
+
Cheaper, faster variant with broad task coverage; still supports tools and long context.
|
|
96
|
+
Best for:
|
|
97
|
+
1. Production chatbots at scale
|
|
98
|
+
2. Mid-complexity RAG/extraction pipelines
|
|
99
|
+
3. Batch summarisation with occasional tool calls
|
|
100
|
+
Use cases:
|
|
101
|
+
a. Customer support copilot that classifies intent, drafts replies, and calls ticketing APIs.
|
|
102
|
+
b. Meeting-notes pipeline: diarised summary, actions, CRM updates.
|
|
103
|
+
c. ETL enrichment: pull facts from documents into structured JSON.
|
|
104
|
+
""",
|
|
105
|
+
|
|
106
|
+
"gpt-5":"""gpt-5-thinking. In/Out $1.25/$10.00 (cached in $0.125).
|
|
107
|
+
Advanced reasoning and tool use; strong code generation/repair; robust long-context handling (400k).
|
|
108
|
+
Best for:
|
|
109
|
+
1. Complex agentic workflows and planning
|
|
110
|
+
2. Long-context RAG and analytics
|
|
111
|
+
3. High-stakes coding assistance (multi-file changes & tests)
|
|
112
|
+
Use cases:
|
|
113
|
+
a. An autonomous “data room” analyst reading hundreds of PDFs and producing audit-ready briefs.
|
|
114
|
+
b. A coding copilot that opens tickets, edits PRs, and runs tests via tools.</li>
|
|
115
|
+
c. An enterprise chat assistant that reasons over policies and produces compliant outputs.
|
|
116
|
+
""",
|
|
117
|
+
|
|
118
|
+
# "gpt-o3":"High-accuracy reasoning (200K-token); $2.00/1M in, $8.00/1M out. Best for math, code gen, structured data outputs.",
|
|
119
|
+
# "gpt-o4-mini":"Fast lean reasoning (200K-token); $1.10/1M in, $4.40/1M out. Ideal for vision+code when o3 is overkill.",
|
|
120
|
+
# "gpt-o4-mini-high":"Enhanced mini-engine; $2.50/1M in (est.), $10.00/1M out (est.). Suited for interactive assistants with visual reasoning.",
|
|
121
|
+
|
|
122
|
+
# Google
|
|
123
|
+
"gemma-3n-e4b-it":"""Gemma is free.
|
|
124
|
+
Best for: Use case:
|
|
125
|
+
- Low latency | - Visual and text processing
|
|
126
|
+
- Multilingual | - Text translation
|
|
127
|
+
- Summarization | - Summarizing text research content
|
|
128
|
+
""",
|
|
129
|
+
|
|
130
|
+
#2 Google
|
|
131
|
+
"gemma-3n-e4b-it": """
|
|
132
|
+
Open source for local hosting
|
|
133
|
+
""",
|
|
134
|
+
|
|
135
|
+
"gemini-2.0-flash-lite":"""$0.075 In, $0.30 Out. CoD: Aug 2024"
|
|
136
|
+
Best for: Use case:
|
|
137
|
+
- Long Context | - rocess 10,000 lines of code
|
|
138
|
+
- Realtime streaming | - Call tools natively
|
|
139
|
+
- Native tool use | - Stream images and video in realtime
|
|
140
|
+
""",
|
|
141
|
+
|
|
142
|
+
"gemini-2.0-flash": """$0.10 In, $0.40 Out. CoD: Aug 2024
|
|
143
|
+
Best for: Use case:
|
|
144
|
+
- Multimodal understanding | - Process 10,000 lines of code
|
|
145
|
+
- Realtime streaming | - Call tools natively, like Search
|
|
146
|
+
- Native tool use | - Stream images & vids in R time
|
|
147
|
+
""",
|
|
148
|
+
|
|
149
|
+
"gemini-2.5-flash-lite": "($0.10 In, $0.40 Out)/1M (est.) CoD: Jan 2025."
|
|
150
|
+
" Best for: Use case:"
|
|
151
|
+
" - Large scale processing - Data transformation"
|
|
152
|
+
" - Low latency, high volume - Translation"
|
|
153
|
+
" tasks with thinking - Summarizationt",
|
|
154
|
+
|
|
155
|
+
"gemini-2.5-flash": """$0.30. $2.50 Out CoD: Jan 2024.
|
|
156
|
+
Best for: Use case:
|
|
157
|
+
- Large scale processing - Reason over complex problems
|
|
158
|
+
- Low latency, high volume tasks - Show thinking process
|
|
159
|
+
- Agentic use cases - Call tools natively
|
|
160
|
+
""",
|
|
161
|
+
|
|
162
|
+
"gemini-2.5-pro": """$3.00 In /1M (est.). Advanced analytics, detailed reports & multi-step reasoning.
|
|
163
|
+
Best for:
|
|
164
|
+
- Coding
|
|
165
|
+
- Reasoning
|
|
166
|
+
- Multimodal understanding
|
|
167
|
+
|
|
168
|
+
Use case:
|
|
169
|
+
- Reason over complex problems
|
|
170
|
+
- Tackle difficult code, math and STEM problems
|
|
171
|
+
- Use the long context for analyzing large datasets, codebases or documents
|
|
172
|
+
""",
|
|
173
|
+
|
|
174
|
+
#3 XAI
|
|
175
|
+
"grok-3-mini-fast": "$0.20/1M (est.). "
|
|
176
|
+
"Ultra-low latency chat, real-time monitoring & streaming apps.",
|
|
177
|
+
|
|
178
|
+
"grok-3-mini": "$0.40/1M (est.). Budget-friendly chat & assistant tasks with good accuracy.",
|
|
179
|
+
|
|
180
|
+
"grok-3": "$1.00/1M (est.). General-purpose chat & content gen with balanced speed/quality.",
|
|
181
|
+
|
|
182
|
+
#4 DeepSeek
|
|
183
|
+
"deepseek-chat": "DeepSeek Chat; $1.20/1M (est.). Optimized for private-data Q&A, enterprise search & document ingestion.",
|
|
184
|
+
|
|
185
|
+
#5 MoonShot
|
|
186
|
+
"kimi-k2-0905-preview": """Mixture-of-Experts (MoE). Context length of 256k.
|
|
187
|
+
Enhanced Agentic Coding abilities, improved frontend code aesthetics and practicality, and better context understanding.
|
|
188
|
+
|
|
189
|
+
Pricing (per 1M tokens):
|
|
190
|
+
Input: $0.15
|
|
191
|
+
Cache: $0.60
|
|
192
|
+
Output: $2.50
|
|
193
|
+
""",
|
|
194
|
+
|
|
195
|
+
#6 Alibaba
|
|
196
|
+
#i
|
|
197
|
+
"qwen-flash": """ Qwen-Flash is a lightweight, high-speed large language model from Alibaba Cloud, optimized for efficiency and cost-effectiveness.
|
|
198
|
+
|
|
199
|
+
Pricing (per 1M tokens):
|
|
200
|
+
Input: $0.05
|
|
201
|
+
Output: $0.40
|
|
202
|
+
|
|
203
|
+
Best for:
|
|
204
|
+
> Simple, high-speed tasks requiring low latency.
|
|
205
|
+
> Cost-sensitive applications where budget is a priority.
|
|
206
|
+
> Scenarios demanding large context windows (supports up to 1M tokens).
|
|
207
|
+
|
|
208
|
+
Use cases:
|
|
209
|
+
> Real-time chat and dialogue systems needing quick responses.
|
|
210
|
+
> Large-scale text processing (e.g., summarization, polishing).
|
|
211
|
+
> Prototyping and development where rapid iteration is key.
|
|
212
|
+
|
|
213
|
+
Note: Lacks advanced reasoning features like "deep thinking" mode found in higher-tier Qwen models (e.g., Qwen-Plus).
|
|
214
|
+
""",
|
|
215
|
+
|
|
216
|
+
#ii
|
|
217
|
+
"qwen-plus": """LLM offering a balance of performance, speed, and cost. It features a 131,072 token context window and supports both thinking and non-thinking modes for enhanced reasoning.
|
|
218
|
+
|
|
219
|
+
Pricing (per 1M tokens):
|
|
220
|
+
Input: $0.40
|
|
221
|
+
Output: $1.20
|
|
222
|
+
|
|
223
|
+
Best for:
|
|
224
|
+
> Moderately complex reasoning tasks due to its enhanced reasoning capabilities and thinking mode support 16.
|
|
225
|
+
> Multilingual applications, with support for over 100 languages, including strong Chinese and English performance 12.
|
|
226
|
+
> Cost-sensitive deployments requiring a balance of capability and affordability 13.
|
|
227
|
+
|
|
228
|
+
Use cases:
|
|
229
|
+
> Customer service automation (e.g., chatbots, virtual assistants) 26.
|
|
230
|
+
> Content generation and summarization (e.g., marketing copy, document summarization) 236.
|
|
231
|
+
> Code generation and tool-assisted tasks due to its agent capabilities and tool-calling support
|
|
232
|
+
""",
|
|
233
|
+
|
|
234
|
+
#iii
|
|
235
|
+
"qwen3-Coder-Plus": """A commercial, high-performance coding model optimized for agentic tasks like tool use, browser interaction, and long-context code generation.
|
|
236
|
+
|
|
237
|
+
Pricing (per 1M tokens):
|
|
238
|
+
Input $1 (0-32K tokens), $1.8 (32K-128K), $3 (128K-256K), $6 (256K-1M).
|
|
239
|
+
Output $5 (0-32K), $9 (32K-128K), $15 (128K-256K), $60 (256K-1M)
|
|
240
|
+
|
|
241
|
+
Best for:
|
|
242
|
+
> Repository-scale coding (handles large codebases with long context).
|
|
243
|
+
> Agentic workflows (tool calling, multi-step environment interactions).
|
|
244
|
+
> Real-world software engineering (debugging, refactoring, SWE-bench tasks).
|
|
245
|
+
|
|
246
|
+
Use cases:
|
|
247
|
+
> Automating complex coding tasks (e.g., full-stack app generation, data storytelling).
|
|
248
|
+
> Debugging and refactoring (identifying bugs, improving code quality).
|
|
249
|
+
> Multi-turn coding with feedback (iterative problem-solving with execution).
|
|
250
|
+
> Consider this model if you need long-context, agentic coding capabilities comparable to Claude Sonnet 17. Avoid if budget constraints outweigh performance needs.
|
|
251
|
+
""",
|
|
252
|
+
|
|
253
|
+
#iv
|
|
254
|
+
"qwen-max": """Alibaba Cloud's flagship large-scale Mixture-of-Experts (MoE) model, pretrained on 20+ trillion tokens and refined with SFT/RLHF. Competes with top models like GPT-4o and Claude-3.5-Sonnet in benchmarks.
|
|
255
|
+
|
|
256
|
+
Pricing (per 1M tokens):
|
|
257
|
+
Input: $1.60 - Output: $6.40
|
|
258
|
+
|
|
259
|
+
Best for:
|
|
260
|
+
> Complex, multi-step reasoning tasks 113
|
|
261
|
+
> Multilingual applications (supports 100+ languages)
|
|
262
|
+
> Coding and tool-calling precision 111
|
|
263
|
+
|
|
264
|
+
Use cases:
|
|
265
|
+
> Advanced coding assistance and debugging 310
|
|
266
|
+
> High-quality content creation (e.g., documents, scripts)
|
|
267
|
+
> Large-context analysis (32K token window) for documents or data
|
|
268
|
+
|
|
269
|
+
""",
|
|
270
|
+
|
|
271
|
+
"claude-opus-4-1":""" $15 / MTok $18.75 / MTok $30 / MTok $1.50 / MTok $75 / MTok
|
|
272
|
+
""",
|
|
273
|
+
|
|
274
|
+
"claude-sonnet-4-0":""" $3 / MTok $3.75 / MTok $6 / MTok $0.30 / MTok $15 / MTok
|
|
275
|
+
""",
|
|
276
|
+
|
|
277
|
+
"claude-haiku-3-5-latest":""" $0.80 / MTok $1 / MTok $1.6 / MTok $0.08 / MTok $4 / MTok
|
|
278
|
+
""",
|
|
279
|
+
|
|
280
|
+
"claude-3-haiku-20240307":""" $0.25 / MTok $0.30 / MTok $0.50 / MTok $0.03 / MTok $1.25 / MTok
|
|
281
|
+
""",
|
|
282
|
+
|
|
39
283
|
}
|
|
40
284
|
|
|
285
|
+
|
|
286
|
+
# -----------------------------------------------------------------------------
|
|
41
287
|
PURPOSE_TAGS = [
|
|
288
|
+
"admin",
|
|
42
289
|
"chat",
|
|
43
|
-
"
|
|
44
|
-
"
|
|
45
|
-
"
|
|
290
|
+
"coding",
|
|
291
|
+
"vision2text",
|
|
292
|
+
"classification",
|
|
293
|
+
"summarization",
|
|
294
|
+
]
|
|
295
|
+
|
|
296
|
+
# -----------------------------------------------------------------------------
|
|
297
|
+
EMBEDDING_MODELS = {
|
|
298
|
+
"openai": [
|
|
299
|
+
"text-embedding-3-small",
|
|
300
|
+
"text-embedding-3-large",
|
|
301
|
+
],
|
|
302
|
+
}
|
|
303
|
+
|
|
304
|
+
|
|
305
|
+
GPT_MODELS_LATEST = [
|
|
306
|
+
"gpt-5.1",
|
|
307
|
+
"gpt-5.1-chat-latest",
|
|
308
|
+
"gpt-5.1-codex-mini",
|
|
309
|
+
"gpt-5.1-codex",
|
|
310
|
+
"gpt-5",
|
|
311
|
+
"gpt-5-nano",
|
|
312
|
+
"gpt-5-mini",
|
|
46
313
|
]
|