synkro 0.4.36__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of synkro might be problematic. Click here for more details.
- synkro/__init__.py +331 -0
- synkro/advanced.py +184 -0
- synkro/cli.py +156 -0
- synkro/core/__init__.py +7 -0
- synkro/core/checkpoint.py +250 -0
- synkro/core/dataset.py +432 -0
- synkro/core/policy.py +337 -0
- synkro/errors.py +178 -0
- synkro/examples/__init__.py +148 -0
- synkro/factory.py +291 -0
- synkro/formatters/__init__.py +18 -0
- synkro/formatters/chatml.py +121 -0
- synkro/formatters/langfuse.py +98 -0
- synkro/formatters/langsmith.py +98 -0
- synkro/formatters/qa.py +112 -0
- synkro/formatters/sft.py +90 -0
- synkro/formatters/tool_call.py +127 -0
- synkro/generation/__init__.py +9 -0
- synkro/generation/follow_ups.py +134 -0
- synkro/generation/generator.py +314 -0
- synkro/generation/golden_responses.py +269 -0
- synkro/generation/golden_scenarios.py +333 -0
- synkro/generation/golden_tool_responses.py +791 -0
- synkro/generation/logic_extractor.py +126 -0
- synkro/generation/multiturn_responses.py +177 -0
- synkro/generation/planner.py +131 -0
- synkro/generation/responses.py +189 -0
- synkro/generation/scenarios.py +90 -0
- synkro/generation/tool_responses.py +625 -0
- synkro/generation/tool_simulator.py +114 -0
- synkro/interactive/__init__.py +16 -0
- synkro/interactive/hitl_session.py +205 -0
- synkro/interactive/intent_classifier.py +94 -0
- synkro/interactive/logic_map_editor.py +176 -0
- synkro/interactive/rich_ui.py +459 -0
- synkro/interactive/scenario_editor.py +198 -0
- synkro/llm/__init__.py +7 -0
- synkro/llm/client.py +309 -0
- synkro/llm/rate_limits.py +99 -0
- synkro/models/__init__.py +50 -0
- synkro/models/anthropic.py +26 -0
- synkro/models/google.py +19 -0
- synkro/models/local.py +104 -0
- synkro/models/openai.py +31 -0
- synkro/modes/__init__.py +13 -0
- synkro/modes/config.py +66 -0
- synkro/modes/conversation.py +35 -0
- synkro/modes/tool_call.py +18 -0
- synkro/parsers.py +442 -0
- synkro/pipeline/__init__.py +20 -0
- synkro/pipeline/phases.py +592 -0
- synkro/pipeline/runner.py +769 -0
- synkro/pipelines.py +136 -0
- synkro/prompts/__init__.py +57 -0
- synkro/prompts/base.py +167 -0
- synkro/prompts/golden_templates.py +533 -0
- synkro/prompts/interactive_templates.py +198 -0
- synkro/prompts/multiturn_templates.py +156 -0
- synkro/prompts/templates.py +281 -0
- synkro/prompts/tool_templates.py +318 -0
- synkro/quality/__init__.py +14 -0
- synkro/quality/golden_refiner.py +163 -0
- synkro/quality/grader.py +153 -0
- synkro/quality/multiturn_grader.py +150 -0
- synkro/quality/refiner.py +137 -0
- synkro/quality/tool_grader.py +126 -0
- synkro/quality/tool_refiner.py +128 -0
- synkro/quality/verifier.py +228 -0
- synkro/reporting.py +464 -0
- synkro/schemas.py +521 -0
- synkro/types/__init__.py +43 -0
- synkro/types/core.py +153 -0
- synkro/types/dataset_type.py +33 -0
- synkro/types/logic_map.py +348 -0
- synkro/types/tool.py +94 -0
- synkro-0.4.36.data/data/examples/__init__.py +148 -0
- synkro-0.4.36.dist-info/METADATA +507 -0
- synkro-0.4.36.dist-info/RECORD +81 -0
- synkro-0.4.36.dist-info/WHEEL +4 -0
- synkro-0.4.36.dist-info/entry_points.txt +2 -0
- synkro-0.4.36.dist-info/licenses/LICENSE +21 -0
|
@@ -0,0 +1,625 @@
|
|
|
1
|
+
"""Tool call response generation with JSON mode for structured outputs."""
|
|
2
|
+
|
|
3
|
+
import json
|
|
4
|
+
import uuid
|
|
5
|
+
from typing import TYPE_CHECKING
|
|
6
|
+
|
|
7
|
+
from pydantic import BaseModel, Field
|
|
8
|
+
|
|
9
|
+
from synkro.llm.client import LLM
|
|
10
|
+
from synkro.models import Model, OpenAI
|
|
11
|
+
from synkro.types.core import Scenario, Trace, Message
|
|
12
|
+
from synkro.types.tool import ToolCall, ToolFunction, ToolDefinition
|
|
13
|
+
from synkro.prompts.tool_templates import (
|
|
14
|
+
MULTI_TURN_TOOL_DECISION_PROMPT,
|
|
15
|
+
MULTI_TURN_TOOL_SYNTHESIS_PROMPT,
|
|
16
|
+
)
|
|
17
|
+
|
|
18
|
+
if TYPE_CHECKING:
|
|
19
|
+
from synkro.generation.tool_simulator import ToolSimulator
|
|
20
|
+
from synkro.generation.follow_ups import FollowUpGenerator
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
# =============================================================================
|
|
24
|
+
# Pydantic models for structured JSON output
|
|
25
|
+
# =============================================================================
|
|
26
|
+
|
|
27
|
+
class ToolCallRequest(BaseModel):
|
|
28
|
+
"""A single tool call request from the LLM."""
|
|
29
|
+
|
|
30
|
+
name: str = Field(description="Name of the tool to call")
|
|
31
|
+
arguments: str = Field(description="Arguments as a JSON string, e.g. '{\"query\": \"test\"}'")
|
|
32
|
+
|
|
33
|
+
def get_arguments_dict(self) -> dict:
|
|
34
|
+
"""Parse arguments JSON string to dict."""
|
|
35
|
+
return json.loads(self.arguments)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class ToolCallDecision(BaseModel):
|
|
39
|
+
"""
|
|
40
|
+
Structured output for the LLM's tool calling decision.
|
|
41
|
+
|
|
42
|
+
The LLM outputs this to indicate whether tools are needed
|
|
43
|
+
and which ones to call.
|
|
44
|
+
"""
|
|
45
|
+
|
|
46
|
+
needs_tool: bool = Field(
|
|
47
|
+
description="Whether a tool call is needed to answer the user's request"
|
|
48
|
+
)
|
|
49
|
+
reasoning: str = Field(
|
|
50
|
+
description="Brief explanation of why tool is/isn't needed"
|
|
51
|
+
)
|
|
52
|
+
tool_calls: list[ToolCallRequest] = Field(
|
|
53
|
+
default_factory=list,
|
|
54
|
+
description="List of tool calls to make (empty if needs_tool is False)"
|
|
55
|
+
)
|
|
56
|
+
direct_response: str | None = Field(
|
|
57
|
+
default=None,
|
|
58
|
+
description="Direct response if no tool is needed"
|
|
59
|
+
)
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
class FinalSynthesis(BaseModel):
|
|
63
|
+
"""Structured output for synthesizing tool results into a response."""
|
|
64
|
+
|
|
65
|
+
response: str = Field(
|
|
66
|
+
description="Natural response incorporating the tool results"
|
|
67
|
+
)
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
# =============================================================================
|
|
71
|
+
# Tool Call Response Generator
|
|
72
|
+
# =============================================================================
|
|
73
|
+
|
|
74
|
+
class ToolCallResponseGenerator:
|
|
75
|
+
"""
|
|
76
|
+
Generates tool call training traces using JSON mode for structured outputs.
|
|
77
|
+
|
|
78
|
+
Produces traces in OpenAI function calling format:
|
|
79
|
+
- system message with tool descriptions
|
|
80
|
+
- user message with request
|
|
81
|
+
- assistant message with tool_calls (or direct response)
|
|
82
|
+
- tool response messages
|
|
83
|
+
- final assistant message synthesizing results
|
|
84
|
+
|
|
85
|
+
Example:
|
|
86
|
+
>>> gen = ToolCallResponseGenerator(
|
|
87
|
+
... tools=[web_search_tool, db_tool],
|
|
88
|
+
... llm=LLM(model=OpenAI.GPT_4O),
|
|
89
|
+
... simulator=tool_simulator,
|
|
90
|
+
... )
|
|
91
|
+
>>> trace = await gen.generate_single(policy_text, scenario)
|
|
92
|
+
"""
|
|
93
|
+
|
|
94
|
+
def __init__(
|
|
95
|
+
self,
|
|
96
|
+
tools: list[ToolDefinition],
|
|
97
|
+
llm: LLM | None = None,
|
|
98
|
+
simulator: "ToolSimulator | None" = None,
|
|
99
|
+
model: Model = OpenAI.GPT_4O_MINI,
|
|
100
|
+
):
|
|
101
|
+
"""
|
|
102
|
+
Initialize the tool call response generator.
|
|
103
|
+
|
|
104
|
+
Args:
|
|
105
|
+
tools: List of available tool definitions
|
|
106
|
+
llm: LLM client to use (creates one if not provided)
|
|
107
|
+
simulator: Tool simulator for generating tool responses
|
|
108
|
+
model: Model to use if creating LLM
|
|
109
|
+
"""
|
|
110
|
+
self.tools = tools
|
|
111
|
+
self.tools_by_name = {t.name: t for t in tools}
|
|
112
|
+
self.llm = llm or LLM(model=model)
|
|
113
|
+
self.simulator = simulator
|
|
114
|
+
self._follow_up_gen: "FollowUpGenerator | None" = None
|
|
115
|
+
|
|
116
|
+
@property
|
|
117
|
+
def follow_up_generator(self) -> "FollowUpGenerator":
|
|
118
|
+
"""Lazy initialization of follow-up generator for multi-turn."""
|
|
119
|
+
if self._follow_up_gen is None:
|
|
120
|
+
from synkro.generation.follow_ups import FollowUpGenerator
|
|
121
|
+
self._follow_up_gen = FollowUpGenerator(llm=self.llm)
|
|
122
|
+
return self._follow_up_gen
|
|
123
|
+
|
|
124
|
+
def _get_tools_description(self) -> str:
|
|
125
|
+
"""Get formatted description of all tools for system prompt."""
|
|
126
|
+
descriptions = []
|
|
127
|
+
for tool in self.tools:
|
|
128
|
+
descriptions.append(tool.to_system_prompt())
|
|
129
|
+
return "\n\n".join(descriptions)
|
|
130
|
+
|
|
131
|
+
def _get_tools_json_schema(self) -> str:
|
|
132
|
+
"""Get JSON schema representation of tools."""
|
|
133
|
+
tools_json = [tool.to_openai_format() for tool in self.tools]
|
|
134
|
+
return json.dumps(tools_json, indent=2)
|
|
135
|
+
|
|
136
|
+
def _generate_call_id(self) -> str:
|
|
137
|
+
"""Generate a unique tool call ID."""
|
|
138
|
+
return f"call_{uuid.uuid4().hex[:12]}"
|
|
139
|
+
|
|
140
|
+
async def generate_single(
|
|
141
|
+
self,
|
|
142
|
+
policy_text: str,
|
|
143
|
+
scenario: Scenario,
|
|
144
|
+
target_turns: int = 1,
|
|
145
|
+
) -> Trace:
|
|
146
|
+
"""
|
|
147
|
+
Generate a single tool call trace.
|
|
148
|
+
|
|
149
|
+
Args:
|
|
150
|
+
policy_text: The policy/guidelines text
|
|
151
|
+
scenario: The scenario to respond to
|
|
152
|
+
target_turns: Number of conversation turns (1 for single-turn,
|
|
153
|
+
>1 for multi-turn with follow-up questions)
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
Trace with proper tool calling format
|
|
157
|
+
"""
|
|
158
|
+
if target_turns > 1:
|
|
159
|
+
return await self._generate_multi_turn(policy_text, scenario, target_turns)
|
|
160
|
+
|
|
161
|
+
# Single-turn generation
|
|
162
|
+
tools_desc = self._get_tools_description()
|
|
163
|
+
|
|
164
|
+
# Step 1: Get LLM decision on tool usage
|
|
165
|
+
decision = await self._get_tool_decision(policy_text, scenario, tools_desc)
|
|
166
|
+
|
|
167
|
+
# Step 2: Build the message sequence
|
|
168
|
+
messages = await self._build_message_sequence(
|
|
169
|
+
policy_text, scenario, tools_desc, decision
|
|
170
|
+
)
|
|
171
|
+
|
|
172
|
+
return Trace(messages=messages, scenario=scenario)
|
|
173
|
+
|
|
174
|
+
async def _get_tool_decision(
|
|
175
|
+
self,
|
|
176
|
+
policy_text: str,
|
|
177
|
+
scenario: Scenario,
|
|
178
|
+
tools_desc: str,
|
|
179
|
+
) -> ToolCallDecision:
|
|
180
|
+
"""
|
|
181
|
+
Get the LLM's decision on whether to use tools.
|
|
182
|
+
|
|
183
|
+
Uses JSON mode to force structured output.
|
|
184
|
+
"""
|
|
185
|
+
prompt = f"""You are a customer support agent deciding whether to use tools.
|
|
186
|
+
|
|
187
|
+
AVAILABLE TOOLS:
|
|
188
|
+
{tools_desc}
|
|
189
|
+
|
|
190
|
+
TOOL USAGE GUIDELINES:
|
|
191
|
+
{policy_text}
|
|
192
|
+
|
|
193
|
+
USER REQUEST:
|
|
194
|
+
{scenario.description}
|
|
195
|
+
|
|
196
|
+
CONTEXT:
|
|
197
|
+
{scenario.context}
|
|
198
|
+
|
|
199
|
+
Analyze this request and decide:
|
|
200
|
+
1. Does this require calling a tool, or can you answer directly?
|
|
201
|
+
2. If tools are needed, which ones and with what arguments?
|
|
202
|
+
3. If no tools needed, provide the direct response.
|
|
203
|
+
|
|
204
|
+
Important rules:
|
|
205
|
+
- Only call tools when necessary (don't call for information you already know)
|
|
206
|
+
- Use correct tool names and parameter types
|
|
207
|
+
- If multiple tools are needed, list them all
|
|
208
|
+
- Provide clear reasoning for your decision"""
|
|
209
|
+
|
|
210
|
+
return await self.llm.generate_structured(prompt, ToolCallDecision)
|
|
211
|
+
|
|
212
|
+
async def _build_message_sequence(
|
|
213
|
+
self,
|
|
214
|
+
policy_text: str,
|
|
215
|
+
scenario: Scenario,
|
|
216
|
+
tools_desc: str,
|
|
217
|
+
decision: ToolCallDecision,
|
|
218
|
+
) -> list[Message]:
|
|
219
|
+
"""Build the full message sequence based on the tool decision."""
|
|
220
|
+
messages = []
|
|
221
|
+
|
|
222
|
+
# System message with tool descriptions
|
|
223
|
+
system_content = f"""You are a helpful customer support agent. You have access to the following tools:
|
|
224
|
+
|
|
225
|
+
{tools_desc}
|
|
226
|
+
|
|
227
|
+
Follow the tool usage guidelines provided to assist customers effectively."""
|
|
228
|
+
|
|
229
|
+
messages.append(Message(role="system", content=system_content))
|
|
230
|
+
|
|
231
|
+
# User message
|
|
232
|
+
messages.append(Message(role="user", content=scenario.description))
|
|
233
|
+
|
|
234
|
+
if decision.needs_tool and decision.tool_calls:
|
|
235
|
+
# Assistant message with tool_calls
|
|
236
|
+
tool_calls = []
|
|
237
|
+
for tc in decision.tool_calls:
|
|
238
|
+
call_id = self._generate_call_id()
|
|
239
|
+
tool_calls.append(ToolCall(
|
|
240
|
+
id=call_id,
|
|
241
|
+
type="function",
|
|
242
|
+
function=ToolFunction(
|
|
243
|
+
name=tc.name,
|
|
244
|
+
arguments=tc.arguments # Already a JSON string
|
|
245
|
+
)
|
|
246
|
+
))
|
|
247
|
+
|
|
248
|
+
messages.append(Message(
|
|
249
|
+
role="assistant",
|
|
250
|
+
content=None,
|
|
251
|
+
tool_calls=tool_calls
|
|
252
|
+
))
|
|
253
|
+
|
|
254
|
+
# Tool response messages
|
|
255
|
+
tool_results = []
|
|
256
|
+
for tc in tool_calls:
|
|
257
|
+
result = await self._simulate_tool_call(tc)
|
|
258
|
+
tool_results.append(result)
|
|
259
|
+
|
|
260
|
+
messages.append(Message(
|
|
261
|
+
role="tool",
|
|
262
|
+
content=result,
|
|
263
|
+
tool_call_id=tc.id
|
|
264
|
+
))
|
|
265
|
+
|
|
266
|
+
# Final assistant message synthesizing results
|
|
267
|
+
final_response = await self._synthesize_response(
|
|
268
|
+
scenario.description, tool_calls, tool_results, policy_text
|
|
269
|
+
)
|
|
270
|
+
messages.append(Message(role="assistant", content=final_response))
|
|
271
|
+
|
|
272
|
+
else:
|
|
273
|
+
# Direct response without tools
|
|
274
|
+
response = decision.direct_response or await self._generate_direct_response(
|
|
275
|
+
policy_text, scenario, tools_desc
|
|
276
|
+
)
|
|
277
|
+
messages.append(Message(role="assistant", content=response))
|
|
278
|
+
|
|
279
|
+
return messages
|
|
280
|
+
|
|
281
|
+
async def _simulate_tool_call(self, tool_call: ToolCall) -> str:
|
|
282
|
+
"""Simulate a tool response."""
|
|
283
|
+
if self.simulator:
|
|
284
|
+
return await self.simulator.simulate(tool_call)
|
|
285
|
+
|
|
286
|
+
# Fallback: generate a mock response based on tool definition
|
|
287
|
+
tool_name = tool_call.function.name
|
|
288
|
+
if tool_name in self.tools_by_name:
|
|
289
|
+
tool = self.tools_by_name[tool_name]
|
|
290
|
+
if tool.mock_responses:
|
|
291
|
+
# Use a mock response
|
|
292
|
+
import random
|
|
293
|
+
return random.choice(tool.mock_responses)
|
|
294
|
+
|
|
295
|
+
# Default mock response
|
|
296
|
+
args = json.loads(tool_call.function.arguments)
|
|
297
|
+
return json.dumps({
|
|
298
|
+
"status": "success",
|
|
299
|
+
"result": f"Simulated response for {tool_name}",
|
|
300
|
+
"query": args
|
|
301
|
+
})
|
|
302
|
+
|
|
303
|
+
async def _synthesize_response(
|
|
304
|
+
self,
|
|
305
|
+
user_request: str,
|
|
306
|
+
tool_calls: list[ToolCall],
|
|
307
|
+
tool_results: list[str],
|
|
308
|
+
policy_text: str,
|
|
309
|
+
) -> str:
|
|
310
|
+
"""Synthesize a natural response from tool results."""
|
|
311
|
+
# Build context of tool calls and results
|
|
312
|
+
tools_context = []
|
|
313
|
+
for tc, result in zip(tool_calls, tool_results):
|
|
314
|
+
tools_context.append(f"Tool: {tc.function.name}")
|
|
315
|
+
tools_context.append(f"Arguments: {tc.function.arguments}")
|
|
316
|
+
tools_context.append(f"Result: {result}")
|
|
317
|
+
tools_context.append("")
|
|
318
|
+
|
|
319
|
+
prompt = f"""Based on the tool results, provide a helpful response to the user.
|
|
320
|
+
|
|
321
|
+
USER REQUEST:
|
|
322
|
+
{user_request}
|
|
323
|
+
|
|
324
|
+
TOOL RESULTS:
|
|
325
|
+
{chr(10).join(tools_context)}
|
|
326
|
+
|
|
327
|
+
GUIDELINES:
|
|
328
|
+
{policy_text}
|
|
329
|
+
|
|
330
|
+
Synthesize the tool results into a natural, helpful response.
|
|
331
|
+
- Incorporate the information from the tool results
|
|
332
|
+
- Don't expose raw JSON or technical details
|
|
333
|
+
- Be conversational and helpful
|
|
334
|
+
- If a tool returned an error, acknowledge it and offer alternatives"""
|
|
335
|
+
|
|
336
|
+
synthesis = await self.llm.generate_structured(prompt, FinalSynthesis)
|
|
337
|
+
return synthesis.response
|
|
338
|
+
|
|
339
|
+
async def _generate_direct_response(
|
|
340
|
+
self,
|
|
341
|
+
policy_text: str,
|
|
342
|
+
scenario: Scenario,
|
|
343
|
+
tools_desc: str,
|
|
344
|
+
) -> str:
|
|
345
|
+
"""Generate a direct response when no tools are needed."""
|
|
346
|
+
prompt = f"""Provide a helpful response to the user's request.
|
|
347
|
+
|
|
348
|
+
USER REQUEST:
|
|
349
|
+
{scenario.description}
|
|
350
|
+
|
|
351
|
+
CONTEXT:
|
|
352
|
+
{scenario.context}
|
|
353
|
+
|
|
354
|
+
GUIDELINES:
|
|
355
|
+
{policy_text}
|
|
356
|
+
|
|
357
|
+
Note: No tools are needed for this request. Provide a direct, helpful response
|
|
358
|
+
based on your knowledge and the guidelines."""
|
|
359
|
+
|
|
360
|
+
synthesis = await self.llm.generate_structured(prompt, FinalSynthesis)
|
|
361
|
+
return synthesis.response
|
|
362
|
+
|
|
363
|
+
# =========================================================================
|
|
364
|
+
# MULTI-TURN TOOL CALLING
|
|
365
|
+
# =========================================================================
|
|
366
|
+
|
|
367
|
+
async def _generate_multi_turn(
|
|
368
|
+
self,
|
|
369
|
+
policy_text: str,
|
|
370
|
+
scenario: Scenario,
|
|
371
|
+
target_turns: int,
|
|
372
|
+
) -> Trace:
|
|
373
|
+
"""
|
|
374
|
+
Generate multi-turn tool call trace.
|
|
375
|
+
|
|
376
|
+
Each turn can independently decide if new tool calls are needed
|
|
377
|
+
based on the follow-up question and conversation history.
|
|
378
|
+
|
|
379
|
+
Args:
|
|
380
|
+
policy_text: The policy/guidelines text
|
|
381
|
+
scenario: The initial scenario to respond to
|
|
382
|
+
target_turns: Number of conversation turns
|
|
383
|
+
|
|
384
|
+
Returns:
|
|
385
|
+
Trace with multi-turn tool calling conversation
|
|
386
|
+
"""
|
|
387
|
+
tools_desc = self._get_tools_description()
|
|
388
|
+
|
|
389
|
+
# Step 1: Generate initial response (Turn 1)
|
|
390
|
+
decision = await self._get_tool_decision(policy_text, scenario, tools_desc)
|
|
391
|
+
messages = await self._build_message_sequence(
|
|
392
|
+
policy_text, scenario, tools_desc, decision
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
# Step 2: Generate follow-up turns
|
|
396
|
+
for turn in range(1, target_turns):
|
|
397
|
+
# Generate follow-up question based on conversation so far
|
|
398
|
+
follow_up = await self.follow_up_generator.generate(
|
|
399
|
+
policy_text=policy_text,
|
|
400
|
+
messages=messages,
|
|
401
|
+
turn_index=turn,
|
|
402
|
+
)
|
|
403
|
+
|
|
404
|
+
# Add user message with follow-up question
|
|
405
|
+
messages.append(Message(role="user", content=follow_up.question))
|
|
406
|
+
|
|
407
|
+
# Get tool decision for this follow-up
|
|
408
|
+
follow_up_decision = await self._get_follow_up_tool_decision(
|
|
409
|
+
policy_text=policy_text,
|
|
410
|
+
messages=messages,
|
|
411
|
+
follow_up_question=follow_up.question,
|
|
412
|
+
tools_desc=tools_desc,
|
|
413
|
+
)
|
|
414
|
+
|
|
415
|
+
# Build response for this turn (may include new tool calls)
|
|
416
|
+
turn_messages = await self._build_follow_up_message_sequence(
|
|
417
|
+
policy_text=policy_text,
|
|
418
|
+
messages=messages,
|
|
419
|
+
follow_up_question=follow_up.question,
|
|
420
|
+
tools_desc=tools_desc,
|
|
421
|
+
decision=follow_up_decision,
|
|
422
|
+
)
|
|
423
|
+
|
|
424
|
+
# Extend conversation with this turn's messages
|
|
425
|
+
messages.extend(turn_messages)
|
|
426
|
+
|
|
427
|
+
return Trace(messages=messages, scenario=scenario)
|
|
428
|
+
|
|
429
|
+
def _format_conversation_with_tools(self, messages: list[Message]) -> str:
|
|
430
|
+
"""
|
|
431
|
+
Format conversation including tool calls and results.
|
|
432
|
+
|
|
433
|
+
This provides context for follow-up tool decisions so the LLM knows:
|
|
434
|
+
- What tools were already called
|
|
435
|
+
- What results were obtained
|
|
436
|
+
- What information is already available
|
|
437
|
+
"""
|
|
438
|
+
formatted = []
|
|
439
|
+
for msg in messages:
|
|
440
|
+
role = msg.role.upper()
|
|
441
|
+
|
|
442
|
+
if msg.role == "assistant" and msg.tool_calls:
|
|
443
|
+
# Format assistant message with tool calls
|
|
444
|
+
tool_strs = []
|
|
445
|
+
for tc in msg.tool_calls:
|
|
446
|
+
if hasattr(tc, "function"):
|
|
447
|
+
tool_strs.append(
|
|
448
|
+
f" - {tc.function.name}({tc.function.arguments})"
|
|
449
|
+
)
|
|
450
|
+
elif isinstance(tc, dict) and "function" in tc:
|
|
451
|
+
func = tc["function"]
|
|
452
|
+
tool_strs.append(
|
|
453
|
+
f" - {func.get('name', 'unknown')}({func.get('arguments', '{}')})"
|
|
454
|
+
)
|
|
455
|
+
else:
|
|
456
|
+
tool_strs.append(f" - {tc}")
|
|
457
|
+
formatted.append(f"ASSISTANT: [Tool Calls]\n" + "\n".join(tool_strs))
|
|
458
|
+
elif msg.role == "tool":
|
|
459
|
+
# Format tool response
|
|
460
|
+
formatted.append(f"TOOL RESULT [{msg.tool_call_id}]: {msg.content}")
|
|
461
|
+
else:
|
|
462
|
+
content = msg.content or "[No content]"
|
|
463
|
+
formatted.append(f"{role}: {content}")
|
|
464
|
+
|
|
465
|
+
return "\n\n".join(formatted)
|
|
466
|
+
|
|
467
|
+
async def _get_follow_up_tool_decision(
|
|
468
|
+
self,
|
|
469
|
+
policy_text: str,
|
|
470
|
+
messages: list[Message],
|
|
471
|
+
follow_up_question: str,
|
|
472
|
+
tools_desc: str,
|
|
473
|
+
) -> ToolCallDecision:
|
|
474
|
+
"""
|
|
475
|
+
Get tool decision for a follow-up question with full conversation context.
|
|
476
|
+
|
|
477
|
+
The LLM can see previous tool calls and results to decide if new
|
|
478
|
+
tools are needed or if existing results can answer the follow-up.
|
|
479
|
+
"""
|
|
480
|
+
conversation_history = self._format_conversation_with_tools(messages)
|
|
481
|
+
|
|
482
|
+
prompt = MULTI_TURN_TOOL_DECISION_PROMPT.format(
|
|
483
|
+
tools_desc=tools_desc,
|
|
484
|
+
policy_text=policy_text,
|
|
485
|
+
conversation_history=conversation_history,
|
|
486
|
+
follow_up_question=follow_up_question,
|
|
487
|
+
)
|
|
488
|
+
|
|
489
|
+
return await self.llm.generate_structured(prompt, ToolCallDecision)
|
|
490
|
+
|
|
491
|
+
async def _build_follow_up_message_sequence(
|
|
492
|
+
self,
|
|
493
|
+
policy_text: str,
|
|
494
|
+
messages: list[Message],
|
|
495
|
+
follow_up_question: str,
|
|
496
|
+
tools_desc: str,
|
|
497
|
+
decision: ToolCallDecision,
|
|
498
|
+
) -> list[Message]:
|
|
499
|
+
"""
|
|
500
|
+
Build message sequence for a follow-up turn.
|
|
501
|
+
|
|
502
|
+
Returns only the new messages for this turn (not the full conversation).
|
|
503
|
+
May include: assistant with tool_calls, tool responses, final assistant.
|
|
504
|
+
Or just: assistant with direct response.
|
|
505
|
+
"""
|
|
506
|
+
new_messages = []
|
|
507
|
+
|
|
508
|
+
if decision.needs_tool and decision.tool_calls:
|
|
509
|
+
# Assistant message with new tool_calls
|
|
510
|
+
tool_calls = []
|
|
511
|
+
for tc in decision.tool_calls:
|
|
512
|
+
call_id = self._generate_call_id()
|
|
513
|
+
tool_calls.append(
|
|
514
|
+
ToolCall(
|
|
515
|
+
id=call_id,
|
|
516
|
+
type="function",
|
|
517
|
+
function=ToolFunction(
|
|
518
|
+
name=tc.name,
|
|
519
|
+
arguments=tc.arguments,
|
|
520
|
+
),
|
|
521
|
+
)
|
|
522
|
+
)
|
|
523
|
+
|
|
524
|
+
new_messages.append(
|
|
525
|
+
Message(role="assistant", content=None, tool_calls=tool_calls)
|
|
526
|
+
)
|
|
527
|
+
|
|
528
|
+
# Tool response messages
|
|
529
|
+
tool_results = []
|
|
530
|
+
for tc in tool_calls:
|
|
531
|
+
result = await self._simulate_tool_call(tc)
|
|
532
|
+
tool_results.append(result)
|
|
533
|
+
new_messages.append(
|
|
534
|
+
Message(role="tool", content=result, tool_call_id=tc.id)
|
|
535
|
+
)
|
|
536
|
+
|
|
537
|
+
# Final assistant message synthesizing new results
|
|
538
|
+
final_response = await self._synthesize_follow_up_response(
|
|
539
|
+
policy_text=policy_text,
|
|
540
|
+
messages=messages,
|
|
541
|
+
follow_up_question=follow_up_question,
|
|
542
|
+
tool_calls=tool_calls,
|
|
543
|
+
tool_results=tool_results,
|
|
544
|
+
)
|
|
545
|
+
new_messages.append(Message(role="assistant", content=final_response))
|
|
546
|
+
|
|
547
|
+
else:
|
|
548
|
+
# Direct response without new tools
|
|
549
|
+
if decision.direct_response:
|
|
550
|
+
response = decision.direct_response
|
|
551
|
+
else:
|
|
552
|
+
# Generate response using existing context
|
|
553
|
+
response = await self._synthesize_follow_up_response(
|
|
554
|
+
policy_text=policy_text,
|
|
555
|
+
messages=messages,
|
|
556
|
+
follow_up_question=follow_up_question,
|
|
557
|
+
tool_calls=[],
|
|
558
|
+
tool_results=[],
|
|
559
|
+
)
|
|
560
|
+
new_messages.append(Message(role="assistant", content=response))
|
|
561
|
+
|
|
562
|
+
return new_messages
|
|
563
|
+
|
|
564
|
+
async def _synthesize_follow_up_response(
|
|
565
|
+
self,
|
|
566
|
+
policy_text: str,
|
|
567
|
+
messages: list[Message],
|
|
568
|
+
follow_up_question: str,
|
|
569
|
+
tool_calls: list[ToolCall],
|
|
570
|
+
tool_results: list[str],
|
|
571
|
+
) -> str:
|
|
572
|
+
"""Synthesize response for a follow-up turn."""
|
|
573
|
+
conversation_history = self._format_conversation_with_tools(messages)
|
|
574
|
+
|
|
575
|
+
# Format new tool results if any
|
|
576
|
+
if tool_calls and tool_results:
|
|
577
|
+
new_tool_results = []
|
|
578
|
+
for tc, result in zip(tool_calls, tool_results):
|
|
579
|
+
new_tool_results.append(f"Tool: {tc.function.name}")
|
|
580
|
+
new_tool_results.append(f"Arguments: {tc.function.arguments}")
|
|
581
|
+
new_tool_results.append(f"Result: {result}")
|
|
582
|
+
new_tool_results.append("")
|
|
583
|
+
new_results_str = "\n".join(new_tool_results)
|
|
584
|
+
else:
|
|
585
|
+
new_results_str = "None (using existing information from conversation)"
|
|
586
|
+
|
|
587
|
+
prompt = MULTI_TURN_TOOL_SYNTHESIS_PROMPT.format(
|
|
588
|
+
conversation_history=conversation_history,
|
|
589
|
+
follow_up_question=follow_up_question,
|
|
590
|
+
new_tool_results=new_results_str,
|
|
591
|
+
policy_text=policy_text,
|
|
592
|
+
)
|
|
593
|
+
|
|
594
|
+
synthesis = await self.llm.generate_structured(prompt, FinalSynthesis)
|
|
595
|
+
return synthesis.response
|
|
596
|
+
|
|
597
|
+
async def generate(
|
|
598
|
+
self,
|
|
599
|
+
policy_text: str,
|
|
600
|
+
scenarios: list[Scenario],
|
|
601
|
+
) -> list[Trace]:
|
|
602
|
+
"""
|
|
603
|
+
Generate traces for multiple scenarios.
|
|
604
|
+
|
|
605
|
+
Args:
|
|
606
|
+
policy_text: The policy/guidelines text
|
|
607
|
+
scenarios: List of scenarios to respond to
|
|
608
|
+
|
|
609
|
+
Returns:
|
|
610
|
+
List of traces with tool calling format
|
|
611
|
+
"""
|
|
612
|
+
traces = []
|
|
613
|
+
for scenario in scenarios:
|
|
614
|
+
trace = await self.generate_single(policy_text, scenario)
|
|
615
|
+
traces.append(trace)
|
|
616
|
+
return traces
|
|
617
|
+
|
|
618
|
+
|
|
619
|
+
__all__ = [
|
|
620
|
+
"ToolCallResponseGenerator",
|
|
621
|
+
"ToolCallDecision",
|
|
622
|
+
"ToolCallRequest",
|
|
623
|
+
"FinalSynthesis",
|
|
624
|
+
]
|
|
625
|
+
|