synapse-sdk 2025.9.5__py3-none-any.whl → 2025.10.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of synapse-sdk might be problematic. Click here for more details.
- synapse_sdk/clients/base.py +129 -9
- synapse_sdk/devtools/docs/docs/api/clients/base.md +230 -8
- synapse_sdk/devtools/docs/docs/api/plugins/models.md +58 -3
- synapse_sdk/devtools/docs/docs/plugins/categories/neural-net-plugins/train-action-overview.md +663 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/pre-annotation-plugins/pre-annotation-plugin-overview.md +198 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/pre-annotation-plugins/to-task-action-development.md +1645 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/pre-annotation-plugins/to-task-overview.md +717 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/pre-annotation-plugins/to-task-template-development.md +1380 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/upload-plugins/upload-plugin-action.md +934 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/upload-plugins/upload-plugin-overview.md +585 -0
- synapse_sdk/devtools/docs/docs/plugins/categories/upload-plugins/upload-plugin-template.md +715 -0
- synapse_sdk/devtools/docs/docs/plugins/export-plugins.md +39 -0
- synapse_sdk/devtools/docs/docs/plugins/plugins.md +12 -5
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/api/clients/base.md +230 -8
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/api/plugins/models.md +114 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/neural-net-plugins/train-action-overview.md +621 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/pre-annotation-plugins/pre-annotation-plugin-overview.md +198 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/pre-annotation-plugins/to-task-action-development.md +1645 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/pre-annotation-plugins/to-task-overview.md +717 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/pre-annotation-plugins/to-task-template-development.md +1380 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/upload-plugins/upload-plugin-action.md +934 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/upload-plugins/upload-plugin-overview.md +585 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/categories/upload-plugins/upload-plugin-template.md +715 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/export-plugins.md +39 -0
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current.json +16 -4
- synapse_sdk/devtools/docs/sidebars.ts +45 -1
- synapse_sdk/plugins/README.md +487 -80
- synapse_sdk/plugins/categories/base.py +1 -0
- synapse_sdk/plugins/categories/export/actions/export/action.py +8 -3
- synapse_sdk/plugins/categories/export/actions/export/utils.py +108 -8
- synapse_sdk/plugins/categories/export/templates/config.yaml +18 -0
- synapse_sdk/plugins/categories/export/templates/plugin/export.py +97 -0
- synapse_sdk/plugins/categories/neural_net/actions/train.py +592 -22
- synapse_sdk/plugins/categories/neural_net/actions/tune.py +150 -3
- synapse_sdk/plugins/categories/pre_annotation/actions/__init__.py +4 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/pre_annotation/__init__.py +3 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/pre_annotation/action.py +10 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/__init__.py +28 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/action.py +145 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/enums.py +269 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/exceptions.py +14 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/factory.py +76 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/models.py +97 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/orchestrator.py +250 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/run.py +64 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/__init__.py +17 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/annotation.py +284 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/base.py +170 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/extraction.py +83 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/metrics.py +87 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/preprocessor.py +127 -0
- synapse_sdk/plugins/categories/pre_annotation/actions/to_task/strategies/validation.py +143 -0
- synapse_sdk/plugins/categories/upload/actions/upload/__init__.py +2 -1
- synapse_sdk/plugins/categories/upload/actions/upload/action.py +8 -1
- synapse_sdk/plugins/categories/upload/actions/upload/context.py +0 -1
- synapse_sdk/plugins/categories/upload/actions/upload/models.py +134 -94
- synapse_sdk/plugins/categories/upload/actions/upload/steps/cleanup.py +2 -2
- synapse_sdk/plugins/categories/upload/actions/upload/steps/generate.py +6 -2
- synapse_sdk/plugins/categories/upload/actions/upload/steps/initialize.py +24 -9
- synapse_sdk/plugins/categories/upload/actions/upload/steps/metadata.py +130 -18
- synapse_sdk/plugins/categories/upload/actions/upload/steps/organize.py +147 -37
- synapse_sdk/plugins/categories/upload/actions/upload/steps/upload.py +10 -5
- synapse_sdk/plugins/categories/upload/actions/upload/strategies/file_discovery/flat.py +31 -6
- synapse_sdk/plugins/categories/upload/actions/upload/strategies/file_discovery/recursive.py +65 -37
- synapse_sdk/plugins/categories/upload/actions/upload/strategies/validation/default.py +17 -2
- synapse_sdk/plugins/categories/upload/templates/README.md +394 -0
- synapse_sdk/plugins/models.py +62 -0
- synapse_sdk/utils/file/download.py +261 -0
- {synapse_sdk-2025.9.5.dist-info → synapse_sdk-2025.10.6.dist-info}/METADATA +15 -2
- {synapse_sdk-2025.9.5.dist-info → synapse_sdk-2025.10.6.dist-info}/RECORD +74 -43
- synapse_sdk/devtools/docs/docs/plugins/developing-upload-template.md +0 -1463
- synapse_sdk/devtools/docs/docs/plugins/upload-plugins.md +0 -1964
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/developing-upload-template.md +0 -1463
- synapse_sdk/devtools/docs/i18n/ko/docusaurus-plugin-content-docs/current/plugins/upload-plugins.md +0 -2077
- {synapse_sdk-2025.9.5.dist-info → synapse_sdk-2025.10.6.dist-info}/WHEEL +0 -0
- {synapse_sdk-2025.9.5.dist-info → synapse_sdk-2025.10.6.dist-info}/entry_points.txt +0 -0
- {synapse_sdk-2025.9.5.dist-info → synapse_sdk-2025.10.6.dist-info}/licenses/LICENSE +0 -0
- {synapse_sdk-2025.9.5.dist-info → synapse_sdk-2025.10.6.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,621 @@
|
|
|
1
|
+
---
|
|
2
|
+
id: train-action-overview
|
|
3
|
+
title: Train 액션 개요
|
|
4
|
+
sidebar_position: 1
|
|
5
|
+
---
|
|
6
|
+
|
|
7
|
+
# Train 액션 개요
|
|
8
|
+
|
|
9
|
+
Train 액션은 단일 인터페이스를 통해 모델 학습과 하이퍼파라미터 최적화(HPO)를 모두 제공하는 통합 기능입니다. 일반 학습 워크플로우와 Ray Tune 통합을 통한 고급 하이퍼파라미터 튜닝을 지원합니다.
|
|
10
|
+
|
|
11
|
+
## 빠른 개요
|
|
12
|
+
|
|
13
|
+
**카테고리:** Neural Net
|
|
14
|
+
**사용 가능한 액션:** `train`
|
|
15
|
+
**실행 방식:** 작업 기반 실행
|
|
16
|
+
**모드:** 학습 모드 및 하이퍼파라미터 튜닝 모드
|
|
17
|
+
|
|
18
|
+
## 주요 기능
|
|
19
|
+
|
|
20
|
+
- **통합 인터페이스**: 학습과 하이퍼파라미터 튜닝을 위한 단일 액션
|
|
21
|
+
- **유연한 하이퍼파라미터**: 고정된 구조 없음 - 플러그인이 자체 하이퍼파라미터 스키마 정의
|
|
22
|
+
- **Ray Tune 통합**: 다양한 검색 알고리즘과 스케줄러를 통한 고급 HPO
|
|
23
|
+
- **자동 시행 추적**: 튜닝 중 로그에 자동으로 trial ID 주입
|
|
24
|
+
- **리소스 관리**: 시행당 CPU/GPU 할당 구성 가능
|
|
25
|
+
- **최적 모델 선택**: 튜닝 후 자동으로 최적 모델 체크포인트 선택
|
|
26
|
+
- **진행 상황 추적**: 학습/튜닝 단계별 실시간 진행 상황 업데이트
|
|
27
|
+
|
|
28
|
+
## 모드
|
|
29
|
+
|
|
30
|
+
### 학습 모드 (기본값)
|
|
31
|
+
|
|
32
|
+
고정된 하이퍼파라미터를 사용한 표준 모델 학습.
|
|
33
|
+
|
|
34
|
+
```json
|
|
35
|
+
{
|
|
36
|
+
"action": "train",
|
|
37
|
+
"params": {
|
|
38
|
+
"name": "my_model",
|
|
39
|
+
"dataset": 123,
|
|
40
|
+
"checkpoint": null,
|
|
41
|
+
"is_tune": false,
|
|
42
|
+
"hyperparameter": {
|
|
43
|
+
"epochs": 100,
|
|
44
|
+
"batch_size": 32,
|
|
45
|
+
"learning_rate": 0.001,
|
|
46
|
+
"optimizer": "adam"
|
|
47
|
+
}
|
|
48
|
+
}
|
|
49
|
+
}
|
|
50
|
+
```
|
|
51
|
+
|
|
52
|
+
### 하이퍼파라미터 튜닝 모드
|
|
53
|
+
|
|
54
|
+
Ray Tune을 사용한 하이퍼파라미터 최적화.
|
|
55
|
+
|
|
56
|
+
```json
|
|
57
|
+
{
|
|
58
|
+
"action": "train",
|
|
59
|
+
"params": {
|
|
60
|
+
"name": "my_tuning_job",
|
|
61
|
+
"dataset": 123,
|
|
62
|
+
"checkpoint": null,
|
|
63
|
+
"is_tune": true,
|
|
64
|
+
"hyperparameters": [
|
|
65
|
+
{
|
|
66
|
+
"batch_size": { "type": "choice", "values": [16, 32, 64] },
|
|
67
|
+
"learning_rate": { "type": "loguniform", "min": 0.0001, "max": 0.01 },
|
|
68
|
+
"optimizer": { "type": "choice", "values": ["adam", "sgd"] }
|
|
69
|
+
}
|
|
70
|
+
],
|
|
71
|
+
"tune_config": {
|
|
72
|
+
"mode": "max",
|
|
73
|
+
"metric": "accuracy",
|
|
74
|
+
"num_samples": 10,
|
|
75
|
+
"max_concurrent_trials": 2
|
|
76
|
+
}
|
|
77
|
+
}
|
|
78
|
+
}
|
|
79
|
+
```
|
|
80
|
+
|
|
81
|
+
## 구성 매개변수
|
|
82
|
+
|
|
83
|
+
### 공통 매개변수 (두 모드 모두)
|
|
84
|
+
|
|
85
|
+
| 매개변수 | 타입 | 필수 여부 | 설명 |
|
|
86
|
+
| ------------ | ------------- | --------- | ---------------------------------- |
|
|
87
|
+
| `name` | `str` | 예 | 학습/튜닝 작업 이름 |
|
|
88
|
+
| `dataset` | `int` | 예 | 데이터셋 ID |
|
|
89
|
+
| `checkpoint` | `int \| None` | 아니오 | 학습 재개를 위한 체크포인트 ID |
|
|
90
|
+
| `is_tune` | `bool` | 아니오 | 튜닝 모드 활성화 (기본값: `false`) |
|
|
91
|
+
| `num_cpus` | `float` | 아니오 | 시행당 CPU 리소스 (튜닝 전용) |
|
|
92
|
+
| `num_gpus` | `float` | 아니오 | 시행당 GPU 리소스 (튜닝 전용) |
|
|
93
|
+
|
|
94
|
+
### 학습 모드 매개변수 (`is_tune=false`)
|
|
95
|
+
|
|
96
|
+
| 매개변수 | 타입 | 필수 여부 | 설명 |
|
|
97
|
+
| ---------------- | ------ | --------- | ------------------------------- |
|
|
98
|
+
| `hyperparameter` | `dict` | 예 | 학습을 위한 고정 하이퍼파라미터 |
|
|
99
|
+
|
|
100
|
+
**참고**: `hyperparameter`의 구조는 완전히 유연하며 플러그인에서 정의합니다. 일반적인 필드는 다음과 같습니다:
|
|
101
|
+
|
|
102
|
+
- `epochs`: 학습 에폭 수
|
|
103
|
+
- `batch_size`: 학습 배치 크기
|
|
104
|
+
- `learning_rate`: 학습률
|
|
105
|
+
- `optimizer`: 옵티마이저 타입 (adam, sgd 등)
|
|
106
|
+
- 플러그인에 필요한 모든 사용자 정의 필드 (예: `dropout_rate`, `weight_decay`, `image_size`)
|
|
107
|
+
|
|
108
|
+
### 튜닝 모드 매개변수 (`is_tune=true`)
|
|
109
|
+
|
|
110
|
+
| 매개변수 | 타입 | 필수 여부 | 설명 |
|
|
111
|
+
| ----------------- | ------ | --------- | ----------------------------- |
|
|
112
|
+
| `hyperparameters` | `list` | 예 | 하이퍼파라미터 검색 공간 목록 |
|
|
113
|
+
| `tune_config` | `dict` | 예 | Ray Tune 구성 |
|
|
114
|
+
|
|
115
|
+
## 하이퍼파라미터 검색 공간
|
|
116
|
+
|
|
117
|
+
튜닝을 위한 하이퍼파라미터 분포 정의:
|
|
118
|
+
|
|
119
|
+
### 연속 분포
|
|
120
|
+
|
|
121
|
+
```python
|
|
122
|
+
{
|
|
123
|
+
"learning_rate": {
|
|
124
|
+
"type": "uniform", # 균등 분포
|
|
125
|
+
"min": 0.0001,
|
|
126
|
+
"max": 0.01
|
|
127
|
+
},
|
|
128
|
+
"dropout_rate": {
|
|
129
|
+
"type": "loguniform", # 로그 균등 분포
|
|
130
|
+
"min": 0.0001,
|
|
131
|
+
"max": 0.1
|
|
132
|
+
}
|
|
133
|
+
}
|
|
134
|
+
```
|
|
135
|
+
|
|
136
|
+
### 이산 분포
|
|
137
|
+
|
|
138
|
+
```python
|
|
139
|
+
{
|
|
140
|
+
"batch_size": {
|
|
141
|
+
"type": "choice", # 목록에서 선택
|
|
142
|
+
"values": [16, 32, 64, 128]
|
|
143
|
+
},
|
|
144
|
+
"optimizer": {
|
|
145
|
+
"type": "choice",
|
|
146
|
+
"values": ["adam", "sgd", "rmsprop"]
|
|
147
|
+
}
|
|
148
|
+
}
|
|
149
|
+
```
|
|
150
|
+
|
|
151
|
+
### 양자화 분포
|
|
152
|
+
|
|
153
|
+
```python
|
|
154
|
+
{
|
|
155
|
+
"learning_rate": {
|
|
156
|
+
"type": "quniform", # 양자화된 균등 분포
|
|
157
|
+
"min": 0.0001,
|
|
158
|
+
"max": 0.01,
|
|
159
|
+
"q": 0.0001
|
|
160
|
+
}
|
|
161
|
+
}
|
|
162
|
+
```
|
|
163
|
+
|
|
164
|
+
### 지원되는 분포 타입
|
|
165
|
+
|
|
166
|
+
각 하이퍼파라미터 타입은 특정 파라미터가 필요합니다:
|
|
167
|
+
|
|
168
|
+
| 타입 | 필수 파라미터 | 설명 | 예시 |
|
|
169
|
+
| ------------- | -------------------- | -------------------------- | ------------------------------------------------------------------------------- |
|
|
170
|
+
| `uniform` | `min`, `max` | min과 max 사이의 균등 분포 | `{"name": "lr", "type": "uniform", "min": 0.0001, "max": 0.01}` |
|
|
171
|
+
| `quniform` | `min`, `max` | 양자화된 균등 분포 | `{"name": "lr", "type": "quniform", "min": 0.0001, "max": 0.01}` |
|
|
172
|
+
| `loguniform` | `min`, `max`, `base` | 로그 균등 분포 | `{"name": "lr", "type": "loguniform", "min": 0.0001, "max": 0.01, "base": 10}` |
|
|
173
|
+
| `qloguniform` | `min`, `max`, `base` | 양자화된 로그 균등 분포 | `{"name": "lr", "type": "qloguniform", "min": 0.0001, "max": 0.01, "base": 10}` |
|
|
174
|
+
| `randn` | `mean`, `sd` | 정규(가우시안) 분포 | `{"name": "noise", "type": "randn", "mean": 0.0, "sd": 1.0}` |
|
|
175
|
+
| `qrandn` | `mean`, `sd` | 양자화된 정규 분포 | `{"name": "noise", "type": "qrandn", "mean": 0.0, "sd": 1.0}` |
|
|
176
|
+
| `randint` | `min`, `max` | min과 max 사이의 랜덤 정수 | `{"name": "epochs", "type": "randint", "min": 5, "max": 15}` |
|
|
177
|
+
| `qrandint` | `min`, `max` | 양자화된 랜덤 정수 | `{"name": "epochs", "type": "qrandint", "min": 5, "max": 15}` |
|
|
178
|
+
| `lograndint` | `min`, `max`, `base` | 로그 랜덤 정수 | `{"name": "units", "type": "lograndint", "min": 16, "max": 256, "base": 2}` |
|
|
179
|
+
| `qlograndint` | `min`, `max`, `base` | 양자화된 로그 랜덤 정수 | `{"name": "units", "type": "qlograndint", "min": 16, "max": 256, "base": 2}` |
|
|
180
|
+
| `choice` | `options` | 값 목록에서 선택 | `{"name": "optimizer", "type": "choice", "options": ["adam", "sgd"]}` |
|
|
181
|
+
| `grid_search` | `options` | 모든 값에 대한 그리드 검색 | `{"name": "batch_size", "type": "grid_search", "options": [16, 32, 64]}` |
|
|
182
|
+
|
|
183
|
+
**중요 참고사항:**
|
|
184
|
+
|
|
185
|
+
- 모든 하이퍼파라미터는 `name`과 `type` 필드를 포함해야 합니다
|
|
186
|
+
- `loguniform`, `qloguniform`, `lograndint`, `qlograndint`의 경우: `base` 파라미터가 필수입니다 (일반적으로 10 또는 2)
|
|
187
|
+
- `choice` 및 `grid_search`의 경우: `options` 사용 (`values` 아님)
|
|
188
|
+
- 범위 기반 타입의 경우: `min` 및 `max` 사용 (`lower` 및 `upper` 아님)
|
|
189
|
+
|
|
190
|
+
## Tune 구성
|
|
191
|
+
|
|
192
|
+
### 기본 구성
|
|
193
|
+
|
|
194
|
+
```python
|
|
195
|
+
{
|
|
196
|
+
"mode": "max", # "max" 또는 "min"
|
|
197
|
+
"metric": "accuracy", # 최적화할 메트릭
|
|
198
|
+
"num_samples": 10, # 시행 횟수
|
|
199
|
+
"max_concurrent_trials": 2 # 병렬 시행 수
|
|
200
|
+
}
|
|
201
|
+
```
|
|
202
|
+
|
|
203
|
+
### 검색 알고리즘 포함
|
|
204
|
+
|
|
205
|
+
```python
|
|
206
|
+
{
|
|
207
|
+
"mode": "max",
|
|
208
|
+
"metric": "accuracy",
|
|
209
|
+
"num_samples": 20,
|
|
210
|
+
"max_concurrent_trials": 4,
|
|
211
|
+
"search_alg": {
|
|
212
|
+
"name": "OptunaSearch", # 검색 알고리즘
|
|
213
|
+
"points_to_evaluate": [ # 선택적 초기 포인트
|
|
214
|
+
{
|
|
215
|
+
"learning_rate": 0.001,
|
|
216
|
+
"batch_size": 32
|
|
217
|
+
}
|
|
218
|
+
]
|
|
219
|
+
}
|
|
220
|
+
}
|
|
221
|
+
```
|
|
222
|
+
|
|
223
|
+
### 스케줄러 포함
|
|
224
|
+
|
|
225
|
+
```python
|
|
226
|
+
{
|
|
227
|
+
"mode": "max",
|
|
228
|
+
"metric": "accuracy",
|
|
229
|
+
"num_samples": 50,
|
|
230
|
+
"max_concurrent_trials": 8,
|
|
231
|
+
"scheduler": {
|
|
232
|
+
"name": "ASHA", # 스케줄러 타입
|
|
233
|
+
"options": {
|
|
234
|
+
"grace_period": 10,
|
|
235
|
+
"max_t": 100
|
|
236
|
+
}
|
|
237
|
+
}
|
|
238
|
+
}
|
|
239
|
+
```
|
|
240
|
+
|
|
241
|
+
### 지원되는 검색 알고리즘
|
|
242
|
+
|
|
243
|
+
- `basicvariantgenerator` - 랜덤 검색 (기본값)
|
|
244
|
+
- `bayesoptsearch` - 베이지안 최적화
|
|
245
|
+
- `hyperoptsearch` - Tree-structured Parzen Estimator
|
|
246
|
+
|
|
247
|
+
### 지원되는 스케줄러
|
|
248
|
+
|
|
249
|
+
- `fifo` - First-in-first-out (기본값)
|
|
250
|
+
- `hyperband` - HyperBand 스케줄러
|
|
251
|
+
|
|
252
|
+
## 플러그인 개발
|
|
253
|
+
|
|
254
|
+
### 학습 모드용
|
|
255
|
+
|
|
256
|
+
플러그인에서 `train()` 함수 구현:
|
|
257
|
+
|
|
258
|
+
```python
|
|
259
|
+
def train(run, dataset, hyperparameter, checkpoint, **kwargs):
|
|
260
|
+
"""
|
|
261
|
+
모델 학습 함수.
|
|
262
|
+
|
|
263
|
+
Args:
|
|
264
|
+
run: 로깅을 위한 TrainRun 객체
|
|
265
|
+
dataset: Dataset 객체
|
|
266
|
+
hyperparameter: 하이퍼파라미터가 포함된 dict
|
|
267
|
+
checkpoint: 재개를 위한 선택적 체크포인트
|
|
268
|
+
"""
|
|
269
|
+
# 하이퍼파라미터 접근
|
|
270
|
+
epochs = hyperparameter['epochs']
|
|
271
|
+
batch_size = hyperparameter['batch_size']
|
|
272
|
+
learning_rate = hyperparameter['learning_rate']
|
|
273
|
+
|
|
274
|
+
# 학습 루프
|
|
275
|
+
for epoch in range(epochs):
|
|
276
|
+
# 한 에폭 학습
|
|
277
|
+
loss, accuracy = train_one_epoch(...)
|
|
278
|
+
|
|
279
|
+
# 메트릭 로깅
|
|
280
|
+
run.log_metric('training', 'loss', loss, epoch=epoch)
|
|
281
|
+
run.log_metric('training', 'accuracy', accuracy, epoch=epoch)
|
|
282
|
+
|
|
283
|
+
# 시각화 로깅
|
|
284
|
+
run.log_visualization('predictions', 'train', epoch, image_data)
|
|
285
|
+
|
|
286
|
+
# 최종 모델 저장
|
|
287
|
+
save_model(model, '/path/to/model.pth')
|
|
288
|
+
```
|
|
289
|
+
|
|
290
|
+
### 튜닝 모드용
|
|
291
|
+
|
|
292
|
+
플러그인에서 `tune()` 함수 구현:
|
|
293
|
+
|
|
294
|
+
```python
|
|
295
|
+
def tune(hyperparameter, run, dataset, checkpoint, **kwargs):
|
|
296
|
+
"""
|
|
297
|
+
하이퍼파라미터 최적화를 위한 튜닝 함수.
|
|
298
|
+
|
|
299
|
+
Args:
|
|
300
|
+
hyperparameter: 현재 시행의 하이퍼파라미터가 포함된 dict
|
|
301
|
+
run: 로깅을 위한 TrainRun 객체 (is_tune=True)
|
|
302
|
+
dataset: Dataset 객체
|
|
303
|
+
checkpoint: 재개를 위한 선택적 체크포인트
|
|
304
|
+
"""
|
|
305
|
+
from ray import tune
|
|
306
|
+
|
|
307
|
+
# 학습 전에 체크포인트 출력 경로 설정
|
|
308
|
+
output_path = Path('/path/to/trial/weights')
|
|
309
|
+
run.checkpoint_output = str(output_path)
|
|
310
|
+
|
|
311
|
+
# 학습 루프
|
|
312
|
+
for epoch in range(hyperparameter['epochs']):
|
|
313
|
+
loss, accuracy = train_one_epoch(...)
|
|
314
|
+
|
|
315
|
+
# 메트릭 로깅 (trial_id가 자동으로 추가됨)
|
|
316
|
+
run.log_metric('training', 'loss', loss, epoch=epoch)
|
|
317
|
+
run.log_metric('training', 'accuracy', accuracy, epoch=epoch)
|
|
318
|
+
|
|
319
|
+
# Ray Tune에 결과 보고
|
|
320
|
+
results = {
|
|
321
|
+
"accuracy": final_accuracy,
|
|
322
|
+
"loss": final_loss
|
|
323
|
+
}
|
|
324
|
+
|
|
325
|
+
# 중요: 체크포인트와 함께 보고
|
|
326
|
+
tune.report(
|
|
327
|
+
results,
|
|
328
|
+
checkpoint=tune.Checkpoint.from_directory(run.checkpoint_output)
|
|
329
|
+
)
|
|
330
|
+
```
|
|
331
|
+
|
|
332
|
+
### 매개변수 순서 차이
|
|
333
|
+
|
|
334
|
+
**중요**: `train()`과 `tune()` 간에 매개변수 순서가 다릅니다:
|
|
335
|
+
|
|
336
|
+
- `train(run, dataset, hyperparameter, checkpoint, **kwargs)`
|
|
337
|
+
- `tune(hyperparameter, run, dataset, checkpoint, **kwargs)`
|
|
338
|
+
|
|
339
|
+
### 자동 Trial ID 로깅
|
|
340
|
+
|
|
341
|
+
`is_tune=True`일 때, SDK는 모든 메트릭 및 시각화 로그에 자동으로 `trial_id`를 주입합니다:
|
|
342
|
+
|
|
343
|
+
```python
|
|
344
|
+
# 플러그인 코드
|
|
345
|
+
run.log_metric('training', 'loss', 0.5, epoch=10)
|
|
346
|
+
|
|
347
|
+
# 실제 로깅된 데이터 (trial_id가 자동으로 추가됨)
|
|
348
|
+
{
|
|
349
|
+
'category': 'training',
|
|
350
|
+
'key': 'loss',
|
|
351
|
+
'value': 0.5,
|
|
352
|
+
'metrics': {'epoch': 10},
|
|
353
|
+
'trial_id': 'abc123' # 자동으로 추가됨
|
|
354
|
+
}
|
|
355
|
+
```
|
|
356
|
+
|
|
357
|
+
플러그인 변경 불필요 - SDK 레벨에서 투명하게 처리됩니다.
|
|
358
|
+
|
|
359
|
+
## TuneAction에서 마이그레이션
|
|
360
|
+
|
|
361
|
+
독립형 `TuneAction`은 이제 **더 이상 사용되지 않습니다**. `is_tune=true`를 사용하는 `TrainAction`으로 마이그레이션하세요:
|
|
362
|
+
|
|
363
|
+
### 이전 (더 이상 사용되지 않음)
|
|
364
|
+
|
|
365
|
+
```json
|
|
366
|
+
{
|
|
367
|
+
"action": "tune",
|
|
368
|
+
"params": {
|
|
369
|
+
"name": "my_tuning_job",
|
|
370
|
+
"dataset": 123,
|
|
371
|
+
"hyperparameter": [...],
|
|
372
|
+
"tune_config": {...}
|
|
373
|
+
}
|
|
374
|
+
}
|
|
375
|
+
```
|
|
376
|
+
|
|
377
|
+
### 이후 (권장)
|
|
378
|
+
|
|
379
|
+
```json
|
|
380
|
+
{
|
|
381
|
+
"action": "train",
|
|
382
|
+
"params": {
|
|
383
|
+
"name": "my_tuning_job",
|
|
384
|
+
"dataset": 123,
|
|
385
|
+
"is_tune": true,
|
|
386
|
+
"hyperparameters": [...],
|
|
387
|
+
"tune_config": {...}
|
|
388
|
+
}
|
|
389
|
+
}
|
|
390
|
+
```
|
|
391
|
+
|
|
392
|
+
### 주요 변경 사항
|
|
393
|
+
|
|
394
|
+
1. `"action": "tune"`을 `"action": "train"`으로 변경
|
|
395
|
+
2. `"is_tune": true` 추가
|
|
396
|
+
3. `"hyperparameter"`를 `"hyperparameters"`로 이름 변경
|
|
397
|
+
|
|
398
|
+
## 예제
|
|
399
|
+
|
|
400
|
+
### 간단한 학습
|
|
401
|
+
|
|
402
|
+
```json
|
|
403
|
+
{
|
|
404
|
+
"action": "train",
|
|
405
|
+
"params": {
|
|
406
|
+
"name": "resnet50_training",
|
|
407
|
+
"dataset": 456,
|
|
408
|
+
"checkpoint": null,
|
|
409
|
+
"hyperparameter": {
|
|
410
|
+
"epochs": 100,
|
|
411
|
+
"batch_size": 32,
|
|
412
|
+
"learning_rate": 0.001,
|
|
413
|
+
"optimizer": "adam",
|
|
414
|
+
"weight_decay": 0.0001
|
|
415
|
+
}
|
|
416
|
+
}
|
|
417
|
+
}
|
|
418
|
+
```
|
|
419
|
+
|
|
420
|
+
### 체크포인트에서 재개
|
|
421
|
+
|
|
422
|
+
```json
|
|
423
|
+
{
|
|
424
|
+
"action": "train",
|
|
425
|
+
"params": {
|
|
426
|
+
"name": "resnet50_continued",
|
|
427
|
+
"dataset": 456,
|
|
428
|
+
"checkpoint": 789,
|
|
429
|
+
"hyperparameter": {
|
|
430
|
+
"epochs": 50,
|
|
431
|
+
"batch_size": 32,
|
|
432
|
+
"learning_rate": 0.0001,
|
|
433
|
+
"optimizer": "adam"
|
|
434
|
+
}
|
|
435
|
+
}
|
|
436
|
+
}
|
|
437
|
+
```
|
|
438
|
+
|
|
439
|
+
### 그리드 검색을 통한 하이퍼파라미터 튜닝
|
|
440
|
+
|
|
441
|
+
```json
|
|
442
|
+
{
|
|
443
|
+
"action": "train",
|
|
444
|
+
"params": {
|
|
445
|
+
"name": "resnet50_tuning",
|
|
446
|
+
"dataset": 456,
|
|
447
|
+
"is_tune": true,
|
|
448
|
+
"hyperparameters": [
|
|
449
|
+
{
|
|
450
|
+
"batch_size": { "type": "grid_search", "values": [16, 32, 64] },
|
|
451
|
+
"learning_rate": { "type": "grid_search", "values": [0.001, 0.0001] },
|
|
452
|
+
"optimizer": { "type": "grid_search", "values": ["adam", "sgd"] }
|
|
453
|
+
}
|
|
454
|
+
],
|
|
455
|
+
"tune_config": {
|
|
456
|
+
"mode": "max",
|
|
457
|
+
"metric": "validation_accuracy",
|
|
458
|
+
"num_samples": 12,
|
|
459
|
+
"max_concurrent_trials": 4
|
|
460
|
+
}
|
|
461
|
+
}
|
|
462
|
+
}
|
|
463
|
+
```
|
|
464
|
+
|
|
465
|
+
### Optuna 및 ASHA를 사용한 고급 튜닝
|
|
466
|
+
|
|
467
|
+
```json
|
|
468
|
+
{
|
|
469
|
+
"action": "train",
|
|
470
|
+
"params": {
|
|
471
|
+
"name": "resnet50_optuna_tuning",
|
|
472
|
+
"dataset": 456,
|
|
473
|
+
"is_tune": true,
|
|
474
|
+
"num_cpus": 2,
|
|
475
|
+
"num_gpus": 0.5,
|
|
476
|
+
"hyperparameters": [
|
|
477
|
+
{
|
|
478
|
+
"batch_size": { "type": "choice", "values": [16, 32, 64, 128] },
|
|
479
|
+
"learning_rate": { "type": "loguniform", "min": 0.00001, "max": 0.01 },
|
|
480
|
+
"weight_decay": { "type": "loguniform", "min": 0.00001, "max": 0.001 },
|
|
481
|
+
"optimizer": { "type": "choice", "values": ["adam", "sgd", "rmsprop"] }
|
|
482
|
+
}
|
|
483
|
+
],
|
|
484
|
+
"tune_config": {
|
|
485
|
+
"mode": "max",
|
|
486
|
+
"metric": "validation_accuracy",
|
|
487
|
+
"num_samples": 50,
|
|
488
|
+
"max_concurrent_trials": 8,
|
|
489
|
+
"search_alg": {
|
|
490
|
+
"name": "OptunaSearch"
|
|
491
|
+
},
|
|
492
|
+
"scheduler": {
|
|
493
|
+
"name": "ASHA",
|
|
494
|
+
"options": {
|
|
495
|
+
"grace_period": 10,
|
|
496
|
+
"max_t": 100,
|
|
497
|
+
"reduction_factor": 3
|
|
498
|
+
}
|
|
499
|
+
}
|
|
500
|
+
}
|
|
501
|
+
}
|
|
502
|
+
}
|
|
503
|
+
```
|
|
504
|
+
|
|
505
|
+
## 진행 상황 추적
|
|
506
|
+
|
|
507
|
+
train 액션은 다양한 단계에서 진행 상황을 추적합니다:
|
|
508
|
+
|
|
509
|
+
### 학습 모드
|
|
510
|
+
|
|
511
|
+
| 카테고리 | 비율 | 설명 |
|
|
512
|
+
| ------------ | ---- | ------------- |
|
|
513
|
+
| `validation` | 10% | 매개변수 검증 |
|
|
514
|
+
| `training` | 90% | 모델 학습 |
|
|
515
|
+
|
|
516
|
+
### 튜닝 모드
|
|
517
|
+
|
|
518
|
+
| 카테고리 | 비율 | 설명 |
|
|
519
|
+
| ------------ | ---- | ------------------------ |
|
|
520
|
+
| `validation` | 10% | 매개변수 검증 |
|
|
521
|
+
| `trials` | 90% | 하이퍼파라미터 튜닝 시행 |
|
|
522
|
+
|
|
523
|
+
## 이점
|
|
524
|
+
|
|
525
|
+
### 통합 인터페이스
|
|
526
|
+
|
|
527
|
+
- 학습과 튜닝을 위한 단일 액션
|
|
528
|
+
- 일관된 매개변수 처리
|
|
529
|
+
- 코드 중복 감소
|
|
530
|
+
|
|
531
|
+
### 유연한 하이퍼파라미터
|
|
532
|
+
|
|
533
|
+
- SDK에서 고정된 구조 강제하지 않음
|
|
534
|
+
- 플러그인이 자체 하이퍼파라미터 스키마 정의
|
|
535
|
+
- 검증 오류 없이 사용자 정의 필드 지원
|
|
536
|
+
|
|
537
|
+
### 고급 HPO
|
|
538
|
+
|
|
539
|
+
- 다양한 검색 알고리즘 (Optuna, Ax, HyperOpt, BayesOpt)
|
|
540
|
+
- 다양한 스케줄러 (ASHA, HyperBand, PBT)
|
|
541
|
+
- 자동 최적 모델 선택
|
|
542
|
+
|
|
543
|
+
### 개발자 경험
|
|
544
|
+
|
|
545
|
+
- 자동 시행 추적
|
|
546
|
+
- 투명한 로깅 향상
|
|
547
|
+
- 더 이상 사용되지 않는 TuneAction에서의 명확한 마이그레이션 경로
|
|
548
|
+
|
|
549
|
+
## 모범 사례
|
|
550
|
+
|
|
551
|
+
### 하이퍼파라미터 설계
|
|
552
|
+
|
|
553
|
+
- 합리적인 하이퍼파라미터 검색 공간 유지
|
|
554
|
+
- 초기 탐색을 위해 그리드 검색으로 시작
|
|
555
|
+
- 효율적인 검색을 위해 베이지안 최적화 (Optuna, Ax) 사용
|
|
556
|
+
- 검색 공간 크기에 따라 적절한 `num_samples` 설정
|
|
557
|
+
|
|
558
|
+
### 리소스 관리
|
|
559
|
+
|
|
560
|
+
- 시행 리소스 요구 사항에 따라 `num_cpus` 및 `num_gpus` 할당
|
|
561
|
+
- 사용 가능한 하드웨어에 따라 `max_concurrent_trials` 설정
|
|
562
|
+
- 튜닝 중 리소스 사용량 모니터링
|
|
563
|
+
|
|
564
|
+
### 체크포인트 관리
|
|
565
|
+
|
|
566
|
+
- 튜닝 모드에서 학습 전에 항상 `run.checkpoint_output` 설정
|
|
567
|
+
- 정기적으로 체크포인트 저장
|
|
568
|
+
- 튜닝에서 반환된 최적 체크포인트 사용
|
|
569
|
+
|
|
570
|
+
### 로깅
|
|
571
|
+
|
|
572
|
+
- 비교를 위해 모든 관련 메트릭 로깅
|
|
573
|
+
- 시행 간에 일관된 메트릭 이름 사용
|
|
574
|
+
- 튜닝 보고서에 검증 메트릭 포함
|
|
575
|
+
|
|
576
|
+
## 문제 해결
|
|
577
|
+
|
|
578
|
+
### 일반적인 문제
|
|
579
|
+
|
|
580
|
+
#### "hyperparameter is required when is_tune=False"
|
|
581
|
+
|
|
582
|
+
학습 모드에서 `hyperparameter`를 제공했는지 확인하세요:
|
|
583
|
+
|
|
584
|
+
```json
|
|
585
|
+
{
|
|
586
|
+
"is_tune": false,
|
|
587
|
+
"hyperparameter": {...}
|
|
588
|
+
}
|
|
589
|
+
```
|
|
590
|
+
|
|
591
|
+
#### "hyperparameters is required when is_tune=True"
|
|
592
|
+
|
|
593
|
+
튜닝 모드에서 `hyperparameters`와 `tune_config`를 제공했는지 확인하세요:
|
|
594
|
+
|
|
595
|
+
```json
|
|
596
|
+
{
|
|
597
|
+
"is_tune": true,
|
|
598
|
+
"hyperparameters": [...],
|
|
599
|
+
"tune_config": {...}
|
|
600
|
+
}
|
|
601
|
+
```
|
|
602
|
+
|
|
603
|
+
#### 오류 없이 튜닝 실패
|
|
604
|
+
|
|
605
|
+
`tune()` 함수가 다음을 수행하는지 확인하세요:
|
|
606
|
+
|
|
607
|
+
1. 학습 전에 `run.checkpoint_output` 설정
|
|
608
|
+
2. 결과 및 체크포인트와 함께 `tune.report()` 호출
|
|
609
|
+
3. 예외 없이 적절하게 반환
|
|
610
|
+
|
|
611
|
+
## 다음 단계
|
|
612
|
+
|
|
613
|
+
- **플러그인 개발자용**: `train()` 및 선택적으로 `tune()` 함수 구현
|
|
614
|
+
- **사용자용**: 학습 모드로 시작한 다음 튜닝 실험
|
|
615
|
+
- **고급 사용자용**: 다양한 검색 알고리즘 및 스케줄러 탐색
|
|
616
|
+
|
|
617
|
+
## 지원 및 리소스
|
|
618
|
+
|
|
619
|
+
- **API 참조**: TrainAction 클래스 문서 참조
|
|
620
|
+
- **예제**: 플러그인 예제 저장소 확인
|
|
621
|
+
- **Ray Tune 문서**: https://docs.ray.io/en/latest/tune/
|