symbolicai 0.17.6__py3-none-any.whl → 0.18.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
symai/__init__.py CHANGED
@@ -33,7 +33,7 @@ os.environ['TOKENIZERS_PARALLELISM'] = "false"
33
33
  # Create singleton instance
34
34
  config_manager = settings.SymAIConfig()
35
35
 
36
- SYMAI_VERSION = "0.17.6"
36
+ SYMAI_VERSION = "0.18.0"
37
37
  __version__ = SYMAI_VERSION
38
38
  __root_dir__ = config_manager.config_dir
39
39
 
@@ -1,11 +1,13 @@
1
1
  from ...mixin import (ANTHROPIC_CHAT_MODELS, ANTHROPIC_REASONING_MODELS,
2
2
  DEEPSEEK_CHAT_MODELS, DEEPSEEK_REASONING_MODELS,
3
3
  GOOGLE_CHAT_MODELS, GOOGLE_REASONING_MODELS,
4
+ GROQ_CHAT_MODELS, GROQ_REASONING_MODELS,
4
5
  OPENAI_CHAT_MODELS, OPENAI_REASONING_MODELS)
5
6
  from .engine_anthropic_claudeX_chat import ClaudeXChatEngine
6
7
  from .engine_anthropic_claudeX_reasoning import ClaudeXReasoningEngine
7
8
  from .engine_deepseekX_reasoning import DeepSeekXReasoningEngine
8
9
  from .engine_google_geminiX_reasoning import GeminiXReasoningEngine
10
+ from .engine_groq import GroqEngine
9
11
  from .engine_openai_gptX_chat import GPTXChatEngine
10
12
  from .engine_openai_gptX_reasoning import GPTXReasoningEngine
11
13
 
@@ -17,4 +19,6 @@ ENGINE_MAPPING = {
17
19
  **{model_name: GeminiXReasoningEngine for model_name in GOOGLE_REASONING_MODELS},
18
20
  **{model_name: GPTXChatEngine for model_name in OPENAI_CHAT_MODELS},
19
21
  **{model_name: GPTXReasoningEngine for model_name in OPENAI_REASONING_MODELS},
22
+ **{model_name: GroqEngine for model_name in GROQ_CHAT_MODELS},
23
+ **{model_name: GroqEngine for model_name in GROQ_REASONING_MODELS},
20
24
  }
@@ -29,7 +29,7 @@ class GroqEngine(Engine):
29
29
  if self.id() != 'neurosymbolic':
30
30
  return # do not initialize if not neurosymbolic; avoids conflict with llama.cpp check in EngineRepository.register_from_package
31
31
  openai.api_key = self.config['NEUROSYMBOLIC_ENGINE_API_KEY']
32
- self.model = self.config['NEUROSYMBOLIC_ENGINE_MODEL'].replace('groq:', '')
32
+ self.model = self.config['NEUROSYMBOLIC_ENGINE_MODEL'] # Keep the original config name to avoid confusion in downstream tasks
33
33
  self.seed = None
34
34
  self.name = self.__class__.__name__
35
35
 
@@ -49,7 +49,7 @@ class GroqEngine(Engine):
49
49
  if 'NEUROSYMBOLIC_ENGINE_API_KEY' in kwargs:
50
50
  openai.api_key = kwargs['NEUROSYMBOLIC_ENGINE_API_KEY']
51
51
  if 'NEUROSYMBOLIC_ENGINE_MODEL' in kwargs:
52
- self.model = kwargs['NEUROSYMBOLIC_ENGINE_MODEL'].replace('groq:', '')
52
+ self.model = kwargs['NEUROSYMBOLIC_ENGINE_MODEL']
53
53
  if 'seed' in kwargs:
54
54
  self.seed = kwargs['seed']
55
55
 
@@ -59,18 +59,9 @@ class GroqEngine(Engine):
59
59
  def compute_remaining_tokens(self, prompts: list) -> int:
60
60
  raise NotImplementedError("Token counting not implemented for this engine.")
61
61
 
62
- def _handle_image_content(self, content: str) -> list:
63
- """Handle image content by processing vision patterns and returning image file data."""
64
- def extract_pattern(text):
65
- pattern = r'<<vision:(.*?):>>'
66
- return re.findall(pattern, text)
67
- raise NotImplementedError("Image content handling not implemented for this engine.")
68
-
69
-
70
- def _remove_vision_pattern(self, text: str) -> str:
71
- """Remove vision patterns from text."""
72
- pattern = r'<<vision:(.*?):>>'
73
- return re.sub(pattern, '', text)
62
+ def _handle_prefix(self, model_name: str) -> str:
63
+ """Handle prefix for model name."""
64
+ return model_name.replace('groq:', '')
74
65
 
75
66
  def _extract_thinking_content(self, output: list[str]) -> tuple[str | None, list[str]]:
76
67
  """Extract thinking content from model output if present and return cleaned output."""
@@ -115,7 +106,7 @@ class GroqEngine(Engine):
115
106
  openai.api_key = self.config['NEUROSYMBOLIC_ENGINE_API_KEY']
116
107
 
117
108
  callback = self.client.chat.completions.create
118
- kwargs['model'] = kwargs['model'] if 'model' in kwargs else self.model
109
+ kwargs['model'] = self._handle_prefix(kwargs['model']) if 'model' in kwargs else self._handle_prefix(self.model)
119
110
 
120
111
  if except_remedy is not None:
121
112
  res = except_remedy(self, e, callback, argument)
@@ -160,12 +151,6 @@ class GroqEngine(Engine):
160
151
  if argument.prop.response_format:
161
152
  _rsp_fmt = argument.prop.response_format
162
153
  assert _rsp_fmt.get('type') is not None, 'Expected format `{ "type": "json_object" }`! We are using the OpenAI compatible API for Groq. See more here: https://console.groq.com/docs/tool-use'
163
- if _rsp_fmt["type"] == "json_object":
164
- # OpenAI docs:
165
- # "Important: when using JSON mode, you must also instruct the model
166
- # to produce JSON yourself via a system or user message"
167
- # Assuming this stays true even for this engine
168
- system += f'<RESPONSE_FORMAT/>\nYou are a helpful assistant designed to output JSON.\n\n'
169
154
 
170
155
  ref = argument.prop.instance
171
156
  static_ctxt, dyn_ctxt = ref.global_context
@@ -256,11 +241,11 @@ class GroqEngine(Engine):
256
241
 
257
242
  payload = {
258
243
  "messages": messages,
259
- "model": kwargs.get('model', self.model),
244
+ "model": self._handle_prefix(kwargs.get('model', self.model)),
260
245
  "seed": kwargs.get('seed', self.seed),
261
246
  "max_completion_tokens": kwargs.get('max_completion_tokens'),
262
247
  "stop": kwargs.get('stop'),
263
- "temperature": kwargs.get('temperature', 0.6), # Default temperature for Kimi K2 (https://huggingface.co/moonshotai/Kimi-K2-Instruct)
248
+ "temperature": kwargs.get('temperature', 1), # Default temperature for gpt-oss-120b
264
249
  "frequency_penalty": kwargs.get('frequency_penalty', 0),
265
250
  "presence_penalty": kwargs.get('presence_penalty', 0),
266
251
  "reasoning_effort": kwargs.get('reasoning_effort'), # Field available only for qwen3 models
@@ -268,11 +253,11 @@ class GroqEngine(Engine):
268
253
  "top_p": kwargs.get('top_p', 1),
269
254
  "n": n,
270
255
  "tools": kwargs.get('tools'),
271
- "tool_choice": kwargs.get('tool_choice', 'none'),
256
+ "tool_choice": kwargs.get('tool_choice', 'auto' if kwargs.get('tools') else 'none'),
272
257
  "response_format": kwargs.get('response_format'),
273
258
  }
274
259
 
275
- if not self.model.startswith('qwen'):
260
+ if not self._handle_prefix(self.model).startswith('qwen'):
276
261
  del payload['reasoning_effort']
277
262
 
278
263
  return payload
@@ -26,7 +26,7 @@ TRACKING_KEYS = {
26
26
 
27
27
  @dataclass
28
28
  class Citation:
29
- id: str
29
+ id: int
30
30
  title: str
31
31
  url: str
32
32
  start: int
@@ -47,10 +47,10 @@ class SearchResult(Result):
47
47
  self._value = None
48
48
  self._citations = []
49
49
  return
50
- replaced_text, ordered = self._replace_links_with_citations(text, annotations, id_mode="sequential")
50
+ replaced_text, ordered, starts_ends = self._insert_citation_markers(text, annotations)
51
51
  self._value = replaced_text
52
52
  self._citations = [
53
- Citation(id=cid, title=title, url=url, start=0, end=0)
53
+ Citation(id=cid, title=title, url=url, start=starts_ends[cid][0], end=starts_ends[cid][1])
54
54
  for cid, title, url in ordered
55
55
  ]
56
56
 
@@ -59,6 +59,8 @@ class SearchResult(Result):
59
59
  CustomUserWarning(f"Failed to parse response: {e}", raise_with=ValueError)
60
60
 
61
61
  def _extract_text(self, value) -> str | None:
62
+ if isinstance(value.get('output_text'), str) and value.get('output_text'):
63
+ return value.get('output_text')
62
64
  text = None
63
65
  for output in value.get('output', []):
64
66
  if output.get('type') == 'message' and output.get('content'):
@@ -68,19 +70,35 @@ class SearchResult(Result):
68
70
  return text
69
71
 
70
72
  def _extract_text_and_annotations(self, value):
71
- text = None
72
- annotations = []
73
- for output in value.get('output', []):
73
+ segments = []
74
+ global_annotations = []
75
+ pos = 0
76
+ for output in value.get('output', []) or []:
74
77
  if output.get('type') != 'message' or not output.get('content'):
75
78
  continue
76
79
  for content in output.get('content', []) or []:
77
- if 'text' in content and content['text']:
78
- text = content['text']
79
- anns = content.get('annotations', []) or []
80
- for ann in anns:
81
- if ann.get('type') == 'url_citation':
82
- annotations.append(ann)
83
- return text, annotations
80
+ seg_text = content.get('text') or ''
81
+ if not isinstance(seg_text, str):
82
+ continue
83
+ for ann in (content.get('annotations') or []):
84
+ if ann.get('type') == 'url_citation' and ann.get('url'):
85
+ start = ann.get('start_index', 0)
86
+ end = ann.get('end_index', 0)
87
+ global_annotations.append({
88
+ 'type': 'url_citation',
89
+ 'url': ann.get('url'),
90
+ 'title': (ann.get('title') or '').strip(),
91
+ 'start_index': pos + int(start),
92
+ 'end_index': pos + int(end),
93
+ })
94
+ segments.append(seg_text)
95
+ pos += len(seg_text)
96
+
97
+ built_text = ''.join(segments) if segments else None
98
+ # Prefer top-level output_text if present AND segments are empty (no way to compute indices)
99
+ if not built_text and isinstance(value.get('output_text'), str):
100
+ return value.get('output_text'), []
101
+ return built_text, global_annotations
84
102
 
85
103
  def _normalize_url(self, u: str) -> str:
86
104
  parts = urlsplit(u)
@@ -115,48 +133,96 @@ class SearchResult(Result):
115
133
  def _short_hash_id(self, nu: str, length=6) -> str:
116
134
  return hashlib.sha1(nu.encode('utf-8')).hexdigest()[:length]
117
135
 
118
- def _replace_links_with_citations(self, text: str, annotations, id_mode: str = 'sequential'):
136
+ def _insert_citation_markers(self, text: str, annotations):
119
137
  title_map = self._make_title_map(annotations)
120
- id_map = {}
121
- ordered = [] # list of ("[n]", title, normalized_url)
138
+ id_map: dict[str, int] = {}
139
+ first_span: dict[int, tuple[int, int]] = {}
140
+ ordered: list[tuple[int, str, str]] = [] # (id, title, normalized_url)
122
141
  next_id = 1
123
142
 
124
- pattern = re.compile(r"\[([^\]]*?)\]\((https?://[^\s)]+)\)")
143
+ url_anns = [a for a in annotations or [] if a.get('type') == 'url_citation' and a.get('url')]
144
+ url_anns.sort(key=lambda a: int(a.get('start_index', 0)))
145
+
146
+ pieces: list[str] = []
147
+ cursor = 0
148
+ out_len = 0 # length of output built so far (after cleaning and prior markers)
125
149
 
126
- def _get_id(nu: str) -> str:
150
+ def _get_id(nu: str) -> int:
127
151
  nonlocal next_id
128
- if id_mode == 'hash':
129
- return self._short_hash_id(nu)
130
152
  if nu not in id_map:
131
- id_map[nu] = str(next_id)
132
- t = title_map.get(nu) or self._hostname(nu)
133
- ordered.append((f"[{id_map[nu]}]", t, nu))
153
+ cid = next_id
154
+ id_map[nu] = cid
155
+ title = title_map.get(nu) or self._hostname(nu)
156
+ ordered.append((cid, title, nu))
134
157
  next_id += 1
135
158
  return id_map[nu]
136
159
 
137
- def _repl(m):
138
- link_text, url = m.group(1), m.group(2)
160
+ for ann in url_anns:
161
+ start = int(ann.get('start_index', 0))
162
+ end = int(ann.get('end_index', 0))
163
+ if end <= cursor:
164
+ continue # skip overlapping or backwards spans
165
+ url = ann.get('url')
139
166
  nu = self._normalize_url(url)
140
167
  cid = _get_id(nu)
141
- title = title_map.get(nu)
142
- if not title:
143
- lt = (link_text or '').strip()
144
- title = lt if (' ' in lt) else self._hostname(nu)
145
- return f"[{cid}] ({title})"
146
-
147
- replaced = pattern.sub(_repl, text)
148
- return replaced, ordered
168
+ title = title_map.get(nu) or self._hostname(nu)
169
+
170
+ prefix = text[cursor:start]
171
+ prefix_clean = self._strip_markdown_links(prefix)
172
+ pieces.append(prefix_clean)
173
+ out_len += len(prefix_clean)
174
+
175
+ span_text = text[start:end]
176
+ span_clean = self._strip_markdown_links(span_text)
177
+ span_end_out = out_len + len(span_clean)
178
+ pieces.append(span_clean)
179
+ out_len = span_end_out
180
+
181
+ marker = f"[{cid}] ({title})\n"
182
+ marker_start_out = out_len
183
+ marker_end_out = out_len + len(marker)
184
+ if cid not in first_span:
185
+ first_span[cid] = (marker_start_out, marker_end_out)
186
+ pieces.append(marker)
187
+ out_len = marker_end_out
188
+ cursor = end
189
+
190
+ tail_clean = self._strip_markdown_links(text[cursor:])
191
+ pieces.append(tail_clean)
192
+ replaced = ''.join(pieces)
193
+
194
+ starts_ends = {cid: first_span.get(cid, (0, 0)) for cid, _, _ in ordered}
195
+ return replaced, ordered, starts_ends
196
+
197
+ def _strip_markdown_links(self, text: str) -> str:
198
+ # Remove ([text](http...)) including surrounding parentheses
199
+ pattern_paren = re.compile(r"\(\s*\[[^\]]+\]\(https?://[^)]+\)\s*\)")
200
+ text = pattern_paren.sub('', text)
201
+ # Remove bare [text](http...)
202
+ pattern_bare = re.compile(r"\[[^\]]+\]\(https?://[^)]+\)")
203
+ text = pattern_bare.sub('', text)
204
+ # Remove parentheses that became empty or contain only commas/whitespace like (, , )
205
+ pattern_empty_paren = re.compile(r"\(\s*\)")
206
+ text = pattern_empty_paren.sub('', text)
207
+ pattern_commas_only = re.compile(r"\(\s*(,\s*)+\)")
208
+ text = pattern_commas_only.sub('', text)
209
+ # Collapse potential double spaces resulting from removals
210
+ return re.sub(r"\s{2,}", " ", text).strip()
149
211
 
150
212
  def __str__(self) -> str:
213
+ if isinstance(self._value, str) and self._value:
214
+ return self._value
151
215
  try:
152
216
  return json.dumps(self.raw, indent=2)
153
217
  except TypeError:
154
218
  return str(self.raw)
155
219
 
156
220
  def _repr_html_(self) -> str:
221
+ if isinstance(self._value, str) and self._value:
222
+ return f"<pre>{self._value}</pre>"
157
223
  try:
158
224
  return f"<pre>{json.dumps(self.raw, indent=2)}</pre>"
159
- except Exception as e:
225
+ except Exception:
160
226
  return f"<pre>{str(self.raw)}</pre>"
161
227
 
162
228
  def get_citations(self) -> list[Citation]:
@@ -4,5 +4,7 @@ from .deepseek import SUPPORTED_CHAT_MODELS as DEEPSEEK_CHAT_MODELS
4
4
  from .deepseek import SUPPORTED_REASONING_MODELS as DEEPSEEK_REASONING_MODELS
5
5
  from .google import SUPPORTED_CHAT_MODELS as GOOGLE_CHAT_MODELS
6
6
  from .google import SUPPORTED_REASONING_MODELS as GOOGLE_REASONING_MODELS
7
+ from .groq import SUPPORTED_CHAT_MODELS as GROQ_CHAT_MODELS
8
+ from .groq import SUPPORTED_REASONING_MODELS as GROQ_REASONING_MODELS
7
9
  from .openai import SUPPORTED_CHAT_MODELS as OPENAI_CHAT_MODELS
8
10
  from .openai import SUPPORTED_REASONING_MODELS as OPENAI_REASONING_MODELS
@@ -0,0 +1,10 @@
1
+ SUPPORTED_CHAT_MODELS = [
2
+ "groq:moonshotai/kimi-k2-instruct"
3
+ ]
4
+
5
+ SUPPORTED_REASONING_MODELS = [
6
+ "groq:openai/gpt-oss-120b",
7
+ "groq:openai/gpt-oss-20b",
8
+ "groq:qwen/qwen3-32b",
9
+ "groq:deepseek-r1-distill-llama-70b"
10
+ ]
symai/components.py CHANGED
@@ -1147,8 +1147,17 @@ class MetadataTracker(Expression):
1147
1147
  # Note on try/except:
1148
1148
  # The unpacking shouldn't fail; if it fails, it's likely the API response format has changed and we need to know that ASAP
1149
1149
  for (_, engine_name, model_name), metadata in self._metadata.items():
1150
- if engine_name in ("GPTXChatEngine", "GPTXReasoningEngine"):
1151
- try:
1150
+ try:
1151
+ if engine_name == "GroqEngine":
1152
+ usage = metadata["raw_output"].usage
1153
+ token_details[(engine_name, model_name)]["usage"]["completion_tokens"] += usage.completion_tokens
1154
+ token_details[(engine_name, model_name)]["usage"]["prompt_tokens"] += usage.prompt_tokens
1155
+ token_details[(engine_name, model_name)]["usage"]["total_tokens"] += usage.total_tokens
1156
+ token_details[(engine_name, model_name)]["usage"]["total_calls"] += 1
1157
+ #!: Backward compatibility for components like `RuntimeInfo`
1158
+ token_details[(engine_name, model_name)]["prompt_breakdown"]["cached_tokens"] += 0 # Assignment not allowed with defualtdict
1159
+ token_details[(engine_name, model_name)]["completion_breakdown"]["reasoning_tokens"] += 0
1160
+ elif engine_name in ("GPTXChatEngine", "GPTXReasoningEngine"):
1152
1161
  usage = metadata["raw_output"].usage
1153
1162
  token_details[(engine_name, model_name)]["usage"]["completion_tokens"] += usage.completion_tokens
1154
1163
  token_details[(engine_name, model_name)]["usage"]["prompt_tokens"] += usage.prompt_tokens
@@ -1160,10 +1169,7 @@ class MetadataTracker(Expression):
1160
1169
  token_details[(engine_name, model_name)]["completion_breakdown"]["reasoning_tokens"] += usage.completion_tokens_details.reasoning_tokens
1161
1170
  token_details[(engine_name, model_name)]["prompt_breakdown"]["audio_tokens"] += usage.prompt_tokens_details.audio_tokens
1162
1171
  token_details[(engine_name, model_name)]["prompt_breakdown"]["cached_tokens"] += usage.prompt_tokens_details.cached_tokens
1163
- except Exception as e:
1164
- CustomUserWarning(f"Failed to parse metadata for {engine_name}: {e}", raise_with=AttributeError)
1165
- elif engine_name == "GPTXSearchEngine":
1166
- try:
1172
+ elif engine_name == "GPTXSearchEngine":
1167
1173
  usage = metadata["raw_output"].usage
1168
1174
  token_details[(engine_name, model_name)]["usage"]["prompt_tokens"] += usage.input_tokens
1169
1175
  token_details[(engine_name, model_name)]["usage"]["completion_tokens"] += usage.output_tokens
@@ -1171,11 +1177,11 @@ class MetadataTracker(Expression):
1171
1177
  token_details[(engine_name, model_name)]["usage"]["total_calls"] += 1
1172
1178
  token_details[(engine_name, model_name)]["prompt_breakdown"]["cached_tokens"] += usage.input_tokens_details.cached_tokens
1173
1179
  token_details[(engine_name, model_name)]["completion_breakdown"]["reasoning_tokens"] += usage.output_tokens_details.reasoning_tokens
1174
- except Exception as e:
1175
- CustomUserWarning(f"Failed to parse metadata for {engine_name}: {e}", raise_with=AttributeError)
1176
- else:
1177
- logger.warning(f"Tracking {engine_name} is not supported.")
1178
- continue
1180
+ else:
1181
+ logger.warning(f"Tracking {engine_name} is not supported.")
1182
+ continue
1183
+ except Exception as e:
1184
+ CustomUserWarning(f"Failed to parse metadata for {engine_name}: {e}", raise_with=AttributeError)
1179
1185
 
1180
1186
  # Convert to normal dict
1181
1187
  return {**token_details}
@@ -1193,6 +1199,7 @@ class MetadataTracker(Expression):
1193
1199
  # Skipz first entry
1194
1200
  for (_, engine_name), metadata in list(self._metadata.items())[1:]:
1195
1201
  if engine_name not in ("GPTXChatEngine", "GPTXReasoningEngine", "GPTXSearchEngine"):
1202
+ logger.warning(f"Metadata accumulation for {engine_name} is not supported. Try `.usage` instead for now.")
1196
1203
  continue
1197
1204
 
1198
1205
  # Accumulate time if it exists
symai/misc/console.py CHANGED
@@ -2,6 +2,7 @@ import re
2
2
  import pygments
3
3
  import logging
4
4
 
5
+ #@TODO: refactor to use rich instead of prompt_toolkit
5
6
  from html import escape as escape_html
6
7
  from pygments.lexers.python import PythonLexer
7
8
  from pygments.lexers.javascript import JavascriptLexer
@@ -49,8 +50,8 @@ class ConsoleStyle(object):
49
50
  message = str(message)
50
51
  if self.logging:
51
52
  logger.debug(message)
52
- if escape:
53
- message = escape_html(message)
53
+ # Prepare safe content for HTML printing without mutating the original
54
+ content_for_html = escape_html(message) if escape else message
54
55
  style = self.style_types.get(self.style_type, self.style_types['default'])
55
56
 
56
57
  if style == self.style_types['code']:
@@ -80,7 +81,6 @@ class ConsoleStyle(object):
80
81
  elif style == self.style_types['default']:
81
82
  print(message)
82
83
  elif style == self.style_types['custom']:
83
- print(HTML(f'<style fg="{self.color}">{message}</style>'))
84
+ print(HTML(f'<style fg="{self.color}">{content_for_html}</style>'))
84
85
  else:
85
- print(HTML(f'<style fg="{style}">{message}</style>'))
86
-
86
+ print(HTML(f'<style fg="{style}">{content_for_html}</style>'))
symai/shellsv.py CHANGED
@@ -13,6 +13,7 @@ import traceback
13
13
  from pathlib import Path
14
14
  from typing import Iterable, Tuple
15
15
 
16
+ #@TODO: refactor to use rich instead of prompt_toolkit
16
17
  from prompt_toolkit import HTML, PromptSession, print_formatted_text
17
18
  from prompt_toolkit.completion import Completer, Completion, WordCompleter
18
19
  from prompt_toolkit.history import History
symai/utils.py CHANGED
@@ -224,9 +224,7 @@ class RuntimeInfo:
224
224
  try:
225
225
  return RuntimeInfo.from_usage_stats(tracker.usage, total_elapsed_time)
226
226
  except Exception as e:
227
- raise e
228
- CustomUserWarning(f"Failed to parse metadata; returning empty RuntimeInfo: {e}")
229
- return RuntimeInfo(0, 0, 0, 0, 0, 0, 0, 0)
227
+ CustomUserWarning(f"Failed to parse metadata: {e}", raise_with=ValueError)
230
228
  return RuntimeInfo(0, 0, 0, 0, 0, 0, 0, 0)
231
229
 
232
230
  @staticmethod
@@ -234,12 +232,13 @@ class RuntimeInfo:
234
232
  if usage_stats is not None:
235
233
  usage_per_engine = {}
236
234
  for (engine_name, model_name), data in usage_stats.items():
235
+ #!: This object interacts with `MetadataTracker`; its fields are mandatory and handled there
237
236
  data = Box(data)
238
237
  usage_per_engine[(engine_name, model_name)] = RuntimeInfo(
239
238
  total_elapsed_time=total_elapsed_time,
240
239
  prompt_tokens=data.usage.prompt_tokens,
241
240
  completion_tokens=data.usage.completion_tokens,
242
- reasoning_tokens=getattr(data.usage, 'reasoning_tokens', 0),
241
+ reasoning_tokens=data.completion_breakdown.reasoning_tokens,
243
242
  cached_tokens=data.prompt_breakdown.cached_tokens,
244
243
  total_calls=data.usage.total_calls,
245
244
  total_tokens=data.usage.total_tokens,
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: symbolicai
3
- Version: 0.17.6
3
+ Version: 0.18.0
4
4
  Summary: A Neurosymbolic Perspective on Large Language Models
5
5
  Author-email: Marius-Constantin Dinu <marius@extensity.ai>, Leoveanu-Condrei Claudiu <leo@extensity.ai>
6
6
  Project-URL: Homepage, https://extensity.ai
@@ -1,7 +1,7 @@
1
1
  symai/TERMS_OF_SERVICE.md,sha256=HN42UXVI_wAVDHjMShzy_k7xAsbjXaATNeMKcIte_eg,91409
2
- symai/__init__.py,sha256=bL2mJzfktI9IqkdePuW2tDxOFfDNn22bdqM01brcGus,16464
2
+ symai/__init__.py,sha256=xXbdl7oTmx1KKaCLI3R4_2oktrKmNTy1ommzZ5ZsW34,16464
3
3
  symai/chat.py,sha256=vqEe7NqSWdzr9ixkko_094SR1LIbgPLcZxQ8W7782N4,12775
4
- symai/components.py,sha256=L_Kbuyc0JW6c8zkVRd406HzPifLM3ZytRVas6EHE7Ls,50617
4
+ symai/components.py,sha256=YazuyQasU7P3dvUHn-h5A54D-lf6wD_Hqc8Y6Gnd11g,51440
5
5
  symai/constraints.py,sha256=S1ywLB8nFQy4-beDoJz6IvLTiZHGR8Fu5RNTY4v5zG0,1641
6
6
  symai/core.py,sha256=1g45AjJ5wkz1cNTbtoDbd8QlOUc-v-3sWNmDTxaeqY0,69041
7
7
  symai/core_ext.py,sha256=binru2AjB8K-arbNLiu1wnNodtFxgqk26b-iLVhPoSU,9322
@@ -15,11 +15,11 @@ symai/pre_processors.py,sha256=08C1FfjwI5bhxk8Xt6aB5wPizB5o3DEFkTh4S8PkS5Q,16886
15
15
  symai/processor.py,sha256=ZV6uQwybUhCJCTdvBwVxMmleuX0EUVOQHZSvsm5F8pw,1586
16
16
  symai/prompts.py,sha256=OZWW4_S6yf2mpwuiHWlcZz82ITKkYEq4-DIzBHalJnI,89831
17
17
  symai/shell.py,sha256=fzWvnEovQartpO3UhjLcH9TcydgxXzf3YyfuLlU_GDI,6237
18
- symai/shellsv.py,sha256=wjnzAfQBGpq4YSPMPpjfsliEBwePID-DFpPzw6txb-o,37222
18
+ symai/shellsv.py,sha256=Y552dkQrKrnMhwDyK9wJSA1bnJF_bh60iMBom-eAbsM,37277
19
19
  symai/strategy.py,sha256=D2DD5mTgp2aDzIXNdKU1FwoSdnIWcKYL2Yv7Tue-Sy8,37885
20
20
  symai/symbol.py,sha256=unRyZj_2KepkV6xTLYLWzYUkBZh2J5UB-OHyPhFn7uE,40637
21
21
  symai/symsh.md,sha256=QwY_-fX0Ge7Aazul0xde2DuF2FZLw_elxrkXR3kuKDQ,1245
22
- symai/utils.py,sha256=Dou69Lo5JE0pij3KmAzGMnV4T5L4YVTlRV5I8uSREB8,9793
22
+ symai/utils.py,sha256=chZwVcjHnDizYFlmdK6MMPAa7W40kqpya9zctAwtYTI,9813
23
23
  symai/backend/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
24
24
  symai/backend/base.py,sha256=7zXaZtByUXfOqxqEvbdmB_E0GYvvpwfj3FPsf3EZP0Y,7523
25
25
  symai/backend/settings.py,sha256=YCt0AJgWM2egRg3hLz4S1vEypVHm654oXxgzNvLSLj8,3213
@@ -42,12 +42,12 @@ symai/backend/engines/imagecaptioning/engine_llavacpp_client.py,sha256=ZbW6sxFE9
42
42
  symai/backend/engines/index/engine_pinecone.py,sha256=Horf9lzw2QLMdYvvBLeAu3MOyiTbNo30en28Ifm4AVA,8956
43
43
  symai/backend/engines/index/engine_vectordb.py,sha256=q0jUvmAh1AEPIE5fpayjSmSg-U9W1OffDXkx4tkFvNI,8048
44
44
  symai/backend/engines/lean/engine_lean4.py,sha256=1ZZOzw1kDAJH6hMCyDtK50LAYSsoU8pApWVPI_9Eul0,9440
45
- symai/backend/engines/neurosymbolic/__init__.py,sha256=T1GWAeGlQDpeEJsaMt_7bCbRA_UsZ3j3_rn0AaxVmNc,1200
45
+ symai/backend/engines/neurosymbolic/__init__.py,sha256=mZpsX-UVc86nYjn1hxyJM1AvVq5BvZK8sr5PU-QgwVU,1438
46
46
  symai/backend/engines/neurosymbolic/engine_anthropic_claudeX_chat.py,sha256=01BdmObww3NzbYfb8OscLnwrxoPW48JkLWQOFeopURM,18728
47
47
  symai/backend/engines/neurosymbolic/engine_anthropic_claudeX_reasoning.py,sha256=ZPSksJjm3dnJBZKFDFp9HJpD5Nd2F2HxIwoZzo1Ders,19772
48
48
  symai/backend/engines/neurosymbolic/engine_deepseekX_reasoning.py,sha256=ZaZvAVpgv5GYjE2yZmYhP5zUnEKak5I1mndRfiGfr6U,8995
49
49
  symai/backend/engines/neurosymbolic/engine_google_geminiX_reasoning.py,sha256=kxGWYsxnQkpsm40HB1MUGggWmrWz8avCY3jvNrohaKw,25622
50
- symai/backend/engines/neurosymbolic/engine_groq.py,sha256=yYt4wGCSAh5W_FySTQprzbzv8OKu5cCezhptwReNAN0,12485
50
+ symai/backend/engines/neurosymbolic/engine_groq.py,sha256=g_Xnl8UezHF2dksFc4MYw3DCQqh8nQFUhVIkGCXegtc,11748
51
51
  symai/backend/engines/neurosymbolic/engine_huggingface.py,sha256=XIu9BnQo-J2flXFCCKwCJJmVozU9WDNkPndmpi-DlzE,7920
52
52
  symai/backend/engines/neurosymbolic/engine_llama_cpp.py,sha256=ZbHaRYOb7QSD0OrFURp4PT0KJgQk3gdJMD_Itxn7QcU,11323
53
53
  symai/backend/engines/neurosymbolic/engine_openai_gptX_chat.py,sha256=Y-auxUFC4W9dfRzzgI3_rbWbPiOx4xfvKS4sM0KxP40,25250
@@ -55,7 +55,7 @@ symai/backend/engines/neurosymbolic/engine_openai_gptX_completion.py,sha256=YgxR
55
55
  symai/backend/engines/neurosymbolic/engine_openai_gptX_reasoning.py,sha256=QVbyZybUPSAQHiA66V6we2W2dAsk52g1kJ7kMdGqb9I,22951
56
56
  symai/backend/engines/ocr/engine_apilayer.py,sha256=hZo4lk0ECRIzaGEpmCSNjR5Xrh8mwkKMD2ddpdgioVU,2399
57
57
  symai/backend/engines/output/engine_stdout.py,sha256=2hhyhMHFJTfjVRaODYd_5XPnV9pT03URcpYbeMY_USU,951
58
- symai/backend/engines/search/engine_openai.py,sha256=zARzTr0qO7p8o1TCS441KNIgtZR9-mjdjyICO2ajtVw,8492
58
+ symai/backend/engines/search/engine_openai.py,sha256=QeWCu5ofJFZwIWSolIYAlVN1KjFngM8GpSUhxPP4bps,11688
59
59
  symai/backend/engines/search/engine_perplexity.py,sha256=yxuhGaA38d1FRbLv6piLll0QDxCCyBVK6eeomjYNryM,4157
60
60
  symai/backend/engines/search/engine_serpapi.py,sha256=UqvGHs1J9BOv05C0FJUQjbz29_VuWncIkeDwlRPUilU,3698
61
61
  symai/backend/engines/speech_to_text/engine_local_whisper.py,sha256=LRsXliCpHDFPFaE-vPky3-DLkmYwmwe2mxfF0Brz4Wg,8220
@@ -64,10 +64,11 @@ symai/backend/engines/text_to_speech/engine_openai.py,sha256=rq34pTr4bRU-HeA84Av
64
64
  symai/backend/engines/text_vision/engine_clip.py,sha256=EUwlom2e7m_efCK2zuPbe1TzyT9CPRlY0mkFTCmXp0U,3740
65
65
  symai/backend/engines/userinput/engine_console.py,sha256=FwOakooxCc4oaQv6nYd-uIG2SxJRUI3n64cIs3B82FY,770
66
66
  symai/backend/engines/webscraping/engine_requests.py,sha256=qsEAiEZJWLFXqhFfBCsQbSvFWgjA-rXDKMxu8Ezdl_8,4914
67
- symai/backend/mixin/__init__.py,sha256=94dj1x1WBPRmcuguFd7rSrPyja_wEZJeq1nwaRXEzXc,572
67
+ symai/backend/mixin/__init__.py,sha256=ischewsMtIFanU30N32ac2Eb8u4hjWxuEb6mrniUv6Y,702
68
68
  symai/backend/mixin/anthropic.py,sha256=k_7gTvbKrucMW54MR7q8S9RbaQ39AaV2uvgil5F-dnM,1936
69
69
  symai/backend/mixin/deepseek.py,sha256=U-xtUjR9dFTkmiJPAF5_tyuTxpnUxv5gki9WjTfrVL4,379
70
70
  symai/backend/mixin/google.py,sha256=aCQDxo_F0_mQGb8h2iYhQmOlo7NuF2IhY85CYro-m4k,453
71
+ symai/backend/mixin/groq.py,sha256=ZXbJcAMR6mHiA5FfnpWivb0l71cgNR-5pYRtWNe8Nmc,232
71
72
  symai/backend/mixin/openai.py,sha256=ZzteR8wIJoo4sLtNtea-Bb1IAGD0WLJ3cqGG5GGAJN4,4638
72
73
  symai/collect/__init__.py,sha256=eaLjpARuQCa_ChZjyogYoh-w9-xXuNxRAFND2liLvZk,104
73
74
  symai/collect/dynamic.py,sha256=3VDMZ-EJKE-GsqhyuPrwbfoLD9LFec1QfuVr7nOKMfE,3928
@@ -141,7 +142,7 @@ symai/formatter/regex.py,sha256=POf4anhw2FovCQinq3yFWGNcWXf3diIV8yVrp9adieA,9924
141
142
  symai/menu/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
142
143
  symai/menu/screen.py,sha256=YmCfKEt76GGv4aQ1ikeC3C7xEw5HJn18jhfZuYAoaCs,1758
143
144
  symai/misc/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
144
- symai/misc/console.py,sha256=bo8uTI0RpjUPARwVXaVrcbbm1RbmUU2cBkYnZmHiTwY,2892
145
+ symai/misc/console.py,sha256=hwAET_vwX7bwxmrQ6lgUbZhv3ME5_4vMtOWeCAHg5no,3052
145
146
  symai/misc/loader.py,sha256=7lyIMIvU6Ywo_xt-TM8Xqhc6W4tY67U5XzxSkuAYZi8,1635
146
147
  symai/models/__init__.py,sha256=QCYmMOhHk3t6HhTApBMxIeS3dX4_bKfHNr6a9LzRa8s,163
147
148
  symai/models/base.py,sha256=lnkcCwJfv_Yg5kiLRazbVq9jIRKhNR75W8_S9NBVmMo,40881
@@ -152,8 +153,8 @@ symai/ops/primitives.py,sha256=EaB2Ekx9yGNDaQa3aKS5KpuEr5awAUbO3OcBbufI-l4,11072
152
153
  symai/server/__init__.py,sha256=AbpHGcgLb-kRsJGnwFEktk7uzpZOCcBY74-YBdrKVGs,1
153
154
  symai/server/huggingface_server.py,sha256=UpSBflnQaenDjY1AAn5LUYeg5J4gJLWiMuC5DcoIV3E,8743
154
155
  symai/server/llama_cpp_server.py,sha256=qVCldTdcQhK2YCu7sDNSYziu1p2AQieqMFfY028-yOc,2049
155
- symbolicai-0.17.6.dist-info/METADATA,sha256=UQTu70XQcvbzRzoeq8TBdbxbiUnRpG41JzVaR4XJ1j8,21327
156
- symbolicai-0.17.6.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
157
- symbolicai-0.17.6.dist-info/entry_points.txt,sha256=JV5sdydIfUZdDF6QBEQHiZHod6XNPjCjpWQrXh7gTAw,261
158
- symbolicai-0.17.6.dist-info/top_level.txt,sha256=bOoIDfpDIvCQtQgXcwVKJvxAKwsxpxo2IL4z92rNJjw,6
159
- symbolicai-0.17.6.dist-info/RECORD,,
156
+ symbolicai-0.18.0.dist-info/METADATA,sha256=EpPFn8hwc36E-UwtnlQlnAX8qR4Te-rqxfBemyTfiK8,21327
157
+ symbolicai-0.18.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
158
+ symbolicai-0.18.0.dist-info/entry_points.txt,sha256=JV5sdydIfUZdDF6QBEQHiZHod6XNPjCjpWQrXh7gTAw,261
159
+ symbolicai-0.18.0.dist-info/top_level.txt,sha256=bOoIDfpDIvCQtQgXcwVKJvxAKwsxpxo2IL4z92rNJjw,6
160
+ symbolicai-0.18.0.dist-info/RECORD,,