syft-flwr 0.3.0__py3-none-any.whl → 0.3.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of syft-flwr might be problematic. Click here for more details.

syft_flwr/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
- __version__ = "0.3.0"
1
+ __version__ = "0.3.1"
2
2
 
3
3
  from syft_flwr.bootstrap import bootstrap
4
4
  from syft_flwr.run import run
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: syft-flwr
3
- Version: 0.3.0
3
+ Version: 0.3.1
4
4
  Summary: syft_flwr is an open source framework that facilitate federated learning projects using Flower over the SyftBox protocol
5
5
  License-File: LICENSE
6
6
  Requires-Python: >=3.10
@@ -24,4 +24,8 @@ Description-Content-Type: text/markdown
24
24
  Please look at the `notebooks/` folder for example use cases:
25
25
  - [FL diabetes prediction](notebooks/fl-diabetes-prediction/README.md) shows how to train a federated model over distributed machines for multiple rounds
26
26
  - [Federated analytics](notebooks/federated-analytics-diabetes/README.md) shows how to query statistics from private datasets from distributed machines and then aggregate them
27
- - [FedRAG (Federated RAG)](notebooks/fedrag/README.md) demonstrates privacy-preserving question answering using Retrieval Augmented Generation across distributed document sources with remote data science workflow
27
+ - [FedRAG (Federated RAG)](notebooks/fedrag/README.md) demonstrates privacy-preserving question answering using Retrieval Augmented Generation across distributed document sources with remote data science workflow
28
+
29
+ ## Development
30
+ ### Releasing
31
+ See [RELEASE.md](RELEASE.md) for the complete release process.
@@ -1,4 +1,4 @@
1
- syft_flwr/__init__.py,sha256=wfca-7W3xwp7ElM8_L_HSi4_uTU_1uBRxefeYoYfjH4,426
1
+ syft_flwr/__init__.py,sha256=rjV3bkYZEzUK9zhEl7c5cCScfEgbqunCXknZCh9Gu8c,426
2
2
  syft_flwr/bootstrap.py,sha256=-T6SRh_p6u6uWpbTPZ6-URsAfMQAI2jakpjZAh0UUlw,3690
3
3
  syft_flwr/cli.py,sha256=imctwdQMxQeGQZaiKSX1Mo2nU_-RmA-cGB3H4huuUeA,3274
4
4
  syft_flwr/config.py,sha256=4hwkovGtFOLNULjJwoGYcA0uT4y3vZSrxndXqYXquMY,821
@@ -14,8 +14,8 @@ syft_flwr/utils.py,sha256=KYwijACpHOR7pkvezNBqbCE48y3o4G9OUtnvdm1NkaU,3672
14
14
  syft_flwr/strategy/__init__.py,sha256=mpUmExjjFkqU8gg41XsOBKfO3aqCBe7XPJSU-_P7smU,97
15
15
  syft_flwr/strategy/fedavg.py,sha256=N8jULUkjvuaBIEVINowyQln8W8yFhkO-J8k0-iPcGMA,1562
16
16
  syft_flwr/templates/main.py.tpl,sha256=p0uK97jvLGk3LJdy1_HF1R5BQgIjaTGkYnr-csfh39M,791
17
- syft_flwr-0.3.0.dist-info/METADATA,sha256=TC-wW3dIza2yD6Yhz-cbDI1_iZLWNTpHitv7l9iPQew,1468
18
- syft_flwr-0.3.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
19
- syft_flwr-0.3.0.dist-info/entry_points.txt,sha256=o7oT0dCoHn-3WyIwdDw1lBh2q-GvhB_8s0hWeJU4myc,49
20
- syft_flwr-0.3.0.dist-info/licenses/LICENSE,sha256=0msOUar8uPZTqkAOTBp4rCzd7Jl9eRhfKiNufwrsg7k,11361
21
- syft_flwr-0.3.0.dist-info/RECORD,,
17
+ syft_flwr-0.3.1.dist-info/METADATA,sha256=8I5UD7RILWEbJ2qr3fjB1BkeLk9C3wo_rrgz6FK3kjk,1561
18
+ syft_flwr-0.3.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
19
+ syft_flwr-0.3.1.dist-info/entry_points.txt,sha256=o7oT0dCoHn-3WyIwdDw1lBh2q-GvhB_8s0hWeJU4myc,49
20
+ syft_flwr-0.3.1.dist-info/licenses/LICENSE,sha256=0msOUar8uPZTqkAOTBp4rCzd7Jl9eRhfKiNufwrsg7k,11361
21
+ syft_flwr-0.3.1.dist-info/RECORD,,