syd 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
syd/parameters.py ADDED
@@ -0,0 +1,269 @@
1
+ from typing import List, Any, Tuple, Generic, TypeVar, cast
2
+ from dataclasses import dataclass
3
+ from abc import ABC, abstractmethod
4
+ from enum import Enum
5
+ from warnings import warn
6
+
7
+ T = TypeVar("T")
8
+
9
+
10
+ @dataclass
11
+ class Parameter(Generic[T], ABC):
12
+ """Abstract base class for parameters that should not be instantiated directly."""
13
+
14
+ name: str
15
+
16
+ @abstractmethod
17
+ def __init__(self, name: str, default: T):
18
+ raise NotImplementedError("Need to define in subclass for proper IDE support")
19
+
20
+ @property
21
+ def value(self) -> T:
22
+ return self._value
23
+
24
+ @value.setter
25
+ def value(self, new_value: T):
26
+ self._value = self._validate(new_value)
27
+
28
+ @abstractmethod
29
+ def _validate(self, new_value: Any) -> T:
30
+ raise NotImplementedError
31
+
32
+
33
+ @dataclass(init=False)
34
+ class TextParameter(Parameter[str]):
35
+ def __init__(self, name: str, default: str):
36
+ self.name = name
37
+ self.default = default
38
+ self._value = self._validate(default)
39
+
40
+ def _validate(self, new_value: Any) -> str:
41
+ return str(new_value)
42
+
43
+
44
+ @dataclass(init=False)
45
+ class SingleSelectionParameter(Parameter[Any]):
46
+ options: List[Any]
47
+
48
+ def __init__(self, name: str, options: List[Any], default: Any = None):
49
+ self.name = name
50
+ self.options = options
51
+ self.default = default or options[0]
52
+ self._value = self._validate(self.default)
53
+
54
+ def _validate(self, new_value: Any) -> Any:
55
+ if new_value not in self.options:
56
+ raise ValueError(f"Value {new_value} not in options: {self.options}")
57
+ return new_value
58
+
59
+
60
+ @dataclass(init=False)
61
+ class MultipleSelectionParameter(Parameter[List[Any]]):
62
+ options: List[Any]
63
+
64
+ def __init__(self, name: str, options: List[Any], default: List[Any] = None):
65
+ self.name = name
66
+ self.default = default or []
67
+ self.options = options
68
+ self._value = self._validate(self.default)
69
+
70
+ def _validate(self, new_value: List[Any]) -> List[Any]:
71
+ if not isinstance(new_value, (list, tuple)):
72
+ raise TypeError(f"Expected list or tuple, got {type(new_value)}")
73
+ if not all(val in self.options for val in new_value):
74
+ invalid = [val for val in new_value if val not in self.options]
75
+ raise ValueError(f"Values {invalid} not in options: {self.options}")
76
+ return list(new_value)
77
+
78
+
79
+ @dataclass(init=False)
80
+ class BooleanParameter(Parameter[bool]):
81
+ def __init__(self, name: str, default: bool = True):
82
+ self.name = name
83
+ self.default = default
84
+ self._value = self._validate(default)
85
+
86
+ def _validate(self, new_value: Any) -> bool:
87
+ return bool(new_value)
88
+
89
+
90
+ @dataclass(init=False)
91
+ class NumericParameter(Parameter[T], ABC):
92
+ min_value: T
93
+ max_value: T
94
+
95
+ def __init__(self, name: str, min_value: T = None, max_value: T = None, default: T = 0):
96
+ self.name = name
97
+ self.default = default
98
+ self.min_value = min_value
99
+ self.max_value = max_value
100
+ self._value = self._validate(default)
101
+
102
+ @abstractmethod
103
+ def _validate(self, new_value: Any) -> T:
104
+ # Subclasses must implement this
105
+ raise NotImplementedError
106
+
107
+
108
+ @dataclass(init=False)
109
+ class IntegerParameter(NumericParameter[int]):
110
+ def __init__(self, name: str, min_value: int = None, max_value: int = None, default: int = 0):
111
+ self.name = name
112
+ try:
113
+ self.min_value = int(min_value)
114
+ self.max_value = int(max_value)
115
+ except TypeError as e:
116
+ raise TypeError(f"Cannot convert {min_value} and {max_value} to integer") from e
117
+ if self.min_value is not None and self.max_value is not None:
118
+ if self.min_value > self.max_value:
119
+ raise ValueError(f"Minimum value {self.min_value} is greater than maximum value {self.max_value}")
120
+ valid_default = self._validate(default)
121
+ if valid_default != default:
122
+ warn(f"Default value {default} is not in the range [{self.min_value}, {self.max_value}]. Clamping to {valid_default}.")
123
+ self.default = valid_default
124
+ self._value = self._validate(self.default)
125
+
126
+ def _validate(self, new_value: Any) -> int:
127
+ try:
128
+ value = int(new_value)
129
+ except (TypeError, ValueError):
130
+ raise TypeError(f"Cannot convert {new_value} to integer")
131
+
132
+ if self.min_value is not None:
133
+ value = max(self.min_value, value)
134
+ if self.max_value is not None:
135
+ value = min(self.max_value, value)
136
+ return value
137
+
138
+
139
+ @dataclass(init=False)
140
+ class FloatParameter(NumericParameter[float]):
141
+ step: float
142
+
143
+ def __init__(self, name: str, min_value: float = None, max_value: float = None, default: float = 0.0, step: float = 0.1):
144
+ self.name = name
145
+ self.default = default
146
+ try:
147
+ self.min_value = float(min_value)
148
+ self.max_value = float(max_value)
149
+ except TypeError as e:
150
+ raise TypeError(f"Cannot convert {min_value} and {max_value} to float") from e
151
+ if self.min_value is not None and self.max_value is not None:
152
+ if self.min_value > self.max_value:
153
+ raise ValueError(f"Minimum value {self.min_value} is greater than maximum value {self.max_value}")
154
+ self.step = step
155
+ valid_default = self._validate(default)
156
+ if valid_default != default:
157
+ warn(f"Default value {default} is not in the range [{self.min_value}, {self.max_value}]. Clamping to {valid_default}.")
158
+ self.default = valid_default
159
+ self._value = self._validate(self.default)
160
+
161
+ def _validate(self, new_value: Any) -> float:
162
+ try:
163
+ value = float(new_value)
164
+ except (TypeError, ValueError):
165
+ raise TypeError(f"Cannot convert {new_value} to float")
166
+
167
+ if self.min_value is not None:
168
+ value = max(self.min_value, value)
169
+ if self.max_value is not None:
170
+ value = min(self.max_value, value)
171
+ return value
172
+
173
+
174
+ @dataclass(init=False)
175
+ class PairParameter(Parameter[Tuple[T, T]], ABC):
176
+ min_value: T
177
+ max_value: T
178
+ default: Tuple[T, T]
179
+
180
+ @abstractmethod
181
+ def __init__(self, name: str, default: Tuple[T, T], min_value: T = None, max_value: T = None):
182
+ raise NotImplementedError("Need to define in subclass for proper IDE support")
183
+
184
+ @abstractmethod
185
+ def _validate_value(self, value: Any) -> T:
186
+ raise NotImplementedError
187
+
188
+
189
+ @dataclass(init=False)
190
+ class IntegerPairParameter(PairParameter[int]):
191
+ def __init__(self, name: str, default: Tuple[int, int], min_value: int = None, max_value: int = None):
192
+ self.name = name
193
+ try:
194
+ self.min_value = int(min_value)
195
+ self.max_value = int(max_value)
196
+ except TypeError as e:
197
+ raise TypeError(f"Cannot convert {min_value} and {max_value} to integer") from e
198
+ if self.min_value is not None and self.max_value is not None:
199
+ if self.min_value > self.max_value:
200
+ raise ValueError(f"Minimum value {self.min_value} is greater than maximum value {self.max_value}")
201
+ valid_default = self._validate(default)
202
+ if valid_default != default:
203
+ warn(f"Default value {default} is not in the range [{self.min_value}, {self.max_value}]. Clamping to {valid_default}.")
204
+ self.default = valid_default
205
+ self._value = self._validate(self.default)
206
+
207
+ def _validate(self, new_value: Tuple[Any, Any]) -> Tuple[int, int]:
208
+ try:
209
+ values = (int(new_value[0]), int(new_value[1]))
210
+ except (TypeError, ValueError):
211
+ raise TypeError(f"Cannot convert {new_value} to integer pair")
212
+
213
+ if self.min_value is not None:
214
+ values = (max(self.min_value, values[0]), max(self.min_value, values[1]))
215
+ if self.max_value is not None:
216
+ values = (min(self.max_value, values[0]), min(self.max_value, values[1]))
217
+ return values
218
+
219
+
220
+ @dataclass(init=False)
221
+ class FloatPairParameter(PairParameter[float]):
222
+ step: float
223
+
224
+ def __init__(
225
+ self,
226
+ name: str,
227
+ default: Tuple[float, float],
228
+ min_value: float = None,
229
+ max_value: float = None,
230
+ step: float = 0.1,
231
+ ):
232
+ self.name = name
233
+ try:
234
+ self.min_value = float(min_value)
235
+ self.max_value = float(max_value)
236
+ except TypeError as e:
237
+ raise TypeError(f"Cannot convert {min_value} and {max_value} to float") from e
238
+ if self.min_value is not None and self.max_value is not None:
239
+ if self.min_value > self.max_value:
240
+ raise ValueError(f"Minimum value {self.min_value} is greater than maximum value {self.max_value}")
241
+ valid_default = self._validate(default)
242
+ if valid_default != default:
243
+ warn(f"Default value {default} is not in the range [{self.min_value}, {self.max_value}]. Clamping to {valid_default}.")
244
+ self.default = valid_default
245
+ self.step = step
246
+ self._value = self._validate(self.default)
247
+
248
+ def _validate(self, new_value: Tuple[Any, Any]) -> Tuple[float, float]:
249
+ try:
250
+ values = (float(new_value[0]), float(new_value[1]))
251
+ except (TypeError, ValueError):
252
+ raise TypeError(f"Cannot convert {new_value} to float pair")
253
+
254
+ if self.min_value is not None:
255
+ values = (max(self.min_value, values[0]), max(self.min_value, values[1]))
256
+ if self.max_value is not None:
257
+ values = (min(self.max_value, values[0]), min(self.max_value, values[1]))
258
+ return values
259
+
260
+
261
+ class ParameterType(Enum):
262
+ text = TextParameter
263
+ selection = SingleSelectionParameter
264
+ multiple_selection = MultipleSelectionParameter
265
+ boolean = BooleanParameter
266
+ integer = IntegerParameter
267
+ float = FloatParameter
268
+ integer_pair = IntegerPairParameter
269
+ float_pair = FloatPairParameter
@@ -0,0 +1,33 @@
1
+ Metadata-Version: 2.4
2
+ Name: syd
3
+ Version: 0.1.0
4
+ Summary: A Python package for making GUIs for data science easy.
5
+ Project-URL: Homepage, https://github.com/landoskape/syd
6
+ Author-email: Andrew Landau <andrew+tyler+landau+getridofthisanddtheplusses@gmail.com>
7
+ License-Expression: GPL-3.0-or-later
8
+ License-File: LICENSE
9
+ Keywords: data-science,gui,interactive,jupyter,machine-learning,notebook,python
10
+ Classifier: Development Status :: 4 - Beta
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
14
+ Classifier: Operating System :: OS Independent
15
+ Classifier: Programming Language :: Python :: 3.9
16
+ Classifier: Programming Language :: Python :: 3.10
17
+ Classifier: Programming Language :: Python :: 3.11
18
+ Classifier: Programming Language :: Python :: 3.12
19
+ Classifier: Programming Language :: Python :: 3.13
20
+ Requires-Python: >=3.9
21
+ Provides-Extra: test
22
+ Requires-Dist: pytest-cov>=4.0.0; extra == 'test'
23
+ Requires-Dist: pytest>=7.0.0; extra == 'test'
24
+ Description-Content-Type: text/markdown
25
+
26
+ # syd
27
+ A package to help you share your data!
28
+
29
+ Have you ever wanted to look through all your data really quickly interactively? Of course you have. Mo data mo problems, but only if you don't know what to do with it. And that starts with looking at your data. And that's why syd stands for show your data!
30
+
31
+ Syd is a system for creating a data viewing GUI that you can view on a web-browser. And guess what? Since it opens on a web browser, you can even open it on any other computer on your local network! For example, your PI. Gone are the days of single random examples that they make infinitely stubborn conclusions about. Now, you can look at all the examples, quickly and easily, on their computer. And that's why syd stands for share your data!
32
+
33
+ Okay, so what is it? Syd is an automated system to convert some basic python plotting code into an interactive GUI. This is great, because it means you only have to think about what you want to plot and what you want to be interactive, syd does the work to make an interface. There's some small overhead for learning how to prepare your data to work with syd, but we provide some templates to make it easy. You know what that means? That means you get to focus on _thinking_ about your data, rather than spending time writing code to look at it. And that's why syd stands for Science, Yes! Datum!
@@ -0,0 +1,8 @@
1
+ syd/__init__.py,sha256=kUR5RAFc7HCeiqdlX36dZOHkUI5wI6V_43RpEcD8b-0,22
2
+ syd/interactive_viewer.py,sha256=wpTyGw3hK1-p_GbACIri_QaZ2D-CwXPUQ5HTeQsPV-k,9421
3
+ syd/notebook_deploy.py,sha256=rpTDAzYjwjEdMA6DGUFcRHIebE-3hajTIkRa9vKoSL8,11304
4
+ syd/parameters.py,sha256=QMcT4PVSDr6WB4M-f9dbVa1B63RCuPlbMQI0E_JvmKs,9891
5
+ syd-0.1.0.dist-info/METADATA,sha256=5umq2xFIG2wtCxSh8V68i0osShl6MbK796orHWH-P7s,2449
6
+ syd-0.1.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
7
+ syd-0.1.0.dist-info/licenses/LICENSE,sha256=YF6QR6Vjxcg5b_sYIyqkME7FZYau5TfEUGTG-0JeRK0,35129
8
+ syd-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,4 @@
1
+ Wheel-Version: 1.0
2
+ Generator: hatchling 1.27.0
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any