sycommon-python-lib 0.1.57b4__py3-none-any.whl → 0.1.57b7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sycommon/llm/embedding.py CHANGED
@@ -30,18 +30,12 @@ class Embedding(metaclass=SingletonMeta):
30
30
  self.default_reranker_model: self.reranker_base_url
31
31
  }
32
32
 
33
- # [修复] 缓存模型的向量维度,用于生成兜底零向量
34
- self._model_dim_cache: Dict[str, int] = {}
35
-
36
33
  # 并发信号量
37
34
  self.semaphore = asyncio.Semaphore(self.max_concurrency)
38
35
  self.default_timeout = aiohttp.ClientTimeout(total=None)
39
36
 
40
37
  # 核心优化:创建全局可复用的ClientSession(连接池复用)
41
38
  self.session = None
42
- # 重试配置(可根据需要调整)
43
- self.max_retry_attempts = 3 # 最大重试次数
44
- self.retry_wait_base = 0.5 # 基础等待时间(秒)
45
39
 
46
40
  # [修复] 注册退出钩子,确保程序结束时关闭连接池
47
41
  atexit.register(self._sync_close_session)
@@ -51,7 +45,7 @@ class Embedding(metaclass=SingletonMeta):
51
45
  if self.session is None or self.session.closed:
52
46
  # 配置连接池参数,适配高并发
53
47
  connector = aiohttp.TCPConnector(
54
- limit=self.max_concurrency * 2, # 连接池最大连接数(建议是并发数的2倍)
48
+ limit=self.max_concurrency, # 连接池最大连接数
55
49
  limit_per_host=self.max_concurrency, # 每个域名的最大连接数
56
50
  ttl_dns_cache=300, # DNS缓存时间
57
51
  enable_cleanup_closed=True # 自动清理关闭的连接
@@ -68,52 +62,23 @@ class Embedding(metaclass=SingletonMeta):
68
62
 
69
63
  def _sync_close_session(self):
70
64
  """同步关闭Session的封装,供atexit调用"""
71
- # 注意:atexit在主线程运行,如果当前没有事件循环,这个操作可能会受限
72
- # 但它能捕获大多数正常退出的场景。对于asyncio程序,建议显式调用cleanup
73
65
  try:
74
66
  loop = asyncio.get_event_loop()
75
67
  if loop.is_running():
76
- # 如果loop还在跑,创建一个任务去关闭
77
- loop.create_task(self.close_session())
68
+ # [修复] 修正缩进,确保 create_task 的异常能被捕获
69
+ try:
70
+ loop.create_task(self.close_session())
71
+ except Exception:
72
+ pass
78
73
  else:
79
- # 如果loop已经停止,尝试运行一次
80
- loop.run_until_complete(self.close_session())
74
+ try:
75
+ loop.run_until_complete(self.close_session())
76
+ except Exception:
77
+ pass
81
78
  except Exception:
82
- # 静默处理清理失败,避免退出报错
79
+ # 捕获获取 loop 时的异常
83
80
  pass
84
81
 
85
- async def _retry_request(self, func, *args, **kwargs):
86
- """
87
- 原生异步重试封装函数
88
- Args:
89
- func: 待重试的异步函数
90
- *args: 函数参数
91
- **kwargs: 函数关键字参数
92
- Returns:
93
- 函数执行结果,重试失败返回None
94
- """
95
- attempt = 0
96
- while attempt < self.max_retry_attempts:
97
- try:
98
- return await func(*args, **kwargs)
99
- except (aiohttp.ClientConnectionResetError, asyncio.TimeoutError, aiohttp.ClientError) as e:
100
- attempt += 1
101
- if attempt >= self.max_retry_attempts:
102
- SYLogger.error(
103
- f"Request failed after {attempt} retries: {str(e)}")
104
- return None
105
- # 指数退避等待:0.5s → 1s → 2s(最大不超过5s)
106
- wait_time = min(self.retry_wait_base * (2 ** (attempt - 1)), 5)
107
- SYLogger.warning(
108
- f"Retry {func.__name__} (attempt {attempt}/{self.max_retry_attempts}): {str(e)}, wait {wait_time}s")
109
- await asyncio.sleep(wait_time)
110
- except Exception as e:
111
- # 非重试类异常直接返回None
112
- SYLogger.error(
113
- f"Non-retryable error in {func.__name__}: {str(e)}")
114
- return None
115
- return None
116
-
117
82
  def _get_embedding_url(self, model: str) -> str:
118
83
  """获取Embedding URL(带缓存)"""
119
84
  if model not in self._embedding_url_cache:
@@ -136,7 +101,7 @@ class Embedding(metaclass=SingletonMeta):
136
101
  timeout: aiohttp.ClientTimeout = None,
137
102
  **kwargs
138
103
  ):
139
- """embedding请求核心逻辑(剥离重试,供重试封装调用)"""
104
+ """embedding请求核心逻辑"""
140
105
  await self.init_session() # 确保Session已初始化
141
106
  async with self.semaphore:
142
107
  request_timeout = timeout or self.default_timeout
@@ -154,17 +119,33 @@ class Embedding(metaclass=SingletonMeta):
154
119
  request_body.update(kwargs)
155
120
 
156
121
  # 复用全局Session
157
- async with self.session.post(
158
- url,
159
- json=request_body,
160
- timeout=request_timeout
161
- ) as response:
162
- if response.status != 200:
163
- error_detail = await response.text()
164
- SYLogger.error(
165
- f"Embedding request failed (model: {target_model}): {error_detail}")
166
- return None
167
- return await response.json()
122
+ try:
123
+ async with self.session.post(
124
+ url,
125
+ json=request_body,
126
+ timeout=request_timeout
127
+ ) as response:
128
+ if response.status != 200:
129
+ error_detail = await response.text()
130
+ # [日志] 记录详细的HTTP错误响应
131
+ SYLogger.error(
132
+ f"Embedding request HTTP Error. Status: {response.status}, "
133
+ f"Model: {target_model}, URL: {url}. Detail: {error_detail}"
134
+ )
135
+ return None
136
+ return await response.json()
137
+ except (aiohttp.ClientConnectionResetError, asyncio.TimeoutError, aiohttp.ClientError) as e:
138
+ # [日志] 记录网络错误
139
+ SYLogger.error(
140
+ f"Embedding request Network Error. Model: {target_model}, URL: {url}. "
141
+ f"Error: {e.__class__.__name__} - {str(e)}"
142
+ )
143
+ return None
144
+ except Exception as e:
145
+ # 记录其他未预期的异常
146
+ SYLogger.error(
147
+ f"Unexpected error in _get_embeddings_http_core: {str(e)}", exc_info=True)
148
+ return None
168
149
 
169
150
  async def _get_embeddings_http_async(
170
151
  self,
@@ -173,9 +154,8 @@ class Embedding(metaclass=SingletonMeta):
173
154
  model: str = None,
174
155
  timeout: aiohttp.ClientTimeout = None, ** kwargs
175
156
  ):
176
- """对外暴露的embedding请求方法(包含重试)"""
177
- return await self._retry_request(
178
- self._get_embeddings_http_core,
157
+ """对外暴露的embedding请求方法"""
158
+ return await self._get_embeddings_http_core(
179
159
  input, encoding_format, model, timeout, ** kwargs
180
160
  )
181
161
 
@@ -190,7 +170,7 @@ class Embedding(metaclass=SingletonMeta):
190
170
  return_len: Optional[bool] = True,
191
171
  timeout: aiohttp.ClientTimeout = None, ** kwargs
192
172
  ):
193
- """reranker请求核心逻辑(剥离重试,供重试封装调用)"""
173
+ """reranker请求核心逻辑"""
194
174
  await self.init_session() # 确保Session已初始化
195
175
  async with self.semaphore:
196
176
  request_timeout = timeout or self.default_timeout
@@ -212,17 +192,33 @@ class Embedding(metaclass=SingletonMeta):
212
192
  request_body.update(kwargs)
213
193
 
214
194
  # 复用全局Session
215
- async with self.session.post(
216
- url,
217
- json=request_body,
218
- timeout=request_timeout
219
- ) as response:
220
- if response.status != 200:
221
- error_detail = await response.text()
222
- SYLogger.error(
223
- f"Rerank request failed (model: {target_model}): {error_detail}")
224
- return None
225
- return await response.json()
195
+ try:
196
+ async with self.session.post(
197
+ url,
198
+ json=request_body,
199
+ timeout=request_timeout
200
+ ) as response:
201
+ if response.status != 200:
202
+ error_detail = await response.text()
203
+ # [日志] 记录详细的HTTP错误响应
204
+ SYLogger.error(
205
+ f"Reranker request HTTP Error. Status: {response.status}, "
206
+ f"Model: {target_model}, URL: {url}. Detail: {error_detail}"
207
+ )
208
+ return None
209
+ return await response.json()
210
+ except (aiohttp.ClientConnectionResetError, asyncio.TimeoutError, aiohttp.ClientError) as e:
211
+ # [日志] 记录网络错误
212
+ SYLogger.error(
213
+ f"Reranker request Network Error. Model: {target_model}, URL: {url}. "
214
+ f"Error: {e.__class__.__name__} - {str(e)}"
215
+ )
216
+ return None
217
+ except Exception as e:
218
+ # 记录其他未预期的异常
219
+ SYLogger.error(
220
+ f"Unexpected error in _get_reranker_http_core: {str(e)}", exc_info=True)
221
+ return None
226
222
 
227
223
  async def _get_reranker_http_async(
228
224
  self,
@@ -235,13 +231,23 @@ class Embedding(metaclass=SingletonMeta):
235
231
  return_len: Optional[bool] = True,
236
232
  timeout: aiohttp.ClientTimeout = None, ** kwargs
237
233
  ):
238
- """对外暴露的reranker请求方法(包含重试)"""
239
- return await self._retry_request(
240
- self._get_reranker_http_core,
234
+ """对外暴露的reranker请求方法"""
235
+ return await self._get_reranker_http_core(
241
236
  documents, query, top_n, model, max_chunks_per_doc,
242
237
  return_documents, return_len, timeout, **kwargs
243
238
  )
244
239
 
240
+ def _get_dimension(self, model: str) -> int:
241
+ """获取模型维度,用于生成兜底零向量"""
242
+ try:
243
+ config = EmbeddingConfig.from_config(model)
244
+ if hasattr(config, 'dimension'):
245
+ return int(config.dimension)
246
+ except Exception:
247
+ pass
248
+ # 默认兜底 1024
249
+ return 1024
250
+
245
251
  async def get_embeddings(
246
252
  self,
247
253
  corpus: List[str],
@@ -280,51 +286,33 @@ class Embedding(metaclass=SingletonMeta):
280
286
  for i in range(0, len(corpus), batch_size):
281
287
  batch_texts = corpus[i: i + batch_size]
282
288
 
289
+ SYLogger.info(
290
+ f"Requesting embeddings for text: {len(batch_texts)} items (model: {actual_model}, timeout: {timeout or 'None'})")
291
+
283
292
  # 给每个异步任务传入模型名称和超时配置
284
293
  tasks = [self._get_embeddings_http_async(
285
- text, model=model, timeout=request_timeout) for text in batch_texts]
294
+ text, model=actual_model, timeout=request_timeout) for text in batch_texts]
286
295
  results = await asyncio.gather(*tasks)
287
296
 
288
297
  for result in results:
289
298
  if result is None:
290
- # [修复] 尝试获取真实维度或使用配置兜底,不再硬编码 1024
291
- dim = self._model_dim_cache.get(actual_model)
292
-
293
- # 如果缓存中没有维度,尝试从配置对象获取(假设Config类有dimension属性)
294
- if dim is None:
295
- try:
296
- config = EmbeddingConfig.from_config(actual_model)
297
- if hasattr(config, 'dimension'):
298
- dim = config.dimension
299
- else:
300
- # 最后的兜底:如果配置也没有,必须有一个默认值防止崩溃
301
- # bge-large 通常是 1024
302
- dim = 1024
303
- SYLogger.warning(
304
- f"Cannot get dimension from config for {actual_model}, use default 1024")
305
- except Exception:
306
- dim = 1024
299
+ dim = self._get_dimension(actual_model)
307
300
 
308
301
  zero_vector = [0.0] * dim
309
302
  all_vectors.append(zero_vector)
303
+ # [日志] 补充日志,明确是补零操作
310
304
  SYLogger.warning(
311
- f"Embedding request failed, append zero vector ({dim}D) for model {actual_model}")
305
+ f"Embedding request failed (returned None), appending zero vector ({dim}D) for model {actual_model}")
312
306
  continue
313
307
 
314
- # 从返回结果中提取向量并更新维度缓存
315
- # 正常情况下 result["data"] 是一个列表
308
+ # 从返回结果中提取向量
316
309
  try:
317
310
  for item in result["data"]:
318
311
  embedding = item["embedding"]
319
- # [修复] 动态学习并缓存维度
320
- if actual_model not in self._model_dim_cache:
321
- self._model_dim_cache[actual_model] = len(
322
- embedding)
323
312
  all_vectors.append(embedding)
324
313
  except (KeyError, TypeError) as e:
325
314
  SYLogger.error(f"Failed to parse embedding result: {e}")
326
- # 解析失败也补零
327
- dim = self._model_dim_cache.get(actual_model, 1024)
315
+ dim = self._get_dimension(actual_model)
328
316
  all_vectors.append([0.0] * dim)
329
317
 
330
318
  SYLogger.info(
@@ -360,9 +348,11 @@ class Embedding(metaclass=SingletonMeta):
360
348
  actual_model = model or self.default_reranker_model
361
349
  SYLogger.info(
362
350
  f"Requesting reranker for top_results: {top_results} (model: {actual_model}, max_concurrency: {self.max_concurrency}, timeout: {timeout or 'None'})")
363
-
351
+ # 打印请求参数
352
+ SYLogger.info(
353
+ f"Requesting reranker for top_results: {top_results} (model: {actual_model}) (query: {query}) (timeout: {timeout or 'None'})")
364
354
  data = await self._get_reranker_http_async(
365
- top_results, query, model=model, timeout=request_timeout)
355
+ top_results, query, model=actual_model, timeout=request_timeout)
366
356
  SYLogger.info(
367
357
  f"Reranker for top_results completed (model: {actual_model})")
368
358
  return data
sycommon/llm/get_llm.py CHANGED
@@ -3,11 +3,15 @@ from langchain.chat_models import init_chat_model
3
3
  from sycommon.config.LLMConfig import LLMConfig
4
4
  from sycommon.llm.sy_langfuse import LangfuseInitializer
5
5
  from sycommon.llm.usage_token import LLMWithAutoTokenUsage
6
+ from typing import Any
6
7
 
7
8
 
8
9
  def get_llm(
9
10
  model: str = None,
10
- streaming: bool = False
11
+ *,
12
+ streaming: bool = False,
13
+ temperature: float = 0.1,
14
+ **kwargs: Any
11
15
  ) -> LLMWithAutoTokenUsage:
12
16
  if not model:
13
17
  model = "Qwen2.5-72B"
@@ -16,22 +20,25 @@ def get_llm(
16
20
  if not llmConfig:
17
21
  raise Exception(f"无效的模型配置:{model}")
18
22
 
19
- # 初始化Langfuse
23
+ # 初始化 Langfuse
20
24
  langfuse_callbacks, langfuse = LangfuseInitializer.get()
21
-
22
25
  callbacks = [LLMLogger()] + langfuse_callbacks
23
26
 
24
- llm = init_chat_model(
25
- model_provider=llmConfig.provider,
26
- model=llmConfig.model,
27
- base_url=llmConfig.baseUrl,
28
- api_key="-",
29
- temperature=0.1,
30
- streaming=streaming,
31
- callbacks=callbacks
32
- )
27
+ init_params = {
28
+ "model_provider": llmConfig.provider,
29
+ "model": llmConfig.model,
30
+ "base_url": llmConfig.baseUrl,
31
+ "api_key": "-",
32
+ "callbacks": callbacks,
33
+ "temperature": temperature,
34
+ "streaming": streaming,
35
+ }
36
+
37
+ init_params.update(kwargs)
38
+
39
+ llm = init_chat_model(**init_params)
33
40
 
34
41
  if llm is None:
35
42
  raise Exception(f"初始化原始LLM实例失败:{model}")
36
43
 
37
- return LLMWithAutoTokenUsage(llm, langfuse)
44
+ return LLMWithAutoTokenUsage(llm, langfuse, llmConfig)
@@ -1,21 +1,109 @@
1
+ import tiktoken
1
2
  from typing import Dict, List, Optional, Any
2
3
  from langfuse import Langfuse, LangfuseSpan, propagate_attributes
3
4
  from sycommon.llm.llm_logger import LLMLogger
4
5
  from langchain_core.runnables import Runnable, RunnableConfig
5
- from langchain_core.messages import BaseMessage, HumanMessage
6
+ from langchain_core.messages import BaseMessage, SystemMessage, HumanMessage
6
7
  from sycommon.llm.llm_tokens import TokensCallbackHandler
7
8
  from sycommon.logging.kafka_log import SYLogger
9
+ from sycommon.config.LLMConfig import LLMConfig
8
10
  from sycommon.tools.env import get_env_var
9
11
  from sycommon.tools.merge_headers import get_header_value
10
12
 
11
13
 
12
14
  class StructuredRunnableWithToken(Runnable):
13
- """带Token统计的Runnable类"""
15
+ """
16
+ 统一功能 Runnable:Trace追踪 + Token统计 + 自动上下文压缩
17
+ """
14
18
 
15
- def __init__(self, retry_chain: Runnable, langfuse: Optional[Langfuse]):
19
+ def __init__(
20
+ self,
21
+ retry_chain: Runnable,
22
+ langfuse: Optional[Langfuse] = None,
23
+ llmConfig: Optional[LLMConfig] = None,
24
+ model_name: str = "Qwen2.5-72B",
25
+ enable_compression: bool = True,
26
+ threshold_ratio: float = 0.8
27
+ ):
16
28
  super().__init__()
17
29
  self.retry_chain = retry_chain
18
30
  self.langfuse = langfuse
31
+ self.llmConfig = llmConfig
32
+ self.model_name = model_name
33
+ self.enable_compression = enable_compression
34
+ self.threshold_ratio = threshold_ratio
35
+
36
+ # 初始化 Tokenizer
37
+ try:
38
+ self.encoding = tiktoken.encoding_for_model(model_name)
39
+ except KeyError:
40
+ self.encoding = tiktoken.get_encoding("cl100k_base")
41
+
42
+ def _count_tokens(self, messages: List[BaseMessage]) -> int:
43
+ """快速估算 Token 数量"""
44
+ num_tokens = 0
45
+ for message in messages:
46
+ num_tokens += 4 # 每条消息的固定开销
47
+ # 兼容 content 是字符串或者 dict 的情况
48
+ content = message.content
49
+ if isinstance(content, str):
50
+ num_tokens += len(self.encoding.encode(content))
51
+ elif isinstance(content, list): # 多模态或复杂结构
52
+ for item in content:
53
+ if isinstance(item, dict) and "text" in item:
54
+ num_tokens += len(self.encoding.encode(item["text"]))
55
+ elif isinstance(content, dict):
56
+ num_tokens += len(self.encoding.encode(str(content)))
57
+ return num_tokens
58
+
59
+ async def _acompress_context(self, messages: List[BaseMessage]) -> List[BaseMessage]:
60
+ """执行异步上下文压缩"""
61
+ # 策略:保留 System Prompt + 最近 N 条,中间的摘要
62
+ keep_last_n = 4
63
+
64
+ # 分离系统消息和对话消息
65
+ system_msgs = [m for m in messages if isinstance(m, SystemMessage)]
66
+ conversation = [
67
+ m for m in messages if not isinstance(m, SystemMessage)]
68
+
69
+ if len(conversation) <= keep_last_n:
70
+ return messages
71
+
72
+ to_summarize = conversation[:-keep_last_n]
73
+ keep_recent = conversation[-keep_last_n:]
74
+
75
+ # 构造摘要 Prompt
76
+ # 注意:这里直接使用 retry_chain 进行摘要,防止死循环
77
+ summary_prompt = [
78
+ SystemMessage(
79
+ content="请将上下文内容进行摘要,保留关键信息,将内容压缩到原来长度的50%左右,保留关键信息。"),
80
+ HumanMessage(content=f"历史记录:\n{to_summarize}\n\n摘要:")
81
+ ]
82
+
83
+ try:
84
+ SYLogger.info(
85
+ f"🚀 Triggering compression: {len(to_summarize)} messages -> summary")
86
+
87
+ # 调用子链生成摘要
88
+ # 【关键】必须清空 callbacks,否则 Langfuse 会递归追踪,导致死循环或噪音
89
+ summary_result = await self.retry_chain.ainvoke(
90
+ {"messages": summary_prompt},
91
+ config=RunnableConfig(callbacks=[])
92
+ )
93
+
94
+ summary_text = summary_result.content if hasattr(
95
+ summary_result, 'content') else str(summary_result)
96
+
97
+ # 重组消息:System + Summary + Recent
98
+ new_messages = system_msgs + \
99
+ [SystemMessage(
100
+ content=f"[History Summary]: {summary_text}")] + keep_recent
101
+ return new_messages
102
+
103
+ except Exception as e:
104
+ SYLogger.error(
105
+ f"❌ Compression failed: {e}, using original context.")
106
+ return messages
19
107
 
20
108
  def _adapt_input(self, input: Any) -> List[BaseMessage]:
21
109
  """适配输入格式"""
@@ -25,6 +113,10 @@ class StructuredRunnableWithToken(Runnable):
25
113
  return [input]
26
114
  elif isinstance(input, str):
27
115
  return [HumanMessage(content=input)]
116
+ elif isinstance(input, dict) and "messages" in input:
117
+ # 如果已经是标准格式字典,直接提取
118
+ msgs = input["messages"]
119
+ return msgs if isinstance(msgs, list) else [msgs]
28
120
  elif isinstance(input, dict) and "input" in input:
29
121
  return [HumanMessage(content=str(input["input"]))]
30
122
  else:
@@ -40,7 +132,7 @@ class StructuredRunnableWithToken(Runnable):
40
132
  token_handler = TokensCallbackHandler()
41
133
 
42
134
  if config is None:
43
- processed_config = {"callbacks": [], "metadata": {}}
135
+ processed_config = RunnableConfig(callbacks=[], metadata={})
44
136
  else:
45
137
  processed_config = config.copy()
46
138
  if "callbacks" not in processed_config:
@@ -59,6 +151,7 @@ class StructuredRunnableWithToken(Runnable):
59
151
  callbacks.append(LLMLogger())
60
152
  callbacks.append(token_handler)
61
153
 
154
+ # 去重
62
155
  callback_types = {}
63
156
  unique_callbacks = []
64
157
  for cb in callbacks:
@@ -131,6 +224,8 @@ class StructuredRunnableWithToken(Runnable):
131
224
  user_id=user_id
132
225
  )
133
226
 
227
+ # 【同步模式下不建议触发压缩,因为压缩本身是异步调用 LLM】
228
+ # 如果同步也要压缩,需要用 asyncio.run(...),这里暂时保持原逻辑直接透传
134
229
  adapted_input = self._adapt_input(input)
135
230
  input_data = {"messages": adapted_input}
136
231
 
@@ -169,12 +264,26 @@ class StructuredRunnableWithToken(Runnable):
169
264
  user_id=user_id
170
265
  )
171
266
 
267
+ # 1. 适配输入
172
268
  adapted_input = self._adapt_input(input)
269
+
270
+ # 2. 检查并执行上下文压缩 (仅在异步模式且开启时)
271
+ if self.enable_compression:
272
+ max_tokens = self.llmConfig.maxTokens
273
+ current_tokens = self._count_tokens(adapted_input)
274
+
275
+ if current_tokens > max_tokens * self.threshold_ratio:
276
+ SYLogger.warning(
277
+ f"⚠️ Context limit reached: {current_tokens}/{max_tokens}")
278
+ # 执行压缩,替换 adapted_input
279
+ adapted_input = await self._acompress_context(adapted_input)
280
+
173
281
  input_data = {"messages": adapted_input}
174
282
 
175
283
  if span:
176
284
  span.update_trace(input=input_data)
177
285
 
286
+ # 3. 调用子链
178
287
  structured_result = await self.retry_chain.ainvoke(
179
288
  input_data,
180
289
  config=processed_config
@@ -6,6 +6,7 @@ from langchain_core.output_parsers import PydanticOutputParser
6
6
  from langchain_core.messages import BaseMessage, HumanMessage
7
7
  from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
8
8
  from pydantic import BaseModel, ValidationError, Field
9
+ from sycommon.config.LLMConfig import LLMConfig
9
10
  from sycommon.llm.struct_token import StructuredRunnableWithToken
10
11
 
11
12
 
@@ -13,9 +14,10 @@ class LLMWithAutoTokenUsage(BaseChatModel):
13
14
  """自动为结构化调用返回token_usage的LLM包装类"""
14
15
  llm: BaseChatModel = Field(default=None)
15
16
  langfuse: Optional[Langfuse] = Field(default=None, exclude=True)
17
+ llmConfig: Optional[LLMConfig] = Field(default=None, exclude=True)
16
18
 
17
- def __init__(self, llm: BaseChatModel, langfuse: Langfuse, **kwargs):
18
- super().__init__(llm=llm, langfuse=langfuse, **kwargs)
19
+ def __init__(self, llm: BaseChatModel, langfuse: Langfuse, llmConfig: LLMConfig, **kwargs):
20
+ super().__init__(llm=llm, langfuse=langfuse, llmConfig=llmConfig, **kwargs)
19
21
 
20
22
  def with_structured_output(
21
23
  self,
@@ -106,7 +108,7 @@ class LLMWithAutoTokenUsage(BaseChatModel):
106
108
  "initial": 0.1, "max": 3.0, "exp_base": 2.0, "jitter": 1.0}
107
109
  )
108
110
 
109
- return StructuredRunnableWithToken(retry_chain, self.langfuse)
111
+ return StructuredRunnableWithToken(retry_chain, self.langfuse, self.llmConfig)
110
112
 
111
113
  # ========== 实现BaseChatModel抽象方法 ==========
112
114
  def _generate(self, messages, stop=None, run_manager=None, ** kwargs):
@@ -117,112 +117,112 @@ class RabbitMQClient:
117
117
  logger.info(f"队列重建成功: {self.queue_name}")
118
118
 
119
119
  async def connect(self) -> None:
120
+ """连接方法(修复恢复消费失效问题)"""
120
121
  if self._closed:
121
122
  raise RuntimeError("客户端已关闭,无法重新连接")
122
123
 
123
- # 1. 并发控制:使用 _connect_lock 保证只有一个协程在执行连接流程
124
- async with self._connect_lock:
125
- # 如果已经在连了,等待其完成
124
+ # 1. 获取 Condition
125
+ await self._connect_condition.acquire()
126
+
127
+ try:
128
+ # ===== 阶段 A: 快速检查与等待 =====
129
+ if await self.is_connected:
130
+ self._connect_condition.release()
131
+ return
132
+
126
133
  if self._connecting:
127
- logger.debug("连接正在进行中,等待现有连接完成...")
128
134
  try:
129
- # 等待条件变量,超时设为 60 秒防止死等
130
- await asyncio.wait_for(
131
- self._connect_condition.wait_for(
132
- lambda: not self._connecting),
133
- timeout=60.0
134
- )
135
+ logger.debug("连接正在进行中,等待现有连接完成...")
136
+ await asyncio.wait_for(self._connect_condition.wait(), timeout=60.0)
135
137
  except asyncio.TimeoutError:
138
+ self._connect_condition.release()
136
139
  raise RuntimeError("等待连接超时")
137
140
 
138
- # 等待结束后,再次检查状态
139
- if not await self.is_connected:
141
+ if await self.is_connected:
142
+ self._connect_condition.release()
143
+ return
144
+ else:
145
+ self._connect_condition.release()
140
146
  raise RuntimeError("等待重连后,连接状态依然无效")
141
- return
142
147
 
143
- # 标记开始连接
148
+ # ===== 阶段 B: 标记开始连接 =====
144
149
  self._connecting = True
150
+ # 【关键】释放锁,允许其他协程进入等待逻辑
151
+ self._connect_condition.release()
145
152
 
146
- # 释放 _connect_lock,允许其他协程读取状态,但在连接完成前阻止新的连接请求
147
- # 注意:这里释放了 _connect_lock,但 self._connecting = True 阻止了新的连接流程
153
+ except Exception as e:
154
+ if self._connect_condition.locked():
155
+ self._connect_condition.release()
156
+ raise
148
157
 
158
+ # === 阶段 C: 执行耗时的连接逻辑 (此时已释放锁,不阻塞其他协程) ===
149
159
  try:
150
- # --- 阶段1: 清理旧资源 ---
151
- # 重新获取锁进行资源清理
152
- async with self._connect_lock:
153
- was_consuming = self._consumer_tag is not None
154
-
155
- if self._channel_conn and self._conn_close_callback:
156
- try:
157
- self._channel_conn.close_callbacks.discard(
158
- self._conn_close_callback)
159
- except Exception:
160
- pass
161
-
162
- self._channel = None
163
- self._channel_conn = None
164
- self._exchange = None
165
- self._queue = None
166
- self._conn_close_callback = None
167
-
168
- # --- 阶段2: 获取新连接 (耗时IO) ---
160
+ # --- 步骤 1: 记录旧状态并清理资源 ---
161
+ # 必须在清理前记录状态
162
+ was_consuming = self._consumer_tag is not None
163
+
164
+ # 清理连接回调,防止旧的连接关闭触发新的重连
165
+ if self._channel_conn:
166
+ try:
167
+ if self._channel_conn.close_callbacks:
168
+ self._channel_conn.close_callbacks.clear()
169
+ except Exception:
170
+ pass
171
+
172
+ # 统一重置资源状态
173
+ self._channel = None
174
+ self._channel_conn = None
175
+ self._exchange = None
176
+ self._queue = None
177
+ self._consumer_tag = None
178
+
179
+ # --- 步骤 2: 获取新连接 ---
169
180
  self._channel, self._channel_conn = await self.connection_pool.acquire_channel()
170
181
 
171
- # 设置回调
182
+ # 设置连接关闭回调
172
183
  def on_conn_closed(conn, exc):
173
- logger.warning(f"检测到连接关闭: {exc}")
184
+ logger.warning(f"检测到底层连接关闭: {exc}")
174
185
  if not self._closed and not self._connecting:
175
186
  asyncio.create_task(self._safe_reconnect())
176
187
 
177
- self._conn_close_callback = on_conn_closed
178
188
  if self._channel_conn:
179
- self._channel_conn.close_callbacks.add(
180
- self._conn_close_callback)
189
+ self._channel_conn.close_callbacks.add(on_conn_closed)
181
190
 
182
- # 重建资源
191
+ # --- 步骤 3: 重建基础资源 (交换机和队列) ---
183
192
  await self._rebuild_resources()
184
193
 
185
- # --- 阶段3: 恢复消费 ---
186
- if was_consuming and self._message_handler and self.queue_name and self.queue_name.endswith(f".{self.app_name}"):
187
- logger.info("🔄 检测到重连前处于消费状态,尝试自动恢复...")
194
+ # --- 步骤 4: 恢复消费 ---
195
+ if was_consuming and self._message_handler:
196
+ logger.info("🔄 检测到重连前处于消费状态,尝试自动恢复消费...")
188
197
  try:
189
- self._queue = await self._channel.declare_queue(
190
- name=self.queue_name,
191
- durable=self.durable,
192
- auto_delete=self.auto_delete,
193
- passive=False,
194
- )
195
- await self._queue.bind(exchange=self._exchange, routing_key=self.routing_key)
196
- self._consumer_tag = await self._queue.consume(self._process_message_callback)
198
+ # 直接调用 start_consuming 来恢复,它内部包含了完整的队列检查和绑定逻辑
199
+ self._consumer_tag = await self.start_consuming()
197
200
  logger.info(f"✅ 消费已自动恢复: {self._consumer_tag}")
198
201
  except Exception as e:
199
202
  logger.error(f"❌ 自动恢复消费失败: {e}")
200
203
  self._consumer_tag = None
201
- else:
202
- self._consumer_tag = None
203
204
 
204
205
  logger.info("客户端连接初始化完成")
205
206
 
206
207
  except Exception as e:
207
208
  logger.error(f"客户端连接失败: {str(e)}", exc_info=True)
208
-
209
- # 异常时清理资源
210
- async with self._connect_lock:
211
- if self._channel_conn and self._conn_close_callback:
212
- self._channel_conn.close_callbacks.discard(
213
- self._conn_close_callback)
214
- self._channel = None
215
- self._channel_conn = None
216
- self._consumer_tag = None
217
-
209
+ # 异常时彻底清理
210
+ if self._channel_conn and self._channel_conn.close_callbacks:
211
+ self._channel_conn.close_callbacks.clear()
212
+ self._channel = None
213
+ self._channel_conn = None
214
+ self._queue = None
215
+ self._consumer_tag = None
218
216
  raise
219
217
 
220
218
  finally:
221
- # 【关键修复】必须在持有 Condition 内部锁的情况下调用 notify_all
222
- # 这里使用 async with self._connect_condition: 自动完成 acquire() ... notify_all() ... release()
223
- async with self._connect_condition:
219
+ # === 阶段 D: 恢复状态并通知 ===
220
+ await self._connect_condition.acquire()
221
+ try:
224
222
  self._connecting = False
225
223
  self._connect_condition.notify_all()
224
+ finally:
225
+ self._connect_condition.release()
226
226
 
227
227
  async def _safe_reconnect(self):
228
228
  """安全重连任务(仅用于被动监听连接关闭)"""
@@ -256,75 +256,38 @@ class RabbitMQClient:
256
256
  self._message_handler = handler
257
257
 
258
258
  async def _process_message_callback(self, message: AbstractIncomingMessage):
259
- # 定义标志位,记录我们是否需要重试(即业务是否失败)
260
- should_retry = False
261
-
262
259
  try:
263
260
  msg_obj: MQMsgModel
261
+
262
+ # 1. 解析消息
264
263
  if self.auto_parse_json:
265
264
  try:
266
265
  body_dict = json.loads(message.body.decode("utf-8"))
267
266
  msg_obj = MQMsgModel(**body_dict)
268
267
  except json.JSONDecodeError as e:
269
268
  logger.error(f"JSON解析失败: {e}")
270
- # 格式错误,无法处理,直接拒绝不重试
271
269
  await message.reject(requeue=False)
272
- return # 这里 return 了,不会走下面的 finally
270
+ return
273
271
  else:
274
272
  msg_obj = MQMsgModel(
275
273
  body=message.body.decode("utf-8"),
276
274
  routing_key=message.routing_key,
277
275
  delivery_tag=message.delivery_tag,
278
- traceId=message.headers.get("trace-id"),
276
+ traceId=message.headers.get(
277
+ "trace-id") if message.headers else SYLogger.get_trace_id(),
279
278
  )
280
279
 
281
280
  SYLogger.set_trace_id(msg_obj.traceId)
282
281
 
282
+ # 3. 执行业务逻辑
283
283
  if self._message_handler:
284
284
  await self._message_handler(msg_obj, message)
285
285
 
286
- # 如果正常执行到这里,说明业务成功
287
- # await message.ack()
288
- # 我们移除这里的 ack,统一交给 finally 处理
286
+ await message.ack()
289
287
 
290
288
  except Exception as e:
291
289
  logger.error(f"消息处理异常: {e}", exc_info=True)
292
- # 业务异常,标记需要重试
293
- should_retry = True
294
-
295
- finally:
296
- # 【核心修复】无论发生什么,最后都要给 MQ 一个交待
297
- if should_retry:
298
- headers = dict(message.headers) if message.headers else {}
299
- current_retry = int(headers.get("x-retry-count", 0))
300
-
301
- if current_retry >= 3:
302
- logger.warning(f"重试次数超限,丢弃消息: {message.delivery_tag}")
303
- await message.reject(requeue=False)
304
- else:
305
- headers["x-retry-count"] = current_retry + 1
306
- try:
307
- new_msg = Message(
308
- body=message.body,
309
- headers=headers,
310
- content_type=message.content_type,
311
- delivery_mode=message.delivery_mode
312
- )
313
- # 发送新消息用于重试
314
- await self._exchange.publish(new_msg, routing_key=message.routing_key)
315
-
316
- # 【关键】新消息发成功了,现在可以安全地 Ack 掉旧消息了
317
- # 这样旧消息才会从队列中移除,避免死循环
318
- await message.ack()
319
-
320
- except Exception as pub_err:
321
- logger.error(f"重试发布失败,消息将丢失: {pub_err}")
322
- # 发布失败,无法重试,只能丢弃旧消息(或者 Nack requeue=True)
323
- # 为了防止死循环,这里通常建议 Reject (False) 并配置死信队列
324
- await message.reject(requeue=False)
325
- else:
326
- # 业务正常执行,直接 Ack
327
- await message.ack()
290
+ await message.ack()
328
291
 
329
292
  async def start_consuming(self) -> Optional[ConsumerTag]:
330
293
  if self._closed:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sycommon-python-lib
3
- Version: 0.1.57b4
3
+ Version: 0.1.57b7
4
4
  Summary: Add your description here
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -25,6 +25,7 @@ Requires-Dist: pyyaml>=6.0.3
25
25
  Requires-Dist: sentry-sdk[fastapi]>=2.49.0
26
26
  Requires-Dist: sqlalchemy[asyncio]>=2.0.45
27
27
  Requires-Dist: starlette>=0.50.0
28
+ Requires-Dist: tiktoken>=0.12.0
28
29
  Requires-Dist: uvicorn>=0.40.0
29
30
 
30
31
  # sycommon-python-lib
@@ -19,13 +19,13 @@ sycommon/health/health_check.py,sha256=EhfbhspRpQiKJaxdtE-PzpKQO_ucaFKtQxIm16F5M
19
19
  sycommon/health/metrics.py,sha256=fHqO73JuhoZkNPR-xIlxieXiTCvttq-kG-tvxag1s1s,268
20
20
  sycommon/health/ping.py,sha256=FTlnIKk5y1mPfS1ZGOeT5IM_2udF5aqVLubEtuBp18M,250
21
21
  sycommon/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- sycommon/llm/embedding.py,sha256=rasx8xBOq-mQdWZ5RSzpwjbkAKi7Da-FDWiTm-Ga2Bs,15606
23
- sycommon/llm/get_llm.py,sha256=C48gt9GCwEpR26M-cUjM74_t-el18ZvlwpGhcQfR3gs,1054
22
+ sycommon/llm/embedding.py,sha256=Qi9mHQiOUVEcZd4elAaqsAyofdeLtPgU_LF35KlIFU4,14735
23
+ sycommon/llm/get_llm.py,sha256=eZtVx9yNl-VO3O6AhZzCECRTDXRsUTcR88os8hGyJIY,1241
24
24
  sycommon/llm/llm_logger.py,sha256=n4UeNy_-g4oHQOsw-VUzF4uo3JVRLtxaMp1FcI8FiEo,5437
25
25
  sycommon/llm/llm_tokens.py,sha256=-udDyFcmyzx6UAwIi6_d_wwI5kMd5w0-WcS2soVPQxg,4309
26
- sycommon/llm/struct_token.py,sha256=jlpZnTOLDmRDdrCuxZe-1pQopd6OmCM9B_gWZ48CnEQ,7655
26
+ sycommon/llm/struct_token.py,sha256=s8HQf6ZdqKRAnanAo8yPwAM-Ez4P9gGlhI_zBEffphM,12301
27
27
  sycommon/llm/sy_langfuse.py,sha256=NZv6ydfn3-cxqQvuB5WdnM9GYliO9qB_RWh_XqIS3VU,3692
28
- sycommon/llm/usage_token.py,sha256=n0hytuaHI4tJi6wuOS3bd-yWzQjZ-lx5w9egHs8uYgg,5140
28
+ sycommon/llm/usage_token.py,sha256=CDoA_UeZKpNvxH0vNZ8f58tfLV3wC4kd5e1Oferyy9s,5318
29
29
  sycommon/logging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
30
30
  sycommon/logging/async_sql_logger.py,sha256=_OY36XkUm__U3NhMgiecy-qd-nptZ_0gpE3J8lGAr58,2619
31
31
  sycommon/logging/kafka_log.py,sha256=gfOqdZe0HJ3PkIFfnNWG4DZVadxsCKJ6AmelR7_Z1Xs,9960
@@ -51,7 +51,7 @@ sycommon/models/mqsend_config.py,sha256=NQX9dc8PpuquMG36GCVhJe8omAW1KVXXqr6lSRU6
51
51
  sycommon/models/sso_user.py,sha256=i1WAN6k5sPcPApQEdtjpWDy7VrzWLpOrOQewGLGoGIw,2702
52
52
  sycommon/notice/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  sycommon/notice/uvicorn_monitor.py,sha256=VryQYcAtjijJuGDBimbVurgwxlsLaLtkNnABPDY5Tao,7332
54
- sycommon/rabbitmq/rabbitmq_client.py,sha256=PaO9shCi665MOuDXhSmRJtOBC-ayo9sD9U3rQq90Rqc,19071
54
+ sycommon/rabbitmq/rabbitmq_client.py,sha256=pAhyLfuHl72szLBr-nRqv-QKseT9x_QCR6Mu-IonP1U,16689
55
55
  sycommon/rabbitmq/rabbitmq_pool.py,sha256=BiFQgZPzSAFR-n5XhyIafoeWQXETF_31nFRDhMbe6aU,15577
56
56
  sycommon/rabbitmq/rabbitmq_service.py,sha256=XSHo9HuIJ_lq-vizRh4xJVdZr_2zLqeLhot09qb0euA,2025
57
57
  sycommon/rabbitmq/rabbitmq_service_client_manager.py,sha256=IP9TMFeG5LSrwFPEmOy1ce4baPxBUZnWJZR3nN_-XR4,8009
@@ -82,8 +82,8 @@ sycommon/tools/env.py,sha256=Ah-tBwG2C0_hwLGFebVQgKdWWXCjTzBuF23gCkLHYy4,2437
82
82
  sycommon/tools/merge_headers.py,sha256=u9u8_1ZIuGIminWsw45YJ5qnsx9MB-Fot0VPge7itPw,4941
83
83
  sycommon/tools/snowflake.py,sha256=xQlYXwYnI85kSJ1rZ89gMVBhzemP03xrMPVX9vVa3MY,9228
84
84
  sycommon/tools/timing.py,sha256=OiiE7P07lRoMzX9kzb8sZU9cDb0zNnqIlY5pWqHcnkY,2064
85
- sycommon_python_lib-0.1.57b4.dist-info/METADATA,sha256=DzUZnbSOLPma462MbLY8-WQAaj9wh9BjkB1eSGxzq1A,7301
86
- sycommon_python_lib-0.1.57b4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
87
- sycommon_python_lib-0.1.57b4.dist-info/entry_points.txt,sha256=q_h2nbvhhmdnsOUZEIwpuoDjaNfBF9XqppDEmQn9d_A,46
88
- sycommon_python_lib-0.1.57b4.dist-info/top_level.txt,sha256=98CJ-cyM2WIKxLz-Pf0AitWLhJyrfXvyY8slwjTXNuc,17
89
- sycommon_python_lib-0.1.57b4.dist-info/RECORD,,
85
+ sycommon_python_lib-0.1.57b7.dist-info/METADATA,sha256=e43DQ_eU9kbXuhiZpJF4ys1betxau0wepQuOm6v4l1c,7333
86
+ sycommon_python_lib-0.1.57b7.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
87
+ sycommon_python_lib-0.1.57b7.dist-info/entry_points.txt,sha256=q_h2nbvhhmdnsOUZEIwpuoDjaNfBF9XqppDEmQn9d_A,46
88
+ sycommon_python_lib-0.1.57b7.dist-info/top_level.txt,sha256=98CJ-cyM2WIKxLz-Pf0AitWLhJyrfXvyY8slwjTXNuc,17
89
+ sycommon_python_lib-0.1.57b7.dist-info/RECORD,,