sycommon-python-lib 0.1.57b1__py3-none-any.whl → 0.1.57b4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sycommon/llm/embedding.py CHANGED
@@ -1,8 +1,7 @@
1
1
  import asyncio
2
- import json
3
2
  import aiohttp
4
- from typing import Union, List, Optional
5
-
3
+ import atexit
4
+ from typing import Union, List, Optional, Dict
6
5
  from sycommon.config.Config import SingletonMeta
7
6
  from sycommon.config.EmbeddingConfig import EmbeddingConfig
8
7
  from sycommon.config.RerankerConfig import RerankerConfig
@@ -23,12 +22,113 @@ class Embedding(metaclass=SingletonMeta):
23
22
  self.reranker_base_url = RerankerConfig.from_config(
24
23
  self.default_reranker_model).baseUrl
25
24
 
25
+ # [修复] 缓存配置URL,避免高并发下重复读取配置文件
26
+ self._embedding_url_cache: Dict[str, str] = {
27
+ self.default_embedding_model: self.embeddings_base_url
28
+ }
29
+ self._reranker_url_cache: Dict[str, str] = {
30
+ self.default_reranker_model: self.reranker_base_url
31
+ }
32
+
33
+ # [修复] 缓存模型的向量维度,用于生成兜底零向量
34
+ self._model_dim_cache: Dict[str, int] = {}
35
+
26
36
  # 并发信号量
27
37
  self.semaphore = asyncio.Semaphore(self.max_concurrency)
28
- # 全局默认超时:永不超时(None)
29
38
  self.default_timeout = aiohttp.ClientTimeout(total=None)
30
39
 
31
- async def _get_embeddings_http_async(
40
+ # 核心优化:创建全局可复用的ClientSession(连接池复用)
41
+ self.session = None
42
+ # 重试配置(可根据需要调整)
43
+ self.max_retry_attempts = 3 # 最大重试次数
44
+ self.retry_wait_base = 0.5 # 基础等待时间(秒)
45
+
46
+ # [修复] 注册退出钩子,确保程序结束时关闭连接池
47
+ atexit.register(self._sync_close_session)
48
+
49
+ async def init_session(self):
50
+ """初始化全局ClientSession(仅创建一次)"""
51
+ if self.session is None or self.session.closed:
52
+ # 配置连接池参数,适配高并发
53
+ connector = aiohttp.TCPConnector(
54
+ limit=self.max_concurrency * 2, # 连接池最大连接数(建议是并发数的2倍)
55
+ limit_per_host=self.max_concurrency, # 每个域名的最大连接数
56
+ ttl_dns_cache=300, # DNS缓存时间
57
+ enable_cleanup_closed=True # 自动清理关闭的连接
58
+ )
59
+ self.session = aiohttp.ClientSession(
60
+ connector=connector,
61
+ timeout=self.default_timeout
62
+ )
63
+
64
+ async def close_session(self):
65
+ """关闭全局Session(程序退出时调用)"""
66
+ if self.session and not self.session.closed:
67
+ await self.session.close()
68
+
69
+ def _sync_close_session(self):
70
+ """同步关闭Session的封装,供atexit调用"""
71
+ # 注意:atexit在主线程运行,如果当前没有事件循环,这个操作可能会受限
72
+ # 但它能捕获大多数正常退出的场景。对于asyncio程序,建议显式调用cleanup
73
+ try:
74
+ loop = asyncio.get_event_loop()
75
+ if loop.is_running():
76
+ # 如果loop还在跑,创建一个任务去关闭
77
+ loop.create_task(self.close_session())
78
+ else:
79
+ # 如果loop已经停止,尝试运行一次
80
+ loop.run_until_complete(self.close_session())
81
+ except Exception:
82
+ # 静默处理清理失败,避免退出报错
83
+ pass
84
+
85
+ async def _retry_request(self, func, *args, **kwargs):
86
+ """
87
+ 原生异步重试封装函数
88
+ Args:
89
+ func: 待重试的异步函数
90
+ *args: 函数参数
91
+ **kwargs: 函数关键字参数
92
+ Returns:
93
+ 函数执行结果,重试失败返回None
94
+ """
95
+ attempt = 0
96
+ while attempt < self.max_retry_attempts:
97
+ try:
98
+ return await func(*args, **kwargs)
99
+ except (aiohttp.ClientConnectionResetError, asyncio.TimeoutError, aiohttp.ClientError) as e:
100
+ attempt += 1
101
+ if attempt >= self.max_retry_attempts:
102
+ SYLogger.error(
103
+ f"Request failed after {attempt} retries: {str(e)}")
104
+ return None
105
+ # 指数退避等待:0.5s → 1s → 2s(最大不超过5s)
106
+ wait_time = min(self.retry_wait_base * (2 ** (attempt - 1)), 5)
107
+ SYLogger.warning(
108
+ f"Retry {func.__name__} (attempt {attempt}/{self.max_retry_attempts}): {str(e)}, wait {wait_time}s")
109
+ await asyncio.sleep(wait_time)
110
+ except Exception as e:
111
+ # 非重试类异常直接返回None
112
+ SYLogger.error(
113
+ f"Non-retryable error in {func.__name__}: {str(e)}")
114
+ return None
115
+ return None
116
+
117
+ def _get_embedding_url(self, model: str) -> str:
118
+ """获取Embedding URL(带缓存)"""
119
+ if model not in self._embedding_url_cache:
120
+ self._embedding_url_cache[model] = EmbeddingConfig.from_config(
121
+ model).baseUrl
122
+ return self._embedding_url_cache[model]
123
+
124
+ def _get_reranker_url(self, model: str) -> str:
125
+ """获取Reranker URL(带缓存)"""
126
+ if model not in self._reranker_url_cache:
127
+ self._reranker_url_cache[model] = RerankerConfig.from_config(
128
+ model).baseUrl
129
+ return self._reranker_url_cache[model]
130
+
131
+ async def _get_embeddings_http_core(
32
132
  self,
33
133
  input: Union[str, List[str]],
34
134
  encoding_format: str = None,
@@ -36,13 +136,14 @@ class Embedding(metaclass=SingletonMeta):
36
136
  timeout: aiohttp.ClientTimeout = None,
37
137
  **kwargs
38
138
  ):
139
+ """embedding请求核心逻辑(剥离重试,供重试封装调用)"""
140
+ await self.init_session() # 确保Session已初始化
39
141
  async with self.semaphore:
40
- # 优先使用传入的超时,无则用全局默认
41
142
  request_timeout = timeout or self.default_timeout
42
-
43
- # 优先使用传入的模型名,无则用默认值
44
143
  target_model = model or self.default_embedding_model
45
- target_base_url = EmbeddingConfig.from_config(target_model).baseUrl
144
+
145
+ # [修复] 使用缓存获取URL
146
+ target_base_url = self._get_embedding_url(target_model)
46
147
  url = f"{target_base_url}/v1/embeddings"
47
148
 
48
149
  request_body = {
@@ -52,25 +153,33 @@ class Embedding(metaclass=SingletonMeta):
52
153
  }
53
154
  request_body.update(kwargs)
54
155
 
55
- try:
56
- async with aiohttp.ClientSession(timeout=request_timeout) as session:
57
- async with session.post(url, json=request_body) as response:
58
- if response.status != 200:
59
- error_detail = await response.text()
60
- SYLogger.error(
61
- f"Embedding request failed (model: {target_model}): {error_detail}")
62
- return None
63
- return await response.json()
64
- except asyncio.TimeoutError:
65
- SYLogger.error(
66
- f"Embedding request timeout (model: {target_model})")
67
- return None
68
- except Exception as e:
69
- SYLogger.error(
70
- f"Embedding request unexpected error (model: {target_model}): {str(e)}")
71
- return None
156
+ # 复用全局Session
157
+ async with self.session.post(
158
+ url,
159
+ json=request_body,
160
+ timeout=request_timeout
161
+ ) as response:
162
+ if response.status != 200:
163
+ error_detail = await response.text()
164
+ SYLogger.error(
165
+ f"Embedding request failed (model: {target_model}): {error_detail}")
166
+ return None
167
+ return await response.json()
72
168
 
73
- async def _get_reranker_http_async(
169
+ async def _get_embeddings_http_async(
170
+ self,
171
+ input: Union[str, List[str]],
172
+ encoding_format: str = None,
173
+ model: str = None,
174
+ timeout: aiohttp.ClientTimeout = None, ** kwargs
175
+ ):
176
+ """对外暴露的embedding请求方法(包含重试)"""
177
+ return await self._retry_request(
178
+ self._get_embeddings_http_core,
179
+ input, encoding_format, model, timeout, ** kwargs
180
+ )
181
+
182
+ async def _get_reranker_http_core(
74
183
  self,
75
184
  documents: List[str],
76
185
  query: str,
@@ -79,16 +188,16 @@ class Embedding(metaclass=SingletonMeta):
79
188
  max_chunks_per_doc: Optional[int] = None,
80
189
  return_documents: Optional[bool] = True,
81
190
  return_len: Optional[bool] = True,
82
- timeout: aiohttp.ClientTimeout = None,
83
- **kwargs
191
+ timeout: aiohttp.ClientTimeout = None, ** kwargs
84
192
  ):
193
+ """reranker请求核心逻辑(剥离重试,供重试封装调用)"""
194
+ await self.init_session() # 确保Session已初始化
85
195
  async with self.semaphore:
86
- # 优先使用传入的超时,无则用全局默认
87
196
  request_timeout = timeout or self.default_timeout
88
-
89
- # 优先使用传入的模型名,无则用默认值
90
197
  target_model = model or self.default_reranker_model
91
- target_base_url = RerankerConfig.from_config(target_model).baseUrl
198
+
199
+ # [修复] 使用缓存获取URL
200
+ target_base_url = self._get_reranker_url(target_model)
92
201
  url = f"{target_base_url}/v1/rerank"
93
202
 
94
203
  request_body = {
@@ -99,27 +208,39 @@ class Embedding(metaclass=SingletonMeta):
99
208
  "max_chunks_per_doc": max_chunks_per_doc,
100
209
  "return_documents": return_documents,
101
210
  "return_len": return_len,
102
- "kwargs": json.dumps(kwargs),
103
211
  }
104
212
  request_body.update(kwargs)
105
213
 
106
- try:
107
- async with aiohttp.ClientSession(timeout=request_timeout) as session:
108
- async with session.post(url, json=request_body) as response:
109
- if response.status != 200:
110
- error_detail = await response.text()
111
- SYLogger.error(
112
- f"Rerank request failed (model: {target_model}): {error_detail}")
113
- return None
114
- return await response.json()
115
- except asyncio.TimeoutError:
116
- SYLogger.error(
117
- f"Rerank request timeout (model: {target_model})")
118
- return None
119
- except Exception as e:
120
- SYLogger.error(
121
- f"Rerank request unexpected error (model: {target_model}): {str(e)}")
122
- return None
214
+ # 复用全局Session
215
+ async with self.session.post(
216
+ url,
217
+ json=request_body,
218
+ timeout=request_timeout
219
+ ) as response:
220
+ if response.status != 200:
221
+ error_detail = await response.text()
222
+ SYLogger.error(
223
+ f"Rerank request failed (model: {target_model}): {error_detail}")
224
+ return None
225
+ return await response.json()
226
+
227
+ async def _get_reranker_http_async(
228
+ self,
229
+ documents: List[str],
230
+ query: str,
231
+ top_n: Optional[int] = None,
232
+ model: str = None,
233
+ max_chunks_per_doc: Optional[int] = None,
234
+ return_documents: Optional[bool] = True,
235
+ return_len: Optional[bool] = True,
236
+ timeout: aiohttp.ClientTimeout = None, ** kwargs
237
+ ):
238
+ """对外暴露的reranker请求方法(包含重试)"""
239
+ return await self._retry_request(
240
+ self._get_reranker_http_core,
241
+ documents, query, top_n, model, max_chunks_per_doc,
242
+ return_documents, return_len, timeout, **kwargs
243
+ )
123
244
 
124
245
  async def get_embeddings(
125
246
  self,
@@ -145,28 +266,70 @@ class Embedding(metaclass=SingletonMeta):
145
266
  SYLogger.warning(
146
267
  f"Invalid timeout type: {type(timeout)}, must be int/float, use default timeout")
147
268
 
269
+ actual_model = model or self.default_embedding_model
270
+
148
271
  SYLogger.info(
149
- f"Requesting embeddings for corpus: {corpus} (model: {model or self.default_embedding_model}, max_concurrency: {self.max_concurrency}, timeout: {timeout or 'None'})")
150
-
151
- # 给每个异步任务传入模型名称和超时配置
152
- tasks = [self._get_embeddings_http_async(
153
- text, model=model, timeout=request_timeout) for text in corpus]
154
- results = await asyncio.gather(*tasks)
155
-
156
- vectors = []
157
- for result in results:
158
- if result is None:
159
- zero_vector = [0.0] * 1024
160
- vectors.append(zero_vector)
161
- SYLogger.warning(
162
- f"Embedding request failed, append zero vector (1024D)")
163
- continue
164
- for item in result["data"]:
165
- vectors.append(item["embedding"])
272
+ f"Requesting embeddings for corpus: {len(corpus)} items (model: {actual_model}, max_concurrency: {self.max_concurrency}, timeout: {timeout or 'None'})")
273
+
274
+ all_vectors = []
275
+
276
+ # [修复] 增加 Chunk 处理逻辑,防止 corpus 过大导致内存溢出或协程过多
277
+ # 每次最多处理 max_concurrency * 2 个请求,避免一次性创建几十万个协程
278
+ batch_size = self.max_concurrency * 2
279
+
280
+ for i in range(0, len(corpus), batch_size):
281
+ batch_texts = corpus[i: i + batch_size]
282
+
283
+ # 给每个异步任务传入模型名称和超时配置
284
+ tasks = [self._get_embeddings_http_async(
285
+ text, model=model, timeout=request_timeout) for text in batch_texts]
286
+ results = await asyncio.gather(*tasks)
287
+
288
+ for result in results:
289
+ if result is None:
290
+ # [修复] 尝试获取真实维度或使用配置兜底,不再硬编码 1024
291
+ dim = self._model_dim_cache.get(actual_model)
292
+
293
+ # 如果缓存中没有维度,尝试从配置对象获取(假设Config类有dimension属性)
294
+ if dim is None:
295
+ try:
296
+ config = EmbeddingConfig.from_config(actual_model)
297
+ if hasattr(config, 'dimension'):
298
+ dim = config.dimension
299
+ else:
300
+ # 最后的兜底:如果配置也没有,必须有一个默认值防止崩溃
301
+ # bge-large 通常是 1024
302
+ dim = 1024
303
+ SYLogger.warning(
304
+ f"Cannot get dimension from config for {actual_model}, use default 1024")
305
+ except Exception:
306
+ dim = 1024
307
+
308
+ zero_vector = [0.0] * dim
309
+ all_vectors.append(zero_vector)
310
+ SYLogger.warning(
311
+ f"Embedding request failed, append zero vector ({dim}D) for model {actual_model}")
312
+ continue
313
+
314
+ # 从返回结果中提取向量并更新维度缓存
315
+ # 正常情况下 result["data"] 是一个列表
316
+ try:
317
+ for item in result["data"]:
318
+ embedding = item["embedding"]
319
+ # [修复] 动态学习并缓存维度
320
+ if actual_model not in self._model_dim_cache:
321
+ self._model_dim_cache[actual_model] = len(
322
+ embedding)
323
+ all_vectors.append(embedding)
324
+ except (KeyError, TypeError) as e:
325
+ SYLogger.error(f"Failed to parse embedding result: {e}")
326
+ # 解析失败也补零
327
+ dim = self._model_dim_cache.get(actual_model, 1024)
328
+ all_vectors.append([0.0] * dim)
166
329
 
167
330
  SYLogger.info(
168
- f"Embeddings for corpus: {corpus} created (model: {model or self.default_embedding_model})")
169
- return vectors
331
+ f"Embeddings for corpus created: {len(all_vectors)} vectors (model: {actual_model})")
332
+ return all_vectors
170
333
 
171
334
  async def get_reranker(
172
335
  self,
@@ -194,11 +357,12 @@ class Embedding(metaclass=SingletonMeta):
194
357
  SYLogger.warning(
195
358
  f"Invalid timeout type: {type(timeout)}, must be int/float, use default timeout")
196
359
 
360
+ actual_model = model or self.default_reranker_model
197
361
  SYLogger.info(
198
- f"Requesting reranker for top_results: {top_results} (model: {model or self.default_reranker_model}, max_concurrency: {self.max_concurrency}, timeout: {timeout or 'None'})")
362
+ f"Requesting reranker for top_results: {top_results} (model: {actual_model}, max_concurrency: {self.max_concurrency}, timeout: {timeout or 'None'})")
199
363
 
200
364
  data = await self._get_reranker_http_async(
201
365
  top_results, query, model=model, timeout=request_timeout)
202
366
  SYLogger.info(
203
- f"Reranker for top_results: {top_results} completed (model: {model or self.default_reranker_model})")
367
+ f"Reranker for top_results completed (model: {actual_model})")
204
368
  return data
@@ -256,6 +256,9 @@ class RabbitMQClient:
256
256
  self._message_handler = handler
257
257
 
258
258
  async def _process_message_callback(self, message: AbstractIncomingMessage):
259
+ # 定义标志位,记录我们是否需要重试(即业务是否失败)
260
+ should_retry = False
261
+
259
262
  try:
260
263
  msg_obj: MQMsgModel
261
264
  if self.auto_parse_json:
@@ -264,8 +267,9 @@ class RabbitMQClient:
264
267
  msg_obj = MQMsgModel(**body_dict)
265
268
  except json.JSONDecodeError as e:
266
269
  logger.error(f"JSON解析失败: {e}")
267
- await message.nack(requeue=False)
268
- return
270
+ # 格式错误,无法处理,直接拒绝不重试
271
+ await message.reject(requeue=False)
272
+ return # 这里 return 了,不会走下面的 finally
269
273
  else:
270
274
  msg_obj = MQMsgModel(
271
275
  body=message.body.decode("utf-8"),
@@ -279,32 +283,48 @@ class RabbitMQClient:
279
283
  if self._message_handler:
280
284
  await self._message_handler(msg_obj, message)
281
285
 
282
- await message.ack()
286
+ # 如果正常执行到这里,说明业务成功
287
+ # await message.ack()
288
+ # 我们移除这里的 ack,统一交给 finally 处理
283
289
 
284
290
  except Exception as e:
285
291
  logger.error(f"消息处理异常: {e}", exc_info=True)
286
- headers = dict(message.headers) if message.headers else {}
287
- current_retry = int(headers.get("x-retry-count", 0))
292
+ # 业务异常,标记需要重试
293
+ should_retry = True
288
294
 
289
- if current_retry >= 3:
290
- logger.warning(f"重试次数超限,丢弃消息: {message.delivery_tag}")
291
- await message.reject(requeue=False)
292
- else:
293
- headers["x-retry-count"] = current_retry + 1
294
- try:
295
- new_msg = Message(
296
- body=message.body,
297
- headers=headers,
298
- content_type=message.content_type,
299
- delivery_mode=message.delivery_mode
300
- )
301
- # 这里的 publish 如果失败,会触发重连机制
302
- # 但注意,当前是在回调线程中,建议做好异常捕获
303
- await self._exchange.publish(new_msg, routing_key=message.routing_key)
304
- await message.ack()
305
- except Exception as pub_err:
306
- logger.error(f"重试发布失败: {pub_err}")
295
+ finally:
296
+ # 【核心修复】无论发生什么,最后都要给 MQ 一个交待
297
+ if should_retry:
298
+ headers = dict(message.headers) if message.headers else {}
299
+ current_retry = int(headers.get("x-retry-count", 0))
300
+
301
+ if current_retry >= 3:
302
+ logger.warning(f"重试次数超限,丢弃消息: {message.delivery_tag}")
307
303
  await message.reject(requeue=False)
304
+ else:
305
+ headers["x-retry-count"] = current_retry + 1
306
+ try:
307
+ new_msg = Message(
308
+ body=message.body,
309
+ headers=headers,
310
+ content_type=message.content_type,
311
+ delivery_mode=message.delivery_mode
312
+ )
313
+ # 发送新消息用于重试
314
+ await self._exchange.publish(new_msg, routing_key=message.routing_key)
315
+
316
+ # 【关键】新消息发成功了,现在可以安全地 Ack 掉旧消息了
317
+ # 这样旧消息才会从队列中移除,避免死循环
318
+ await message.ack()
319
+
320
+ except Exception as pub_err:
321
+ logger.error(f"重试发布失败,消息将丢失: {pub_err}")
322
+ # 发布失败,无法重试,只能丢弃旧消息(或者 Nack requeue=True)
323
+ # 为了防止死循环,这里通常建议 Reject (False) 并配置死信队列
324
+ await message.reject(requeue=False)
325
+ else:
326
+ # 业务正常执行,直接 Ack
327
+ await message.ack()
308
328
 
309
329
  async def start_consuming(self) -> Optional[ConsumerTag]:
310
330
  if self._closed:
@@ -2,6 +2,7 @@ import threading
2
2
  import time
3
3
  from typing import Optional
4
4
  import nacos
5
+ from sycommon.config.Config import Config
5
6
  from sycommon.logging.kafka_log import SYLogger
6
7
 
7
8
 
@@ -94,8 +95,9 @@ class NacosClientBase:
94
95
 
95
96
  try:
96
97
  namespace_id = self.nacos_config['namespaceId']
98
+ service_name = Config().config.get('Name', '')
97
99
  self.nacos_client.list_naming_instance(
98
- service_name="", # 空服务名仅用于验证连接
100
+ service_name=service_name,
99
101
  namespace_id=namespace_id,
100
102
  group_name="DEFAULT_GROUP",
101
103
  healthy_only=True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sycommon-python-lib
3
- Version: 0.1.57b1
3
+ Version: 0.1.57b4
4
4
  Summary: Add your description here
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -19,7 +19,7 @@ sycommon/health/health_check.py,sha256=EhfbhspRpQiKJaxdtE-PzpKQO_ucaFKtQxIm16F5M
19
19
  sycommon/health/metrics.py,sha256=fHqO73JuhoZkNPR-xIlxieXiTCvttq-kG-tvxag1s1s,268
20
20
  sycommon/health/ping.py,sha256=FTlnIKk5y1mPfS1ZGOeT5IM_2udF5aqVLubEtuBp18M,250
21
21
  sycommon/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- sycommon/llm/embedding.py,sha256=HknwDqXmRQcAZ8-6d8wZ6n7Bv7HtxTajDt1vvzHGeFQ,8411
22
+ sycommon/llm/embedding.py,sha256=rasx8xBOq-mQdWZ5RSzpwjbkAKi7Da-FDWiTm-Ga2Bs,15606
23
23
  sycommon/llm/get_llm.py,sha256=C48gt9GCwEpR26M-cUjM74_t-el18ZvlwpGhcQfR3gs,1054
24
24
  sycommon/llm/llm_logger.py,sha256=n4UeNy_-g4oHQOsw-VUzF4uo3JVRLtxaMp1FcI8FiEo,5437
25
25
  sycommon/llm/llm_tokens.py,sha256=-udDyFcmyzx6UAwIi6_d_wwI5kMd5w0-WcS2soVPQxg,4309
@@ -51,7 +51,7 @@ sycommon/models/mqsend_config.py,sha256=NQX9dc8PpuquMG36GCVhJe8omAW1KVXXqr6lSRU6
51
51
  sycommon/models/sso_user.py,sha256=i1WAN6k5sPcPApQEdtjpWDy7VrzWLpOrOQewGLGoGIw,2702
52
52
  sycommon/notice/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
53
53
  sycommon/notice/uvicorn_monitor.py,sha256=VryQYcAtjijJuGDBimbVurgwxlsLaLtkNnABPDY5Tao,7332
54
- sycommon/rabbitmq/rabbitmq_client.py,sha256=hAbLOioU_clucJ9xq88Oo-waZOuU0ii4yBVGIjz1nBE,17992
54
+ sycommon/rabbitmq/rabbitmq_client.py,sha256=PaO9shCi665MOuDXhSmRJtOBC-ayo9sD9U3rQq90Rqc,19071
55
55
  sycommon/rabbitmq/rabbitmq_pool.py,sha256=BiFQgZPzSAFR-n5XhyIafoeWQXETF_31nFRDhMbe6aU,15577
56
56
  sycommon/rabbitmq/rabbitmq_service.py,sha256=XSHo9HuIJ_lq-vizRh4xJVdZr_2zLqeLhot09qb0euA,2025
57
57
  sycommon/rabbitmq/rabbitmq_service_client_manager.py,sha256=IP9TMFeG5LSrwFPEmOy1ce4baPxBUZnWJZR3nN_-XR4,8009
@@ -69,7 +69,7 @@ sycommon/synacos/example.py,sha256=61XL03tU8WTNOo3FUduf93F2fAwah1S0lbH1ufhRhRk,5
69
69
  sycommon/synacos/example2.py,sha256=adUaru3Hy482KrOA17DfaC4nwvLj8etIDS_KrWLWmCU,4811
70
70
  sycommon/synacos/feign.py,sha256=frB3D5LeFDtT3pJLFOwFzEOrNAJKeQNGk-BzUg9T3WM,8295
71
71
  sycommon/synacos/feign_client.py,sha256=ExO7Pd5B3eFKDjXqBRc260K1jkI49IYguLwJJaD2R-o,16166
72
- sycommon/synacos/nacos_client_base.py,sha256=l5jpall6nEt0Hy07Wk-PVU0VN0BmD_Mmtldmtyvvksg,4526
72
+ sycommon/synacos/nacos_client_base.py,sha256=KZgQAg9Imfr_TfM-4LXdtrnTdJ-beu6bcNJa0c2HauE,4600
73
73
  sycommon/synacos/nacos_config_manager.py,sha256=Cff-4gpp0aD7sQVi-nEvDO4BWqK9abEDDDJ9qXKFQgs,4399
74
74
  sycommon/synacos/nacos_heartbeat_manager.py,sha256=G80_pOn37WdO_HpYUiAfpwMqAxW0ff0Bnw0NEuge9v0,5568
75
75
  sycommon/synacos/nacos_service.py,sha256=BezQ1eDIYwBPE567Po_Qh1Ki_z9WmhZy1J1NiTPbdHY,6118
@@ -82,8 +82,8 @@ sycommon/tools/env.py,sha256=Ah-tBwG2C0_hwLGFebVQgKdWWXCjTzBuF23gCkLHYy4,2437
82
82
  sycommon/tools/merge_headers.py,sha256=u9u8_1ZIuGIminWsw45YJ5qnsx9MB-Fot0VPge7itPw,4941
83
83
  sycommon/tools/snowflake.py,sha256=xQlYXwYnI85kSJ1rZ89gMVBhzemP03xrMPVX9vVa3MY,9228
84
84
  sycommon/tools/timing.py,sha256=OiiE7P07lRoMzX9kzb8sZU9cDb0zNnqIlY5pWqHcnkY,2064
85
- sycommon_python_lib-0.1.57b1.dist-info/METADATA,sha256=SSwWUy9hRgJhiqL1ulY91dBhEegshkvsXXLTKxNnXTc,7301
86
- sycommon_python_lib-0.1.57b1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
87
- sycommon_python_lib-0.1.57b1.dist-info/entry_points.txt,sha256=q_h2nbvhhmdnsOUZEIwpuoDjaNfBF9XqppDEmQn9d_A,46
88
- sycommon_python_lib-0.1.57b1.dist-info/top_level.txt,sha256=98CJ-cyM2WIKxLz-Pf0AitWLhJyrfXvyY8slwjTXNuc,17
89
- sycommon_python_lib-0.1.57b1.dist-info/RECORD,,
85
+ sycommon_python_lib-0.1.57b4.dist-info/METADATA,sha256=DzUZnbSOLPma462MbLY8-WQAaj9wh9BjkB1eSGxzq1A,7301
86
+ sycommon_python_lib-0.1.57b4.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
87
+ sycommon_python_lib-0.1.57b4.dist-info/entry_points.txt,sha256=q_h2nbvhhmdnsOUZEIwpuoDjaNfBF9XqppDEmQn9d_A,46
88
+ sycommon_python_lib-0.1.57b4.dist-info/top_level.txt,sha256=98CJ-cyM2WIKxLz-Pf0AitWLhJyrfXvyY8slwjTXNuc,17
89
+ sycommon_python_lib-0.1.57b4.dist-info/RECORD,,