sycommon-python-lib 0.1.56b17__py3-none-any.whl → 0.1.57__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
sycommon/llm/get_llm.py CHANGED
@@ -1,282 +1,8 @@
1
- import os
2
- from typing import Dict, Tuple, Type, List, Optional, Callable, Any
3
- from langfuse import Langfuse, get_client, propagate_attributes
4
- from sycommon.config.Config import Config
5
1
  from sycommon.llm.llm_logger import LLMLogger
6
- from langchain_core.language_models import BaseChatModel
7
- from langchain_core.runnables import Runnable, RunnableLambda, RunnableConfig
8
- from langchain_core.output_parsers import PydanticOutputParser
9
- from langchain_core.messages import BaseMessage, HumanMessage
10
2
  from langchain.chat_models import init_chat_model
11
- from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
12
- from pydantic import BaseModel, ValidationError, Field
13
3
  from sycommon.config.LLMConfig import LLMConfig
14
- from sycommon.llm.llm_tokens import TokensCallbackHandler
15
- from sycommon.logging.kafka_log import SYLogger
16
- from sycommon.tools.env import get_env_var
17
- from langfuse.langchain import CallbackHandler
18
-
19
-
20
- class StructuredRunnableWithToken(Runnable):
21
- """带Token统计的Runnable类"""
22
-
23
- def __init__(self, retry_chain: Runnable, langfuse: Langfuse):
24
- super().__init__()
25
- self.retry_chain = retry_chain
26
- self.langfuse = langfuse
27
- self.metadata = {"langfuse_session_id": SYLogger.get_trace_id()}
28
-
29
- def _adapt_input(self, input: Any) -> List[BaseMessage]:
30
- """适配输入格式"""
31
- if isinstance(input, list) and all(isinstance(x, BaseMessage) for x in input):
32
- return input
33
- elif isinstance(input, BaseMessage):
34
- return [input]
35
- elif isinstance(input, str):
36
- return [HumanMessage(content=input)]
37
- elif isinstance(input, dict) and "input" in input:
38
- return [HumanMessage(content=str(input["input"]))]
39
- else:
40
- raise ValueError(f"不支持的输入格式:{type(input)}")
41
-
42
- def _get_callback_config(self, config: Optional[RunnableConfig] = None) -> tuple[RunnableConfig, TokensCallbackHandler]:
43
- """构建包含Token统计的回调配置"""
44
- # 每次调用创建新的Token处理器实例
45
- token_handler = TokensCallbackHandler()
46
-
47
- # 初始化配置
48
- if config is None:
49
- processed_config = {"callbacks": []}
50
- else:
51
- processed_config = config.copy()
52
- if "callbacks" not in processed_config:
53
- processed_config["callbacks"] = []
54
-
55
- # 添加回调(去重)
56
- callbacks = processed_config["callbacks"]
57
- # 添加LLMLogger(如果不存在)
58
- if not any(isinstance(cb, LLMLogger) for cb in callbacks):
59
- callbacks.append(LLMLogger())
60
- # 添加Token处理器
61
- callbacks.append(token_handler)
62
-
63
- # 按类型去重
64
- callback_types = {}
65
- unique_callbacks = []
66
- for cb in callbacks:
67
- cb_type = type(cb)
68
- if cb_type not in callback_types:
69
- callback_types[cb_type] = cb
70
- unique_callbacks.append(cb)
71
-
72
- processed_config["callbacks"] = unique_callbacks
73
-
74
- return processed_config, token_handler
75
-
76
- # 同步调用
77
- def invoke(self, input: Any, config: Optional[RunnableConfig] = None, ** kwargs) -> Dict[str, Any]:
78
- try:
79
- with self.langfuse.start_as_current_observation(as_type="span", name="invoke") as span:
80
- with propagate_attributes(session_id=SYLogger.get_trace_id(), user_id=get_env_var('VERSION')):
81
- processed_config, token_handler = self._get_callback_config(
82
- config)
83
- adapted_input = self._adapt_input(input)
84
-
85
- span.update_trace(
86
- input={"messages": adapted_input}
87
- )
88
-
89
- structured_result = self.retry_chain.invoke(
90
- {"messages": adapted_input},
91
- config={**processed_config, **self.metadata},
92
- **kwargs
93
- )
94
-
95
- span.update_trace(output=structured_result)
96
-
97
- token_usage = token_handler.usage_metadata
98
- structured_result._token_usage_ = token_usage
99
-
100
- return structured_result
101
-
102
- except Exception as e:
103
- SYLogger.error(f"同步LLM调用失败: {str(e)}", exc_info=True)
104
- return None
105
-
106
- # 异步调用
107
- async def ainvoke(self, input: Any, config: Optional[RunnableConfig] = None, ** kwargs) -> Dict[str, Any]:
108
- try:
109
- with self.langfuse.start_as_current_observation(as_type="span", name="ainvoke") as span:
110
- with propagate_attributes(session_id=SYLogger.get_trace_id(), user_id=get_env_var('VERSION')):
111
- processed_config, token_handler = self._get_callback_config(
112
- config)
113
- adapted_input = self._adapt_input(input)
114
-
115
- span.update_trace(
116
- input={"messages": adapted_input}
117
- )
118
-
119
- structured_result = await self.retry_chain.ainvoke(
120
- {"messages": adapted_input},
121
- config={**processed_config, **self.metadata},
122
- **kwargs
123
- )
124
-
125
- span.update_trace(output=structured_result)
126
-
127
- token_usage = token_handler.usage_metadata
128
- structured_result._token_usage_ = token_usage
129
-
130
- return structured_result
131
-
132
- except Exception as e:
133
- SYLogger.error(f"异步LLM调用失败: {str(e)}", exc_info=True)
134
- return None
135
-
136
-
137
- class LLMWithAutoTokenUsage(BaseChatModel):
138
- """自动为结构化调用返回token_usage的LLM包装类"""
139
- llm: BaseChatModel = Field(default=None)
140
- langfuse: Optional[Langfuse] = Field(default=None, exclude=True)
141
-
142
- def __init__(self, llm: BaseChatModel, langfuse: Langfuse, **kwargs):
143
- super().__init__(llm=llm, langfuse=langfuse, **kwargs)
144
-
145
- def with_structured_output(
146
- self,
147
- output_model: Type[BaseModel],
148
- max_retries: int = 3,
149
- is_extract: bool = False,
150
- override_prompt: ChatPromptTemplate = None,
151
- custom_processors: Optional[List[Callable[[str], str]]] = None,
152
- custom_parser: Optional[Callable[[str], BaseModel]] = None
153
- ) -> Runnable:
154
- """返回支持自动统计Token的结构化Runnable"""
155
- parser = PydanticOutputParser(pydantic_object=output_model)
156
-
157
- # 提示词模板
158
- accuracy_instructions = """
159
- 字段值的抽取准确率(0~1之间),评分规则:
160
- 1.0(完全准确):直接从原文提取,无需任何加工,且格式与原文完全一致
161
- 0.9(轻微处理):数据来源明确,但需进行格式标准化或冗余信息剔除(不改变原始数值)
162
- 0.8(有限推断):数据需通过上下文关联或简单计算得出,仍有明确依据
163
- 0.8以下(不可靠):数据需大量推测、存在歧义或来源不明,处理方式:直接忽略该数据,设置为None
164
- """
165
-
166
- if is_extract:
167
- prompt = ChatPromptTemplate.from_messages([
168
- MessagesPlaceholder(variable_name="messages"),
169
- HumanMessage(content=f"""
170
- 请提取信息并遵循以下规则:
171
- 1. 准确率要求:{accuracy_instructions.strip()}
172
- 2. 输出格式:{parser.get_format_instructions()}
173
- """)
174
- ])
175
- else:
176
- prompt = override_prompt or ChatPromptTemplate.from_messages([
177
- MessagesPlaceholder(variable_name="messages"),
178
- HumanMessage(content=f"""
179
- 输出格式:{parser.get_format_instructions()}
180
- """)
181
- ])
182
-
183
- # 文本处理函数
184
- def extract_response_content(response: BaseMessage) -> str:
185
- try:
186
- return response.content
187
- except Exception as e:
188
- raise ValueError(f"提取响应内容失败:{str(e)}") from e
189
-
190
- def strip_code_block_markers(content: str) -> str:
191
- try:
192
- return content.strip("```json").strip("```").strip()
193
- except Exception as e:
194
- raise ValueError(f"移除代码块标记失败:{str(e)}") from e
195
-
196
- def normalize_in_json(content: str) -> str:
197
- try:
198
- return content.replace("None", "null").replace("none", "null").replace("NONE", "null").replace("''", '""')
199
- except Exception as e:
200
- raise ValueError(f"JSON格式化失败:{str(e)}") from e
201
-
202
- def default_parse_to_pydantic(content: str) -> BaseModel:
203
- try:
204
- return parser.parse(content)
205
- except (ValidationError, ValueError) as e:
206
- raise ValueError(f"解析结构化结果失败:{str(e)}") from e
207
-
208
- # ========== 构建处理链 ==========
209
- base_chain = prompt | self.llm | RunnableLambda(
210
- extract_response_content)
211
-
212
- # 文本处理链
213
- process_runnables = custom_processors or [
214
- RunnableLambda(strip_code_block_markers),
215
- RunnableLambda(normalize_in_json)
216
- ]
217
- process_chain = base_chain
218
- for runnable in process_runnables:
219
- process_chain = process_chain | runnable
220
-
221
- # 解析链
222
- parse_chain = process_chain | RunnableLambda(
223
- custom_parser or default_parse_to_pydantic)
224
-
225
- # 重试链
226
- retry_chain = parse_chain.with_retry(
227
- retry_if_exception_type=(ValidationError, ValueError),
228
- stop_after_attempt=max_retries,
229
- wait_exponential_jitter=True,
230
- exponential_jitter_params={
231
- "initial": 0.1, "max": 3.0, "exp_base": 2.0, "jitter": 1.0}
232
- )
233
-
234
- return StructuredRunnableWithToken(retry_chain, self.langfuse)
235
-
236
- # ========== 实现BaseChatModel抽象方法 ==========
237
- def _generate(self, messages, stop=None, run_manager=None, ** kwargs):
238
- return self.llm._generate(messages, stop=stop, run_manager=run_manager, ** kwargs)
239
-
240
- @property
241
- def _llm_type(self) -> str:
242
- return self.llm._llm_type
243
-
244
-
245
- def _init_langfuse() -> Tuple[List[CallbackHandler], Optional[Langfuse]]:
246
- """
247
- 初始化 Langfuse 组件的辅助函数
248
- """
249
- callbacks = []
250
- langfuse = None
251
-
252
- # 基础日志回调
253
- callbacks.append(LLMLogger())
254
- config_dict = Config().config
255
-
256
- server_name = config_dict.get('Name', '')
257
- langfuse_configs = config_dict.get('LangfuseConfig', [])
258
- environment = config_dict.get('Nacos', {}).get('namespaceId', '')
259
-
260
- # 查找当前服务对应的 Langfuse 配置
261
- target_config = next(
262
- (item for item in langfuse_configs if item.get('name') == server_name), None
263
- )
264
-
265
- if target_config and target_config.get('enable', False):
266
- # 设置环境变量
267
- os.environ["LANGFUSE_SECRET_KEY"] = target_config.get('secretKey', '')
268
- os.environ["LANGFUSE_PUBLIC_KEY"] = target_config.get('publicKey', '')
269
- os.environ["LANGFUSE_BASE_URL"] = target_config.get('baseUrl', '')
270
- os.environ["LANGFUSE_TRACING_ENVIRONMENT"] = environment
271
-
272
- # 创建 Langfuse Handler 和 Client
273
- langfuse_handler = CallbackHandler(
274
- trace_context={"trace_id": SYLogger.get_trace_id()}
275
- )
276
- callbacks.append(langfuse_handler)
277
- langfuse = get_client()
278
-
279
- return callbacks, langfuse
4
+ from sycommon.llm.sy_langfuse import LangfuseInitializer
5
+ from sycommon.llm.usage_token import LLMWithAutoTokenUsage
280
6
 
281
7
 
282
8
  def get_llm(
@@ -290,7 +16,10 @@ def get_llm(
290
16
  if not llmConfig:
291
17
  raise Exception(f"无效的模型配置:{model}")
292
18
 
293
- callbacks, langfuse = _init_langfuse()
19
+ # 初始化Langfuse
20
+ langfuse_callbacks, langfuse = LangfuseInitializer.get()
21
+
22
+ callbacks = [LLMLogger()] + langfuse_callbacks
294
23
 
295
24
  llm = init_chat_model(
296
25
  model_provider=llmConfig.provider,
@@ -0,0 +1,192 @@
1
+ from typing import Dict, List, Optional, Any
2
+ from langfuse import Langfuse, LangfuseSpan, propagate_attributes
3
+ from sycommon.llm.llm_logger import LLMLogger
4
+ from langchain_core.runnables import Runnable, RunnableConfig
5
+ from langchain_core.messages import BaseMessage, HumanMessage
6
+ from sycommon.llm.llm_tokens import TokensCallbackHandler
7
+ from sycommon.logging.kafka_log import SYLogger
8
+ from sycommon.tools.env import get_env_var
9
+ from sycommon.tools.merge_headers import get_header_value
10
+
11
+
12
+ class StructuredRunnableWithToken(Runnable):
13
+ """带Token统计的Runnable类"""
14
+
15
+ def __init__(self, retry_chain: Runnable, langfuse: Optional[Langfuse]):
16
+ super().__init__()
17
+ self.retry_chain = retry_chain
18
+ self.langfuse = langfuse
19
+
20
+ def _adapt_input(self, input: Any) -> List[BaseMessage]:
21
+ """适配输入格式"""
22
+ if isinstance(input, list) and all(isinstance(x, BaseMessage) for x in input):
23
+ return input
24
+ elif isinstance(input, BaseMessage):
25
+ return [input]
26
+ elif isinstance(input, str):
27
+ return [HumanMessage(content=input)]
28
+ elif isinstance(input, dict) and "input" in input:
29
+ return [HumanMessage(content=str(input["input"]))]
30
+ else:
31
+ raise ValueError(f"不支持的输入格式:{type(input)}")
32
+
33
+ def _get_callback_config(
34
+ self,
35
+ config: Optional[RunnableConfig] = None,
36
+ trace_id: Optional[str] = None,
37
+ user_id: Optional[str] = None
38
+ ) -> tuple[RunnableConfig, TokensCallbackHandler]:
39
+ """构建包含Token统计和metadata的回调配置"""
40
+ token_handler = TokensCallbackHandler()
41
+
42
+ if config is None:
43
+ processed_config = {"callbacks": [], "metadata": {}}
44
+ else:
45
+ processed_config = config.copy()
46
+ if "callbacks" not in processed_config:
47
+ processed_config["callbacks"] = []
48
+ if "metadata" not in processed_config:
49
+ processed_config["metadata"] = {}
50
+
51
+ # 添加 Langfuse metadata
52
+ if trace_id:
53
+ processed_config["metadata"]["langfuse_session_id"] = trace_id
54
+ if user_id:
55
+ processed_config["metadata"]["langfuse_user_id"] = user_id
56
+
57
+ callbacks = processed_config["callbacks"]
58
+ if not any(isinstance(cb, LLMLogger) for cb in callbacks):
59
+ callbacks.append(LLMLogger())
60
+ callbacks.append(token_handler)
61
+
62
+ callback_types = {}
63
+ unique_callbacks = []
64
+ for cb in callbacks:
65
+ cb_type = type(cb)
66
+ if cb_type not in callback_types:
67
+ callback_types[cb_type] = cb
68
+ unique_callbacks.append(cb)
69
+
70
+ processed_config["callbacks"] = unique_callbacks
71
+
72
+ return processed_config, token_handler
73
+
74
+ def invoke(self, input: Any, config: Optional[RunnableConfig] = None, **kwargs) -> Dict[str, Any]:
75
+ # 获取 trace_id 和 user_id
76
+ trace_id = SYLogger.get_trace_id()
77
+ userid = get_header_value(SYLogger.get_headers(), "x-userid-header")
78
+ syVersion = get_header_value(SYLogger.get_headers(), "s-y-version")
79
+ user_id = userid or syVersion or get_env_var('VERSION')
80
+
81
+ # 判断是否启用 Langfuse
82
+ if self.langfuse:
83
+ try:
84
+ with self.langfuse.start_as_current_observation(as_type="span", name="invoke") as span:
85
+ with propagate_attributes(session_id=trace_id, user_id=user_id):
86
+ span.update_trace(user_id=user_id, session_id=trace_id)
87
+ return self._execute_chain(input, config, trace_id, user_id, span)
88
+ except Exception as e:
89
+ # Langfuse 跟踪失败不应阻断业务,降级执行
90
+ SYLogger.error(f"Langfuse 同步跟踪失败: {str(e)}", exc_info=True)
91
+ return self._execute_chain(input, config, trace_id, user_id, None)
92
+ else:
93
+ # 未启用 Langfuse,直接执行业务逻辑
94
+ return self._execute_chain(input, config, trace_id, user_id, None)
95
+
96
+ async def ainvoke(self, input: Any, config: Optional[RunnableConfig] = None, **kwargs) -> Dict[str, Any]:
97
+ # 获取 trace_id 和 user_id
98
+ trace_id = SYLogger.get_trace_id()
99
+ userid = get_header_value(SYLogger.get_headers(), "x-userid-header")
100
+ syVersion = get_header_value(SYLogger.get_headers(), "s-y-version")
101
+ user_id = userid or syVersion or get_env_var('VERSION')
102
+
103
+ # 判断是否启用 Langfuse
104
+ if self.langfuse:
105
+ try:
106
+ with self.langfuse.start_as_current_observation(as_type="span", name="ainvoke") as span:
107
+ with propagate_attributes(session_id=trace_id, user_id=user_id):
108
+ span.update_trace(user_id=user_id, session_id=trace_id)
109
+ return await self._aexecute_chain(input, config, trace_id, user_id, span)
110
+ except Exception as e:
111
+ # Langfuse 跟踪失败不应阻断业务,降级执行
112
+ SYLogger.error(f"Langfuse 异步跟踪失败: {str(e)}", exc_info=True)
113
+ return await self._aexecute_chain(input, config, trace_id, user_id, None)
114
+ else:
115
+ # 未启用 Langfuse,直接执行业务逻辑
116
+ return await self._aexecute_chain(input, config, trace_id, user_id, None)
117
+
118
+ def _execute_chain(
119
+ self,
120
+ input: Any,
121
+ config: Optional[RunnableConfig],
122
+ trace_id: str,
123
+ user_id: str,
124
+ span: LangfuseSpan
125
+ ) -> Dict[str, Any]:
126
+ """执行实际的调用逻辑 (同步)"""
127
+ try:
128
+ processed_config, token_handler = self._get_callback_config(
129
+ config,
130
+ trace_id=trace_id,
131
+ user_id=user_id
132
+ )
133
+
134
+ adapted_input = self._adapt_input(input)
135
+ input_data = {"messages": adapted_input}
136
+
137
+ if span:
138
+ span.update_trace(input=input_data)
139
+
140
+ structured_result = self.retry_chain.invoke(
141
+ input_data,
142
+ config=processed_config
143
+ )
144
+
145
+ if span:
146
+ span.update_trace(output=structured_result)
147
+
148
+ token_usage = token_handler.usage_metadata
149
+ structured_result._token_usage_ = token_usage
150
+
151
+ return structured_result
152
+ except Exception as e:
153
+ SYLogger.error(f"同步LLM调用失败: {str(e)}", exc_info=True)
154
+ return None
155
+
156
+ async def _aexecute_chain(
157
+ self,
158
+ input: Any,
159
+ config: Optional[RunnableConfig],
160
+ trace_id: str,
161
+ user_id: str,
162
+ span: LangfuseSpan
163
+ ) -> Dict[str, Any]:
164
+ """执行实际的调用逻辑 (异步)"""
165
+ try:
166
+ processed_config, token_handler = self._get_callback_config(
167
+ config,
168
+ trace_id=trace_id,
169
+ user_id=user_id
170
+ )
171
+
172
+ adapted_input = self._adapt_input(input)
173
+ input_data = {"messages": adapted_input}
174
+
175
+ if span:
176
+ span.update_trace(input=input_data)
177
+
178
+ structured_result = await self.retry_chain.ainvoke(
179
+ input_data,
180
+ config=processed_config
181
+ )
182
+
183
+ if span:
184
+ span.update_trace(output=structured_result)
185
+
186
+ token_usage = token_handler.usage_metadata
187
+ structured_result._token_usage_ = token_usage
188
+
189
+ return structured_result
190
+ except Exception as e:
191
+ SYLogger.error(f"异步LLM调用失败: {str(e)}", exc_info=True)
192
+ return None
@@ -0,0 +1,103 @@
1
+ import os
2
+ from typing import Tuple, List, Optional, Any, Dict
3
+ from langfuse import Langfuse, get_client
4
+ from sycommon.config.Config import Config, SingletonMeta
5
+ from sycommon.logging.kafka_log import SYLogger
6
+ from langfuse.langchain import CallbackHandler
7
+ from sycommon.tools.env import get_env_var
8
+ from sycommon.tools.merge_headers import get_header_value
9
+
10
+
11
+ class LangfuseInitializer(metaclass=SingletonMeta):
12
+ """
13
+ Langfuse 初始化管理器
14
+ """
15
+
16
+ def __init__(self):
17
+ self._langfuse_client: Optional[Langfuse] = None
18
+ self._base_callbacks: List[Any] = []
19
+
20
+ # 执行初始化
21
+ self._initialize()
22
+
23
+ def _initialize(self):
24
+ """执行实际的配置读取和组件创建"""
25
+ try:
26
+ config_dict = Config().config
27
+
28
+ server_name = config_dict.get('Name', '')
29
+ langfuse_configs = config_dict.get('LangfuseConfig', [])
30
+ environment = config_dict.get('Nacos', {}).get('namespaceId', '')
31
+
32
+ # 3. 查找匹配的配置项
33
+ target_config = next(
34
+ (item for item in langfuse_configs if item.get(
35
+ 'name') == server_name), None
36
+ )
37
+
38
+ # 4. 如果启用且配置存在,初始化 Langfuse
39
+ if target_config and target_config.get('enable', False):
40
+ # 设置环境变量
41
+ os.environ["LANGFUSE_SECRET_KEY"] = target_config.get(
42
+ 'secretKey', '')
43
+ os.environ["LANGFUSE_PUBLIC_KEY"] = target_config.get(
44
+ 'publicKey', '')
45
+ os.environ["LANGFUSE_BASE_URL"] = target_config.get(
46
+ 'baseUrl', '')
47
+ os.environ["LANGFUSE_TRACING_ENVIRONMENT"] = environment
48
+ os.environ["OTEL_SERVICE_NAME"] = server_name
49
+
50
+ self._langfuse_client = get_client()
51
+
52
+ langfuse_handler = CallbackHandler()
53
+ self._base_callbacks.append(langfuse_handler)
54
+
55
+ SYLogger.info(f"Langfuse 初始化成功 [Service: {server_name}]")
56
+ else:
57
+ SYLogger.info(f"Langfuse 未启用或未找到匹配配置 [Service: {server_name}]")
58
+
59
+ except Exception as e:
60
+ SYLogger.error(f"Langfuse 初始化异常: {str(e)}", exc_info=True)
61
+
62
+ @property
63
+ def callbacks(self) -> List[Any]:
64
+ """获取回调列表"""
65
+ return self._base_callbacks
66
+
67
+ @property
68
+ def metadata(self) -> Dict[str, Any]:
69
+ """动态生成包含 langfuse_session_id 和 langfuse_user_id 的 metadata"""
70
+ trace_id = SYLogger.get_trace_id()
71
+ userid = get_header_value(
72
+ SYLogger.get_headers(), "x-userid-header")
73
+ syVersion = get_header_value(
74
+ SYLogger.get_headers(), "s-y-version")
75
+ user_id = userid or syVersion or get_env_var('VERSION')
76
+ metadata_config = {
77
+ "langfuse_session_id": trace_id,
78
+ "langfuse_user_id": user_id,
79
+ }
80
+
81
+ return metadata_config
82
+
83
+ @property
84
+ def client(self) -> Optional[Langfuse]:
85
+ """获取 Langfuse 原生客户端实例"""
86
+ return self._langfuse_client
87
+
88
+ @property
89
+ def config(self) -> Dict[str, Any]:
90
+ return {
91
+ "callbacks": self.callbacks,
92
+ "metadata": self.metadata,
93
+ }
94
+
95
+ def get_components(self) -> Tuple[List[Any], Optional[Langfuse]]:
96
+ """获取 Langfuse 组件"""
97
+ return list(self._base_callbacks), self._langfuse_client
98
+
99
+ @staticmethod
100
+ def get() -> Tuple[List[Any], Optional[Langfuse]]:
101
+ """一句话获取组件"""
102
+ initializer = LangfuseInitializer()
103
+ return initializer.get_components()
@@ -0,0 +1,117 @@
1
+ from typing import Type, List, Optional, Callable
2
+ from langfuse import Langfuse
3
+ from langchain_core.language_models import BaseChatModel
4
+ from langchain_core.runnables import Runnable, RunnableLambda
5
+ from langchain_core.output_parsers import PydanticOutputParser
6
+ from langchain_core.messages import BaseMessage, HumanMessage
7
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
8
+ from pydantic import BaseModel, ValidationError, Field
9
+ from sycommon.llm.struct_token import StructuredRunnableWithToken
10
+
11
+
12
+ class LLMWithAutoTokenUsage(BaseChatModel):
13
+ """自动为结构化调用返回token_usage的LLM包装类"""
14
+ llm: BaseChatModel = Field(default=None)
15
+ langfuse: Optional[Langfuse] = Field(default=None, exclude=True)
16
+
17
+ def __init__(self, llm: BaseChatModel, langfuse: Langfuse, **kwargs):
18
+ super().__init__(llm=llm, langfuse=langfuse, **kwargs)
19
+
20
+ def with_structured_output(
21
+ self,
22
+ output_model: Type[BaseModel],
23
+ max_retries: int = 3,
24
+ is_extract: bool = False,
25
+ override_prompt: ChatPromptTemplate = None,
26
+ custom_processors: Optional[List[Callable[[str], str]]] = None,
27
+ custom_parser: Optional[Callable[[str], BaseModel]] = None
28
+ ) -> Runnable:
29
+ """返回支持自动统计Token的结构化Runnable"""
30
+ parser = PydanticOutputParser(pydantic_object=output_model)
31
+
32
+ # 提示词模板
33
+ accuracy_instructions = """
34
+ 字段值的抽取准确率(0~1之间),评分规则:
35
+ 1.0(完全准确):直接从原文提取,无需任何加工,且格式与原文完全一致
36
+ 0.9(轻微处理):数据来源明确,但需进行格式标准化或冗余信息剔除(不改变原始数值)
37
+ 0.8(有限推断):数据需通过上下文关联或简单计算得出,仍有明确依据
38
+ 0.8以下(不可靠):数据需大量推测、存在歧义或来源不明,处理方式:直接忽略该数据,设置为None
39
+ """
40
+
41
+ if is_extract:
42
+ prompt = ChatPromptTemplate.from_messages([
43
+ MessagesPlaceholder(variable_name="messages"),
44
+ HumanMessage(content=f"""
45
+ 请提取信息并遵循以下规则:
46
+ 1. 准确率要求:{accuracy_instructions.strip()}
47
+ 2. 输出格式:{parser.get_format_instructions()}
48
+ """)
49
+ ])
50
+ else:
51
+ prompt = override_prompt or ChatPromptTemplate.from_messages([
52
+ MessagesPlaceholder(variable_name="messages"),
53
+ HumanMessage(content=f"""
54
+ 输出格式:{parser.get_format_instructions()}
55
+ """)
56
+ ])
57
+
58
+ # 文本处理函数
59
+ def extract_response_content(response: BaseMessage) -> str:
60
+ try:
61
+ return response.content
62
+ except Exception as e:
63
+ raise ValueError(f"提取响应内容失败:{str(e)}") from e
64
+
65
+ def strip_code_block_markers(content: str) -> str:
66
+ try:
67
+ return content.strip("```json").strip("```").strip()
68
+ except Exception as e:
69
+ raise ValueError(f"移除代码块标记失败:{str(e)}") from e
70
+
71
+ def normalize_in_json(content: str) -> str:
72
+ try:
73
+ return content.replace("None", "null").replace("none", "null").replace("NONE", "null").replace("''", '""')
74
+ except Exception as e:
75
+ raise ValueError(f"JSON格式化失败:{str(e)}") from e
76
+
77
+ def default_parse_to_pydantic(content: str) -> BaseModel:
78
+ try:
79
+ return parser.parse(content)
80
+ except (ValidationError, ValueError) as e:
81
+ raise ValueError(f"解析结构化结果失败:{str(e)}") from e
82
+
83
+ # ========== 构建处理链 ==========
84
+ base_chain = prompt | self.llm | RunnableLambda(
85
+ extract_response_content)
86
+
87
+ # 文本处理链
88
+ process_runnables = custom_processors or [
89
+ RunnableLambda(strip_code_block_markers),
90
+ RunnableLambda(normalize_in_json)
91
+ ]
92
+ process_chain = base_chain
93
+ for runnable in process_runnables:
94
+ process_chain = process_chain | runnable
95
+
96
+ # 解析链
97
+ parse_chain = process_chain | RunnableLambda(
98
+ custom_parser or default_parse_to_pydantic)
99
+
100
+ # 重试链
101
+ retry_chain = parse_chain.with_retry(
102
+ retry_if_exception_type=(ValidationError, ValueError),
103
+ stop_after_attempt=max_retries,
104
+ wait_exponential_jitter=True,
105
+ exponential_jitter_params={
106
+ "initial": 0.1, "max": 3.0, "exp_base": 2.0, "jitter": 1.0}
107
+ )
108
+
109
+ return StructuredRunnableWithToken(retry_chain, self.langfuse)
110
+
111
+ # ========== 实现BaseChatModel抽象方法 ==========
112
+ def _generate(self, messages, stop=None, run_manager=None, ** kwargs):
113
+ return self.llm._generate(messages, stop=stop, run_manager=run_manager, ** kwargs)
114
+
115
+ @property
116
+ def _llm_type(self) -> str:
117
+ return self.llm._llm_type
@@ -27,6 +27,7 @@ class RabbitMQClient:
27
27
  exchange_name: str = "system.topic.exchange",
28
28
  exchange_type: str = "topic",
29
29
  queue_name: Optional[str] = None,
30
+ app_name: Optional[str] = None,
30
31
  routing_key: str = "#",
31
32
  durable: bool = True,
32
33
  auto_delete: bool = False,
@@ -45,6 +46,7 @@ class RabbitMQClient:
45
46
  logger.warning(f"无效的exchange_type: {exchange_type},默认使用'topic'")
46
47
  self.exchange_type = ExchangeType.TOPIC
47
48
 
49
+ self.app_name = app_name.strip() if app_name else None
48
50
  self.queue_name = queue_name.strip() if queue_name else None
49
51
  self.routing_key = routing_key.strip() if routing_key else "#"
50
52
  self.durable = durable
@@ -104,7 +106,7 @@ class RabbitMQClient:
104
106
  logger.info(f"交换机重建成功: {self.exchange_name}")
105
107
 
106
108
  # 声明队列
107
- if self.queue_name:
109
+ if self.queue_name and self.queue_name.endswith(f".{self.app_name}"):
108
110
  self._queue = await self._channel.declare_queue(
109
111
  name=self.queue_name,
110
112
  durable=self.durable,
@@ -181,7 +183,7 @@ class RabbitMQClient:
181
183
  await self._rebuild_resources()
182
184
 
183
185
  # --- 阶段3: 恢复消费 ---
184
- if was_consuming and self._message_handler and self.queue_name:
186
+ if was_consuming and self._message_handler and self.queue_name and self.queue_name.endswith(f".{self.app_name}"):
185
187
  logger.info("🔄 检测到重连前处于消费状态,尝试自动恢复...")
186
188
  try:
187
189
  self._queue = await self._channel.declare_queue(
@@ -270,7 +272,6 @@ class RabbitMQClient:
270
272
  routing_key=message.routing_key,
271
273
  delivery_tag=message.delivery_tag,
272
274
  traceId=message.headers.get("trace-id"),
273
- headers=message.headers
274
275
  )
275
276
 
276
277
  SYLogger.set_trace_id(msg_obj.traceId)
@@ -317,7 +318,7 @@ class RabbitMQClient:
317
318
  await self.connect()
318
319
 
319
320
  if not self._queue:
320
- if self.queue_name:
321
+ if self.queue_name and self.queue_name.endswith(f".{self.app_name}"):
321
322
  self._queue = await self._channel.declare_queue(
322
323
  name=self.queue_name,
323
324
  durable=self.durable,
@@ -391,7 +392,7 @@ class RabbitMQClient:
391
392
 
392
393
  result = await self._exchange.publish(
393
394
  message=message,
394
- routing_key=self.routing_key or self.queue_name or "#",
395
+ routing_key=self.routing_key,
395
396
  mandatory=True,
396
397
  timeout=5.0
397
398
  )
@@ -100,13 +100,18 @@ class RabbitMQClientManager(RabbitMQCoreService):
100
100
  f"是否创建队列: {create_if_not_exists}"
101
101
  )
102
102
 
103
+ final_queue_name = None
104
+ if create_if_not_exists and processed_queue_name.endswith(f".{app_name}"):
105
+ final_queue_name = processed_queue_name
106
+
103
107
  # 创建客户端实例
104
108
  client = RabbitMQClient(
105
109
  connection_pool=cls._connection_pool,
106
110
  exchange_name=cls._config.get(
107
111
  'exchange_name', "system.topic.exchange"),
108
112
  exchange_type=kwargs.get('exchange_type', "topic"),
109
- queue_name=None if not create_if_not_exists else processed_queue_name,
113
+ queue_name=final_queue_name,
114
+ app_name=app_name,
110
115
  routing_key=kwargs.get(
111
116
  'routing_key',
112
117
  f"{queue_name.split('.')[0]}.#"
sycommon/services.py CHANGED
@@ -19,24 +19,25 @@ class Services(metaclass=SingletonMeta):
19
19
  _loop: Optional[asyncio.AbstractEventLoop] = None
20
20
  _config: Optional[dict] = None
21
21
  _initialized: bool = False
22
- _registered_senders: List[str] = []
23
22
  _instance: Optional['Services'] = None
24
23
  _app: Optional[FastAPI] = None
25
24
  _user_lifespan: Optional[Callable] = None
26
25
  _shutdown_lock: asyncio.Lock = asyncio.Lock()
27
26
 
28
- # 用于存储待执行的异步数据库初始化任务
29
- _pending_async_db_setup: List[Tuple[Callable, str]] = []
30
-
31
27
  def __init__(self, config: dict, app: FastAPI):
28
+ super().__init__()
32
29
  if not Services._config:
33
30
  Services._config = config
34
31
  Services._instance = self
35
32
  Services._app = app
33
+
34
+ # 在实例初始化时定义变量,防止类变量污染
35
+ self._pending_async_db_setup: List[Tuple[Callable, str]] = []
36
+
36
37
  self._init_event_loop()
37
38
 
38
39
  def _init_event_loop(self):
39
- """初始化事件循环,确保全局只有一个循环实例"""
40
+ """初始化事件循环"""
40
41
  if not Services._loop:
41
42
  try:
42
43
  Services._loop = asyncio.get_running_loop()
@@ -63,14 +64,20 @@ class Services(metaclass=SingletonMeta):
63
64
  setup_logger_levels()
64
65
  cls._app = app
65
66
  cls._config = config
67
+ # 保存原始的用户 lifespan
66
68
  cls._user_lifespan = app.router.lifespan_context
67
69
 
68
70
  applications.get_swagger_ui_html = custom_swagger_ui_html
69
71
  applications.get_redoc_html = custom_redoc_html
70
72
 
71
73
  if not cls._config:
72
- config = yaml.safe_load(open('app.yaml', 'r', encoding='utf-8'))
73
- cls._config = config
74
+ try:
75
+ with open('app.yaml', 'r', encoding='utf-8') as f:
76
+ config = yaml.safe_load(f)
77
+ cls._config = config
78
+ except FileNotFoundError:
79
+ logging.warning("未找到 app.yaml,将使用空配置启动")
80
+ cls._config = {}
74
81
 
75
82
  app.state.config = {
76
83
  "host": cls._config.get('Host', '0.0.0.0'),
@@ -80,97 +87,95 @@ class Services(metaclass=SingletonMeta):
80
87
  }
81
88
 
82
89
  if middleware:
83
- middleware(app, config)
90
+ middleware(app, cls._config)
84
91
 
85
92
  if nacos_service:
86
- nacos_service(config)
93
+ nacos_service(cls._config)
87
94
 
88
95
  if logging_service:
89
- logging_service(config)
96
+ logging_service(cls._config)
90
97
 
91
- # 设置sentry
92
98
  sy_sentry_init()
93
99
 
94
- # ========== 处理数据库服务 ==========
95
- # 清空之前的待执行列表(防止热重载时重复)
96
- cls._pending_async_db_setup = []
97
-
98
- if database_service:
99
- # 解析配置并区分同步/异步
100
- items = [database_service] if isinstance(
101
- database_service, tuple) else database_service
102
- for item in items:
103
- db_setup_func, db_name = item
104
- if asyncio.iscoroutinefunction(db_setup_func):
105
- # 如果是异步函数,加入待执行列表
106
- logging.info(f"检测到异步数据库服务: {db_name},将在应用启动时初始化")
107
- cls._pending_async_db_setup.append(item)
108
- else:
109
- # 如果是同步函数,立即执行
110
- logging.info(f"执行同步数据库服务: {db_name}")
111
- try:
112
- db_setup_func(config, db_name)
113
- except Exception as e:
114
- logging.error(
115
- f"同步数据库服务 {db_name} 初始化失败: {e}", exc_info=True)
116
- raise
117
-
118
- # 创建组合生命周期管理器
119
100
  @asynccontextmanager
120
- async def combined_lifespan(app: FastAPI) -> AsyncGenerator[None, None]:
121
- # 1. 执行Services自身的初始化
122
- instance = cls(config, app)
123
-
124
- # ========== 执行挂起的异步数据库初始化 ==========
125
- if cls._pending_async_db_setup:
126
- logging.info("开始执行异步数据库初始化...")
127
- for db_setup_func, db_name in cls._pending_async_db_setup:
128
- try:
129
- await db_setup_func(config, db_name)
130
- logging.info(f"异步数据库服务 {db_name} 初始化成功")
131
- except Exception as e:
132
- logging.error(
133
- f"异步数据库服务 {db_name} 初始化失败: {e}", exc_info=True)
134
- raise
135
-
136
- # ========== 初始化 MQ ==========
137
- has_valid_listeners = bool(
138
- rabbitmq_listeners and len(rabbitmq_listeners) > 0)
139
- has_valid_senders = bool(
140
- rabbitmq_senders and len(rabbitmq_senders) > 0)
101
+ async def combined_lifespan(app_instance: FastAPI) -> AsyncGenerator[None, None]:
102
+ # 获取 Services 实例
103
+ instance = cls(config, app_instance)
141
104
 
142
105
  try:
143
- if has_valid_listeners or has_valid_senders:
144
- await instance._setup_mq_async(
145
- rabbitmq_listeners=rabbitmq_listeners if has_valid_listeners else None,
146
- rabbitmq_senders=rabbitmq_senders if has_valid_senders else None,
147
- has_listeners=has_valid_listeners,
148
- has_senders=has_valid_senders
149
- )
150
- cls._initialized = True
151
- logging.info("Services初始化完成")
152
- except Exception as e:
153
- logging.error(f"Services初始化失败: {str(e)}", exc_info=True)
154
- raise
106
+ # 1. 处理数据库服务
107
+ if database_service:
108
+ instance._pending_async_db_setup = []
109
+
110
+ items = [database_service] if isinstance(
111
+ database_service, tuple) else database_service
112
+ for item in items:
113
+ db_setup_func, db_name = item
114
+ if asyncio.iscoroutinefunction(db_setup_func):
115
+ logging.info(f"注册异步数据库服务: {db_name}")
116
+ instance._pending_async_db_setup.append(item)
117
+ else:
118
+ logging.info(f"执行同步数据库服务: {db_name}")
119
+ try:
120
+ db_setup_func(config, db_name)
121
+ except Exception as e:
122
+ logging.error(
123
+ f"同步数据库服务 {db_name} 初始化失败: {e}", exc_info=True)
124
+ raise
125
+
126
+ # 2. 执行挂起的异步数据库初始化
127
+ if instance._pending_async_db_setup:
128
+ logging.info("开始执行异步数据库初始化...")
129
+ for db_setup_func, db_name in instance._pending_async_db_setup:
130
+ try:
131
+ await db_setup_func(config, db_name)
132
+ logging.info(f"异步数据库服务 {db_name} 初始化成功")
133
+ except Exception as e:
134
+ logging.error(
135
+ f"异步数据库服务 {db_name} 初始化失败: {e}", exc_info=True)
136
+ raise
137
+
138
+ # 3. 初始化 MQ
139
+ has_valid_listeners = bool(
140
+ rabbitmq_listeners and len(rabbitmq_listeners) > 0)
141
+ has_valid_senders = bool(
142
+ rabbitmq_senders and len(rabbitmq_senders) > 0)
143
+
144
+ try:
145
+ if has_valid_listeners or has_valid_senders:
146
+ await instance._setup_mq_async(
147
+ rabbitmq_listeners=rabbitmq_listeners if has_valid_listeners else None,
148
+ rabbitmq_senders=rabbitmq_senders if has_valid_senders else None,
149
+ has_listeners=has_valid_listeners,
150
+ has_senders=has_valid_senders
151
+ )
152
+ cls._initialized = True
153
+ logging.info("Services初始化完成")
154
+ except Exception as e:
155
+ logging.error(f"MQ初始化失败: {str(e)}", exc_info=True)
156
+ raise
155
157
 
156
- app.state.services = instance
158
+ app_instance.state.services = instance
157
159
 
158
- # 2. 执行用户定义的生命周期
159
- if cls._user_lifespan:
160
- async with cls._user_lifespan(app):
160
+ # 4. 执行用户定义的生命周期
161
+ if cls._user_lifespan:
162
+ async with cls._user_lifespan(app_instance):
163
+ yield
164
+ else:
161
165
  yield
162
- else:
163
- yield
164
166
 
165
- # 3. 执行Services的关闭逻辑
166
- await cls.shutdown()
167
- logging.info("Services已关闭")
167
+ except Exception:
168
+ # 如果启动过程中发生任何异常,确保进入 shutdown
169
+ logging.error("启动阶段发生异常,准备执行清理...")
170
+ raise
171
+ finally:
172
+ # 无论成功或失败,都会执行关闭逻辑
173
+ await cls.shutdown()
174
+ logging.info("Services已关闭")
168
175
 
169
176
  app.router.lifespan_context = combined_lifespan
170
177
  return app
171
178
 
172
- # 移除了 _setup_database_static,因为逻辑已内联到 plugins 中
173
-
174
179
  async def _setup_mq_async(
175
180
  self,
176
181
  rabbitmq_listeners: Optional[List[RabbitMQListenerConfig]] = None,
@@ -186,12 +191,21 @@ class Services(metaclass=SingletonMeta):
186
191
  RabbitMQService.init(self._config, has_listeners, has_senders)
187
192
 
188
193
  start_time = asyncio.get_event_loop().time()
189
- while not (RabbitMQService._connection_pool and RabbitMQService._connection_pool._initialized) and not RabbitMQService._is_shutdown:
190
- if asyncio.get_event_loop().time() - start_time > 30:
191
- raise TimeoutError("RabbitMQ连接池初始化超时(30秒)")
192
- logging.info("等待RabbitMQ连接池初始化...")
194
+ timeout = 30 # 超时时间秒
195
+
196
+ # 等待连接池初始化
197
+ while not (RabbitMQService._connection_pool and RabbitMQService._connection_pool._initialized) \
198
+ and not RabbitMQService._is_shutdown:
199
+ if asyncio.get_event_loop().time() - start_time > timeout:
200
+ logging.error("RabbitMQ连接池初始化超时")
201
+ raise TimeoutError(f"RabbitMQ连接池初始化超时({timeout}秒)")
202
+
203
+ logging.debug("等待RabbitMQ连接池初始化...")
193
204
  await asyncio.sleep(0.5)
194
205
 
206
+ if RabbitMQService._is_shutdown:
207
+ raise RuntimeError("RabbitMQService 在初始化期间被关闭")
208
+
195
209
  if has_senders and rabbitmq_senders:
196
210
  if has_listeners and rabbitmq_listeners:
197
211
  for sender in rabbitmq_senders:
@@ -211,11 +225,8 @@ class Services(metaclass=SingletonMeta):
211
225
 
212
226
  async def _setup_senders_async(self, rabbitmq_senders, has_listeners: bool):
213
227
  """设置发送器"""
214
- Services._registered_senders = [
215
- sender.queue_name for sender in rabbitmq_senders]
216
228
  await RabbitMQService.setup_senders(rabbitmq_senders, has_listeners)
217
- Services._registered_senders = RabbitMQService._sender_client_names
218
- logging.info(f"已注册的RabbitMQ发送器: {Services._registered_senders}")
229
+ logging.info(f"RabbitMQ发送器注册完成")
219
230
 
220
231
  async def _setup_listeners_async(self, rabbitmq_listeners, has_senders: bool):
221
232
  """设置监听器"""
@@ -240,14 +251,12 @@ class Services(metaclass=SingletonMeta):
240
251
 
241
252
  for attempt in range(max_retries):
242
253
  try:
243
- if queue_name not in cls._registered_senders:
244
- cls._registered_senders = RabbitMQService._sender_client_names
245
- if queue_name not in cls._registered_senders:
246
- raise ValueError(f"发送器 {queue_name} 未注册")
247
-
254
+ # 依赖 RabbitMQService 的内部状态
248
255
  sender = await RabbitMQService.get_sender(queue_name)
256
+
249
257
  if not sender:
250
- raise ValueError(f"发送器 '{queue_name}' 不存在或连接无效")
258
+ raise ValueError(
259
+ f"发送器 '{queue_name}' 不存在或未在 RabbitMQService 中注册")
251
260
 
252
261
  await RabbitMQService.send_message(data, queue_name, **kwargs)
253
262
  logging.info(f"消息发送成功(尝试 {attempt+1}/{max_retries})")
@@ -269,7 +278,20 @@ class Services(metaclass=SingletonMeta):
269
278
  if RabbitMQService._is_shutdown:
270
279
  logging.info("RabbitMQService已关闭,无需重复操作")
271
280
  return
272
- await RabbitMQService.shutdown()
281
+
282
+ try:
283
+ await RabbitMQService.shutdown()
284
+ except Exception as e:
285
+ logging.error(f"关闭 RabbitMQService 时发生异常: {e}", exc_info=True)
286
+
273
287
  cls._initialized = False
274
- cls._registered_senders.clear()
288
+
289
+ # 清理实例数据
290
+ if cls._instance:
291
+ cls._instance._pending_async_db_setup.clear()
292
+
293
+ # 这对于热重载(reload)时防止旧实例内存泄漏至关重要
294
+ if cls._app:
295
+ cls._app.state.services = None
296
+
275
297
  logging.info("所有服务已关闭")
@@ -2,6 +2,7 @@ import threading
2
2
  import time
3
3
  from typing import Optional
4
4
  import nacos
5
+ from sycommon.config.Config import Config
5
6
  from sycommon.logging.kafka_log import SYLogger
6
7
 
7
8
 
@@ -94,8 +95,9 @@ class NacosClientBase:
94
95
 
95
96
  try:
96
97
  namespace_id = self.nacos_config['namespaceId']
98
+ service_name = Config().config.get('Name', '')
97
99
  self.nacos_client.list_naming_instance(
98
- service_name="", # 空服务名仅用于验证连接
100
+ service_name=service_name,
99
101
  namespace_id=namespace_id,
100
102
  group_name="DEFAULT_GROUP",
101
103
  healthy_only=True
@@ -95,3 +95,23 @@ def merge_headers(
95
95
  processed_headers[key_lower] = value
96
96
 
97
97
  return processed_headers
98
+
99
+
100
+ def get_header_value(headers: list, target_key: str, default=None):
101
+ """
102
+ 从列表中查找指定 header 的值
103
+
104
+ Args:
105
+ headers: header 列表,例如 [('Content-Type', 'application/json'), ...]
106
+ target_key: 要查找的 key
107
+ default: 如果没找到返回的默认值
108
+ """
109
+ if not headers:
110
+ return default
111
+
112
+ for item in headers:
113
+ # 兼容 list 和 tuple,确保长度为2
114
+ if isinstance(item, (list, tuple)) and len(item) == 2 and item[0] == target_key:
115
+ return item[1]
116
+
117
+ return default
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: sycommon-python-lib
3
- Version: 0.1.56b17
3
+ Version: 0.1.57
4
4
  Summary: Add your description here
5
5
  Requires-Python: >=3.11
6
6
  Description-Content-Type: text/markdown
@@ -1,6 +1,6 @@
1
1
  command/cli.py,sha256=bP2LCLkRvfETIwWkVD70q5xFxMI4D3BpH09Ws1f-ENc,5849
2
2
  sycommon/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
3
- sycommon/services.py,sha256=vcO2vbe2U1CA4ykLdH1rnxgqUIouukE-wTRsjRl2kBI,11683
3
+ sycommon/services.py,sha256=F1fwBqVd7luywJjXeK7rF_7FzBePstyEfxXBR_5o04Q,12330
4
4
  sycommon/config/Config.py,sha256=L4vlGsVFL1ZHEULxvE8-VyLF-wDBuOMZGmWXIldqfn8,4014
5
5
  sycommon/config/DatabaseConfig.py,sha256=ILiUuYT9_xJZE2W-RYuC3JCt_YLKc1sbH13-MHIOPhg,804
6
6
  sycommon/config/EmbeddingConfig.py,sha256=gPKwiDYbeu1GpdIZXMmgqM7JqBIzCXi0yYuGRLZooMI,362
@@ -20,9 +20,12 @@ sycommon/health/metrics.py,sha256=fHqO73JuhoZkNPR-xIlxieXiTCvttq-kG-tvxag1s1s,26
20
20
  sycommon/health/ping.py,sha256=FTlnIKk5y1mPfS1ZGOeT5IM_2udF5aqVLubEtuBp18M,250
21
21
  sycommon/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
22
  sycommon/llm/embedding.py,sha256=HknwDqXmRQcAZ8-6d8wZ6n7Bv7HtxTajDt1vvzHGeFQ,8411
23
- sycommon/llm/get_llm.py,sha256=0-sqC-2lxmvfBttYvPF7Vc9qIxzCvxzOTeSfc2x4Lw4,12194
23
+ sycommon/llm/get_llm.py,sha256=C48gt9GCwEpR26M-cUjM74_t-el18ZvlwpGhcQfR3gs,1054
24
24
  sycommon/llm/llm_logger.py,sha256=n4UeNy_-g4oHQOsw-VUzF4uo3JVRLtxaMp1FcI8FiEo,5437
25
25
  sycommon/llm/llm_tokens.py,sha256=-udDyFcmyzx6UAwIi6_d_wwI5kMd5w0-WcS2soVPQxg,4309
26
+ sycommon/llm/struct_token.py,sha256=jlpZnTOLDmRDdrCuxZe-1pQopd6OmCM9B_gWZ48CnEQ,7655
27
+ sycommon/llm/sy_langfuse.py,sha256=NZv6ydfn3-cxqQvuB5WdnM9GYliO9qB_RWh_XqIS3VU,3692
28
+ sycommon/llm/usage_token.py,sha256=n0hytuaHI4tJi6wuOS3bd-yWzQjZ-lx5w9egHs8uYgg,5140
26
29
  sycommon/logging/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
30
  sycommon/logging/async_sql_logger.py,sha256=_OY36XkUm__U3NhMgiecy-qd-nptZ_0gpE3J8lGAr58,2619
28
31
  sycommon/logging/kafka_log.py,sha256=gfOqdZe0HJ3PkIFfnNWG4DZVadxsCKJ6AmelR7_Z1Xs,9960
@@ -48,10 +51,10 @@ sycommon/models/mqsend_config.py,sha256=NQX9dc8PpuquMG36GCVhJe8omAW1KVXXqr6lSRU6
48
51
  sycommon/models/sso_user.py,sha256=i1WAN6k5sPcPApQEdtjpWDy7VrzWLpOrOQewGLGoGIw,2702
49
52
  sycommon/notice/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
50
53
  sycommon/notice/uvicorn_monitor.py,sha256=VryQYcAtjijJuGDBimbVurgwxlsLaLtkNnABPDY5Tao,7332
51
- sycommon/rabbitmq/rabbitmq_client.py,sha256=JZ73fc0Z8iMnayvRhRsnkEkBfzKF3wbxDKTE98RwVIA,17809
54
+ sycommon/rabbitmq/rabbitmq_client.py,sha256=hAbLOioU_clucJ9xq88Oo-waZOuU0ii4yBVGIjz1nBE,17992
52
55
  sycommon/rabbitmq/rabbitmq_pool.py,sha256=BiFQgZPzSAFR-n5XhyIafoeWQXETF_31nFRDhMbe6aU,15577
53
56
  sycommon/rabbitmq/rabbitmq_service.py,sha256=XSHo9HuIJ_lq-vizRh4xJVdZr_2zLqeLhot09qb0euA,2025
54
- sycommon/rabbitmq/rabbitmq_service_client_manager.py,sha256=MM4r8Pa2rjAmzy_NpHFb4thGznr6AYk6m__IC8IIxEM,7852
57
+ sycommon/rabbitmq/rabbitmq_service_client_manager.py,sha256=IP9TMFeG5LSrwFPEmOy1ce4baPxBUZnWJZR3nN_-XR4,8009
55
58
  sycommon/rabbitmq/rabbitmq_service_connection_monitor.py,sha256=uvoMuJDzJ9i63uVRq1NKFV10CvkbGnTMyEoq2rgjQx8,3013
56
59
  sycommon/rabbitmq/rabbitmq_service_consumer_manager.py,sha256=489r1RKd5WrTNMAcWCxUZpt9yWGrNunZlLCCp-M_rzM,11497
57
60
  sycommon/rabbitmq/rabbitmq_service_core.py,sha256=6RMvIf78DmEOZmN8dA0duA9oy4ieNswdGrOeyJdD6tU,4753
@@ -66,7 +69,7 @@ sycommon/synacos/example.py,sha256=61XL03tU8WTNOo3FUduf93F2fAwah1S0lbH1ufhRhRk,5
66
69
  sycommon/synacos/example2.py,sha256=adUaru3Hy482KrOA17DfaC4nwvLj8etIDS_KrWLWmCU,4811
67
70
  sycommon/synacos/feign.py,sha256=frB3D5LeFDtT3pJLFOwFzEOrNAJKeQNGk-BzUg9T3WM,8295
68
71
  sycommon/synacos/feign_client.py,sha256=ExO7Pd5B3eFKDjXqBRc260K1jkI49IYguLwJJaD2R-o,16166
69
- sycommon/synacos/nacos_client_base.py,sha256=l5jpall6nEt0Hy07Wk-PVU0VN0BmD_Mmtldmtyvvksg,4526
72
+ sycommon/synacos/nacos_client_base.py,sha256=KZgQAg9Imfr_TfM-4LXdtrnTdJ-beu6bcNJa0c2HauE,4600
70
73
  sycommon/synacos/nacos_config_manager.py,sha256=Cff-4gpp0aD7sQVi-nEvDO4BWqK9abEDDDJ9qXKFQgs,4399
71
74
  sycommon/synacos/nacos_heartbeat_manager.py,sha256=G80_pOn37WdO_HpYUiAfpwMqAxW0ff0Bnw0NEuge9v0,5568
72
75
  sycommon/synacos/nacos_service.py,sha256=BezQ1eDIYwBPE567Po_Qh1Ki_z9WmhZy1J1NiTPbdHY,6118
@@ -76,11 +79,11 @@ sycommon/synacos/param.py,sha256=KcfSkxnXOa0TGmCjY8hdzU9pzUsA8-4PeyBKWI2-568,176
76
79
  sycommon/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
80
  sycommon/tools/docs.py,sha256=OPj2ETheuWjXLyaXtaZPbwmJKfJaYXV5s4XMVAUNrms,1607
78
81
  sycommon/tools/env.py,sha256=Ah-tBwG2C0_hwLGFebVQgKdWWXCjTzBuF23gCkLHYy4,2437
79
- sycommon/tools/merge_headers.py,sha256=HV_i52Q-9se3SP8qh7ZGYl8bP7Fxtal4CGVkyMwEdM8,4373
82
+ sycommon/tools/merge_headers.py,sha256=u9u8_1ZIuGIminWsw45YJ5qnsx9MB-Fot0VPge7itPw,4941
80
83
  sycommon/tools/snowflake.py,sha256=xQlYXwYnI85kSJ1rZ89gMVBhzemP03xrMPVX9vVa3MY,9228
81
84
  sycommon/tools/timing.py,sha256=OiiE7P07lRoMzX9kzb8sZU9cDb0zNnqIlY5pWqHcnkY,2064
82
- sycommon_python_lib-0.1.56b17.dist-info/METADATA,sha256=zz5lBYksOaYleWnVs0ZDl8NH1aqGwJ3BS5SNeu4Lv3s,7302
83
- sycommon_python_lib-0.1.56b17.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
84
- sycommon_python_lib-0.1.56b17.dist-info/entry_points.txt,sha256=q_h2nbvhhmdnsOUZEIwpuoDjaNfBF9XqppDEmQn9d_A,46
85
- sycommon_python_lib-0.1.56b17.dist-info/top_level.txt,sha256=98CJ-cyM2WIKxLz-Pf0AitWLhJyrfXvyY8slwjTXNuc,17
86
- sycommon_python_lib-0.1.56b17.dist-info/RECORD,,
85
+ sycommon_python_lib-0.1.57.dist-info/METADATA,sha256=qQp7G8uJ3kBSlZNbOTs3CVq4yoUa5PCfPHq0IFxxsOA,7299
86
+ sycommon_python_lib-0.1.57.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
87
+ sycommon_python_lib-0.1.57.dist-info/entry_points.txt,sha256=q_h2nbvhhmdnsOUZEIwpuoDjaNfBF9XqppDEmQn9d_A,46
88
+ sycommon_python_lib-0.1.57.dist-info/top_level.txt,sha256=98CJ-cyM2WIKxLz-Pf0AitWLhJyrfXvyY8slwjTXNuc,17
89
+ sycommon_python_lib-0.1.57.dist-info/RECORD,,