swarms 7.7.1__py3-none-any.whl → 7.7.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (40) hide show
  1. swarms/prompts/ag_prompt.py +51 -19
  2. swarms/prompts/agent_system_prompts.py +13 -4
  3. swarms/prompts/multi_agent_collab_prompt.py +18 -0
  4. swarms/prompts/prompt.py +6 -10
  5. swarms/schemas/__init__.py +0 -3
  6. swarms/structs/__init__.py +3 -8
  7. swarms/structs/agent.py +211 -163
  8. swarms/structs/aop.py +8 -1
  9. swarms/structs/auto_swarm_builder.py +271 -210
  10. swarms/structs/conversation.py +23 -56
  11. swarms/structs/hiearchical_swarm.py +93 -122
  12. swarms/structs/ma_utils.py +96 -0
  13. swarms/structs/mixture_of_agents.py +20 -103
  14. swarms/structs/{multi_agent_orchestrator.py → multi_agent_router.py} +32 -95
  15. swarms/structs/output_types.py +3 -16
  16. swarms/structs/stopping_conditions.py +30 -0
  17. swarms/structs/swarm_router.py +57 -5
  18. swarms/structs/swarming_architectures.py +576 -185
  19. swarms/telemetry/main.py +6 -2
  20. swarms/tools/mcp_client.py +209 -53
  21. swarms/tools/mcp_integration.py +1 -53
  22. swarms/utils/formatter.py +15 -1
  23. swarms/utils/generate_keys.py +64 -0
  24. swarms/utils/history_output_formatter.py +2 -0
  25. {swarms-7.7.1.dist-info → swarms-7.7.3.dist-info}/METADATA +98 -263
  26. {swarms-7.7.1.dist-info → swarms-7.7.3.dist-info}/RECORD +29 -38
  27. swarms/schemas/agent_input_schema.py +0 -149
  28. swarms/structs/agents_available.py +0 -87
  29. swarms/structs/async_workflow.py +0 -818
  30. swarms/structs/graph_swarm.py +0 -612
  31. swarms/structs/octotools.py +0 -844
  32. swarms/structs/pulsar_swarm.py +0 -469
  33. swarms/structs/queue_swarm.py +0 -193
  34. swarms/structs/swarm_builder.py +0 -395
  35. swarms/structs/swarm_load_balancer.py +0 -344
  36. swarms/structs/swarm_output_type.py +0 -23
  37. swarms/structs/talk_hier.py +0 -729
  38. {swarms-7.7.1.dist-info → swarms-7.7.3.dist-info}/LICENSE +0 -0
  39. {swarms-7.7.1.dist-info → swarms-7.7.3.dist-info}/WHEEL +0 -0
  40. {swarms-7.7.1.dist-info → swarms-7.7.3.dist-info}/entry_points.txt +0 -0
@@ -1,469 +0,0 @@
1
- import asyncio
2
- import json
3
- import time
4
- from concurrent.futures import ThreadPoolExecutor, TimeoutError
5
- from contextlib import contextmanager
6
- from datetime import datetime
7
- from typing import Any, Dict, List, Literal, Optional
8
-
9
- import pulsar
10
- from cryptography.fernet import Fernet
11
- from loguru import logger
12
- from prometheus_client import Counter, Histogram, start_http_server
13
- from pydantic import BaseModel, Field
14
- from pydantic.v1 import validator
15
- from tenacity import retry, stop_after_attempt, wait_exponential
16
-
17
- # Enhanced metrics
18
- TASK_COUNTER = Counter(
19
- "swarm_tasks_total", "Total number of tasks processed"
20
- )
21
- TASK_LATENCY = Histogram(
22
- "swarm_task_duration_seconds", "Task processing duration"
23
- )
24
- TASK_FAILURES = Counter(
25
- "swarm_task_failures_total", "Total number of task failures"
26
- )
27
- AGENT_ERRORS = Counter(
28
- "swarm_agent_errors_total", "Total number of agent errors"
29
- )
30
-
31
- # Define types using Literal
32
- TaskStatus = Literal["pending", "processing", "completed", "failed"]
33
- TaskPriority = Literal["low", "medium", "high", "critical"]
34
-
35
-
36
- class SecurityConfig(BaseModel):
37
- """Security configuration for the swarm"""
38
-
39
- encryption_key: str = Field(
40
- ..., description="Encryption key for sensitive data"
41
- )
42
- tls_cert_path: Optional[str] = Field(
43
- None, description="Path to TLS certificate"
44
- )
45
- tls_key_path: Optional[str] = Field(
46
- None, description="Path to TLS private key"
47
- )
48
- auth_token: Optional[str] = Field(
49
- None, description="Authentication token"
50
- )
51
- max_message_size: int = Field(
52
- default=1048576, description="Maximum message size in bytes"
53
- )
54
- rate_limit: int = Field(
55
- default=100, description="Maximum tasks per minute"
56
- )
57
-
58
- @validator("encryption_key")
59
- def validate_encryption_key(cls, v):
60
- if len(v) < 32:
61
- raise ValueError(
62
- "Encryption key must be at least 32 bytes long"
63
- )
64
- return v
65
-
66
-
67
- class Task(BaseModel):
68
- """Enhanced task model with additional metadata and validation"""
69
-
70
- task_id: str = Field(
71
- ..., description="Unique identifier for the task"
72
- )
73
- description: str = Field(
74
- ..., description="Task description or instructions"
75
- )
76
- output_type: Literal["string", "json", "file"] = Field("string")
77
- status: TaskStatus = Field(default="pending")
78
- priority: TaskPriority = Field(default="medium")
79
- created_at: datetime = Field(default_factory=datetime.utcnow)
80
- started_at: Optional[datetime] = None
81
- completed_at: Optional[datetime] = None
82
- retry_count: int = Field(default=0)
83
- metadata: Dict[str, Any] = Field(default_factory=dict)
84
-
85
- @validator("task_id")
86
- def validate_task_id(cls, v):
87
- if not v.strip():
88
- raise ValueError("task_id cannot be empty")
89
- return v
90
-
91
- class Config:
92
- json_encoders = {datetime: lambda v: v.isoformat()}
93
-
94
-
95
- class TaskResult(BaseModel):
96
- """Model for task execution results"""
97
-
98
- task_id: str
99
- status: TaskStatus
100
- result: Any
101
- error_message: Optional[str] = None
102
- execution_time: float
103
- agent_id: str
104
-
105
-
106
- @contextmanager
107
- def task_timing():
108
- """Context manager for timing task execution"""
109
- start_time = time.time()
110
- try:
111
- yield
112
- finally:
113
- duration = time.time() - start_time
114
- TASK_LATENCY.observe(duration)
115
-
116
-
117
- class SecurePulsarSwarm:
118
- """
119
- Enhanced secure, scalable swarm system with improved reliability and security features.
120
- """
121
-
122
- def __init__(
123
- self,
124
- name: str,
125
- description: str,
126
- agents: List[Any],
127
- pulsar_url: str,
128
- subscription_name: str,
129
- topic_name: str,
130
- security_config: SecurityConfig,
131
- max_workers: int = 5,
132
- retry_attempts: int = 3,
133
- task_timeout: int = 300,
134
- metrics_port: int = 8000,
135
- ):
136
- """Initialize the enhanced Pulsar Swarm"""
137
- self.name = name
138
- self.description = description
139
- self.agents = agents
140
- self.pulsar_url = pulsar_url
141
- self.subscription_name = subscription_name
142
- self.topic_name = topic_name
143
- self.security_config = security_config
144
- self.max_workers = max_workers
145
- self.retry_attempts = retry_attempts
146
- self.task_timeout = task_timeout
147
-
148
- # Initialize encryption
149
- self.cipher_suite = Fernet(
150
- security_config.encryption_key.encode()
151
- )
152
-
153
- # Setup metrics server
154
- start_http_server(metrics_port)
155
-
156
- # Initialize Pulsar client with security settings
157
- client_config = {
158
- "authentication": (
159
- None
160
- if not security_config.auth_token
161
- else pulsar.AuthenticationToken(
162
- security_config.auth_token
163
- )
164
- ),
165
- "operation_timeout_seconds": 30,
166
- "connection_timeout_seconds": 30,
167
- "use_tls": bool(security_config.tls_cert_path),
168
- "tls_trust_certs_file_path": security_config.tls_cert_path,
169
- "tls_allow_insecure_connection": False,
170
- }
171
-
172
- self.client = pulsar.Client(self.pulsar_url, **client_config)
173
- self.producer = self._create_producer()
174
- self.consumer = self._create_consumer()
175
- self.executor = ThreadPoolExecutor(max_workers=max_workers)
176
-
177
- # Initialize rate limiting
178
- self.last_execution_time = time.time()
179
- self.execution_count = 0
180
-
181
- logger.info(
182
- f"Secure Pulsar Swarm '{self.name}' initialized with enhanced security features"
183
- )
184
-
185
- def _create_producer(self):
186
- """Create a secure producer with retry logic"""
187
- return self.client.create_producer(
188
- self.topic_name,
189
- max_pending_messages=1000,
190
- compression_type=pulsar.CompressionType.LZ4,
191
- block_if_queue_full=True,
192
- batching_enabled=True,
193
- batching_max_publish_delay_ms=10,
194
- )
195
-
196
- def _create_consumer(self):
197
- """Create a secure consumer with retry logic"""
198
- return self.client.subscribe(
199
- self.topic_name,
200
- subscription_name=self.subscription_name,
201
- consumer_type=pulsar.ConsumerType.Shared,
202
- message_listener=None,
203
- receiver_queue_size=1000,
204
- max_total_receiver_queue_size_across_partitions=50000,
205
- )
206
-
207
- def _encrypt_message(self, data: str) -> bytes:
208
- """Encrypt message data"""
209
- return self.cipher_suite.encrypt(data.encode())
210
-
211
- def _decrypt_message(self, data: bytes) -> str:
212
- """Decrypt message data"""
213
- return self.cipher_suite.decrypt(data).decode()
214
-
215
- @retry(
216
- stop=stop_after_attempt(3),
217
- wait=wait_exponential(multiplier=1, min=4, max=10),
218
- )
219
- def publish_task(self, task: Task) -> None:
220
- """Publish a task with enhanced security and reliability"""
221
- try:
222
- # Validate message size
223
- task_data = task.json()
224
- if len(task_data) > self.security_config.max_message_size:
225
- raise ValueError(
226
- "Task data exceeds maximum message size"
227
- )
228
-
229
- # Rate limiting
230
- current_time = time.time()
231
- if current_time - self.last_execution_time >= 60:
232
- self.execution_count = 0
233
- self.last_execution_time = current_time
234
-
235
- if (
236
- self.execution_count
237
- >= self.security_config.rate_limit
238
- ):
239
- raise ValueError("Rate limit exceeded")
240
-
241
- # Encrypt and publish
242
- encrypted_data = self._encrypt_message(task_data)
243
- message_id = self.producer.send(encrypted_data)
244
-
245
- self.execution_count += 1
246
- logger.info(
247
- f"Task {task.task_id} published successfully with message ID {message_id}"
248
- )
249
-
250
- except Exception as e:
251
- TASK_FAILURES.inc()
252
- logger.error(
253
- f"Error publishing task {task.task_id}: {str(e)}"
254
- )
255
- raise
256
-
257
- async def _process_task(self, task: Task) -> TaskResult:
258
- """Process a task with comprehensive error handling and monitoring"""
259
- task.status = "processing"
260
- task.started_at = datetime.utcnow()
261
-
262
- with task_timing():
263
- try:
264
- # Select agent using round-robin
265
- agent = self.agents.pop(0)
266
- self.agents.append(agent)
267
-
268
- # Execute task with timeout
269
- future = self.executor.submit(
270
- agent.run, task.description
271
- )
272
- result = future.result(timeout=self.task_timeout)
273
-
274
- # Handle different output types
275
- if task.output_type == "json":
276
- result = json.loads(result)
277
- elif task.output_type == "file":
278
- file_path = f"output_{task.task_id}_{int(time.time())}.txt"
279
- with open(file_path, "w") as f:
280
- f.write(result)
281
- result = {"file_path": file_path}
282
-
283
- task.status = "completed"
284
- task.completed_at = datetime.utcnow()
285
- TASK_COUNTER.inc()
286
-
287
- return TaskResult(
288
- task_id=task.task_id,
289
- status="completed",
290
- result=result,
291
- execution_time=time.time()
292
- - task.started_at.timestamp(),
293
- agent_id=agent.agent_name,
294
- )
295
-
296
- except TimeoutError:
297
- TASK_FAILURES.inc()
298
- error_msg = f"Task {task.task_id} timed out after {self.task_timeout} seconds"
299
- logger.error(error_msg)
300
- task.status = "failed"
301
- return TaskResult(
302
- task_id=task.task_id,
303
- status="failed",
304
- result=None,
305
- error_message=error_msg,
306
- execution_time=time.time()
307
- - task.started_at.timestamp(),
308
- agent_id=agent.agent_name,
309
- )
310
-
311
- except Exception as e:
312
- TASK_FAILURES.inc()
313
- AGENT_ERRORS.inc()
314
- error_msg = (
315
- f"Error processing task {task.task_id}: {str(e)}"
316
- )
317
- logger.error(error_msg)
318
- task.status = "failed"
319
- return TaskResult(
320
- task_id=task.task_id,
321
- status="failed",
322
- result=None,
323
- error_message=error_msg,
324
- execution_time=time.time()
325
- - task.started_at.timestamp(),
326
- agent_id=agent.agent_name,
327
- )
328
-
329
- async def consume_tasks(self):
330
- """Enhanced task consumption with circuit breaker and backoff"""
331
- consecutive_failures = 0
332
- backoff_time = 1
333
-
334
- while True:
335
- try:
336
- # Circuit breaker pattern
337
- if consecutive_failures >= 5:
338
- logger.warning(
339
- f"Circuit breaker triggered. Waiting {backoff_time} seconds"
340
- )
341
- await asyncio.sleep(backoff_time)
342
- backoff_time = min(backoff_time * 2, 60)
343
- continue
344
-
345
- # Receive message with timeout
346
- message = await self.consumer.receive_async()
347
-
348
- try:
349
- # Decrypt and process message
350
- decrypted_data = self._decrypt_message(
351
- message.data()
352
- )
353
- task_data = json.loads(decrypted_data)
354
- task = Task(**task_data)
355
-
356
- # Process task
357
- result = await self._process_task(task)
358
-
359
- # Handle result
360
- if result.status == "completed":
361
- await self.consumer.acknowledge_async(message)
362
- consecutive_failures = 0
363
- backoff_time = 1
364
- else:
365
- if task.retry_count < self.retry_attempts:
366
- task.retry_count += 1
367
- await self.consumer.negative_acknowledge(
368
- message
369
- )
370
- else:
371
- await self.consumer.acknowledge_async(
372
- message
373
- )
374
- logger.error(
375
- f"Task {task.task_id} failed after {self.retry_attempts} attempts"
376
- )
377
-
378
- except Exception as e:
379
- logger.error(
380
- f"Error processing message: {str(e)}"
381
- )
382
- await self.consumer.negative_acknowledge(message)
383
- consecutive_failures += 1
384
-
385
- except Exception as e:
386
- logger.error(f"Error in consume_tasks: {str(e)}")
387
- consecutive_failures += 1
388
- await asyncio.sleep(1)
389
-
390
- def __enter__(self):
391
- """Context manager entry"""
392
- return self
393
-
394
- def __exit__(self, exc_type, exc_val, exc_tb):
395
- """Context manager exit with proper cleanup"""
396
- try:
397
- self.producer.flush()
398
- self.producer.close()
399
- self.consumer.close()
400
- self.client.close()
401
- self.executor.shutdown(wait=True)
402
- except Exception as e:
403
- logger.error(f"Error during cleanup: {str(e)}")
404
-
405
-
406
- # if __name__ == "__main__":
407
- # # Example usage with security configuration
408
- # security_config = SecurityConfig(
409
- # encryption_key=secrets.token_urlsafe(32),
410
- # tls_cert_path="/path/to/cert.pem",
411
- # tls_key_path="/path/to/key.pem",
412
- # auth_token="your-auth-token",
413
- # max_message_size=1048576,
414
- # rate_limit=100,
415
- # )
416
-
417
- # # Agent factory function
418
- # def create_financial_agent() -> Agent:
419
- # """Factory function to create a financial analysis agent."""
420
- # return Agent(
421
- # agent_name="Financial-Analysis-Agent",
422
- # system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
423
- # model_name="gpt-4o-mini",
424
- # max_loops=1,
425
- # autosave=True,
426
- # dashboard=False,
427
- # verbose=True,
428
- # dynamic_temperature_enabled=True,
429
- # saved_state_path="finance_agent.json",
430
- # user_name="swarms_corp",
431
- # retry_attempts=1,
432
- # context_length=200000,
433
- # return_step_meta=False,
434
- # output_type="string",
435
- # streaming_on=False,
436
- # )
437
-
438
- # # Initialize agents (implementation not shown)
439
- # agents = [create_financial_agent() for _ in range(3)]
440
-
441
- # # Initialize the secure swarm
442
- # with SecurePulsarSwarm(
443
- # name="Secure Financial Swarm",
444
- # description="Production-grade financial analysis swarm",
445
- # agents=agents,
446
- # pulsar_url="pulsar+ssl://localhost:6651",
447
- # subscription_name="secure_financial_subscription",
448
- # topic_name="secure_financial_tasks",
449
- # security_config=security_config,
450
- # max_workers=5,
451
- # retry_attempts=3,
452
- # task_timeout=300,
453
- # metrics_port=8000,
454
- # ) as swarm:
455
- # # Example task
456
- # task = Task(
457
- # task_id=secrets.token_urlsafe(16),
458
- # description="Analyze Q4 financial reports",
459
- # output_type="json",
460
- # priority="high",
461
- # metadata={
462
- # "department": "finance",
463
- # "requester": "john.doe@company.com",
464
- # },
465
- # )
466
-
467
- # # Run the swarm
468
- # swarm.publish_task(task)
469
- # asyncio.run(swarm.consume_tasks())
@@ -1,193 +0,0 @@
1
- import queue
2
- import threading
3
- from typing import List
4
- from swarms.structs.agent import Agent
5
- from pydantic import BaseModel
6
- import os
7
- from swarms.utils.loguru_logger import logger
8
- from swarms.structs.base_swarm import BaseSwarm
9
- import time
10
-
11
-
12
- class AgentOutput(BaseModel):
13
- agent_name: str
14
- task: str
15
- result: str
16
- timestamp: str
17
-
18
-
19
- class SwarmRunMetadata(BaseModel):
20
- run_id: str
21
- name: str
22
- description: str
23
- agents: List[str]
24
- start_time: str
25
- end_time: str
26
- tasks_completed: int
27
- outputs: List[AgentOutput]
28
-
29
-
30
- class TaskQueueSwarm(BaseSwarm):
31
- """
32
- A swarm that processes tasks from a queue using multiple agents on different threads.
33
-
34
- Args:
35
- agents (List[Agent]): A list of agents of class Agent.
36
- name (str, optional): The name of the swarm. Defaults to "Task-Queue-Swarm".
37
- description (str, optional): The description of the swarm. Defaults to "A swarm that processes tasks from a queue using multiple agents on different threads.".
38
- autosave_on (bool, optional): Whether to automatically save the swarm metadata. Defaults to True.
39
- save_file_path (str, optional): The file path to save the swarm metadata. Defaults to "swarm_run_metadata.json".
40
- workspace_dir (str, optional): The directory path of the workspace. Defaults to os.getenv("WORKSPACE_DIR").
41
- return_metadata_on (bool, optional): Whether to return the swarm metadata after running. Defaults to False.
42
- max_loops (int, optional): The maximum number of loops to run the swarm. Defaults to 1.
43
-
44
- Attributes:
45
- agents (List[Agent]): A list of agents of class Agent.
46
- task_queue (queue.Queue): A queue to store the tasks.
47
- lock (threading.Lock): A lock for thread synchronization.
48
- autosave_on (bool): Whether to automatically save the swarm metadata.
49
- save_file_path (str): The file path to save the swarm metadata.
50
- workspace_dir (str): The directory path of the workspace.
51
- return_metadata_on (bool): Whether to return the swarm metadata after running.
52
- max_loops (int): The maximum number of loops to run the swarm.
53
- metadata (SwarmRunMetadata): The metadata of the swarm run.
54
- """
55
-
56
- def __init__(
57
- self,
58
- agents: List[Agent],
59
- name: str = "Task-Queue-Swarm",
60
- description: str = "A swarm that processes tasks from a queue using multiple agents on different threads.",
61
- autosave_on: bool = True,
62
- save_file_path: str = "swarm_run_metadata.json",
63
- workspace_dir: str = os.getenv("WORKSPACE_DIR"),
64
- return_metadata_on: bool = False,
65
- max_loops: int = 1,
66
- *args,
67
- **kwargs,
68
- ):
69
- super().__init__(
70
- name=name,
71
- description=description,
72
- agents=agents,
73
- *args,
74
- **kwargs,
75
- )
76
- self.agents = agents
77
- self.task_queue = queue.Queue()
78
- self.lock = threading.Lock()
79
- self.autosave_on = autosave_on
80
- self.save_file_path = save_file_path
81
- self.workspace_dir = workspace_dir or os.getenv(
82
- "WORKSPACE_DIR", "agent_workspace"
83
- )
84
- self.return_metadata_on = return_metadata_on
85
- self.max_loops = max_loops
86
-
87
- current_time = time.strftime("%Y%m%d%H%M%S")
88
- self.metadata = SwarmRunMetadata(
89
- run_id=f"swarm_run_{current_time}",
90
- name=name,
91
- description=description,
92
- agents=[agent.agent_name for agent in agents],
93
- start_time=current_time,
94
- end_time="",
95
- tasks_completed=0,
96
- outputs=[],
97
- )
98
-
99
- def reliability_checks(self):
100
- logger.info("Initializing reliability checks.")
101
-
102
- if not self.agents:
103
- raise ValueError(
104
- "You must provide a non-empty list of Agent instances."
105
- )
106
-
107
- if self.max_loops <= 0:
108
- raise ValueError("max_loops must be greater than zero.")
109
-
110
- logger.info(
111
- "Reliability checks successful. Swarm is ready for usage."
112
- )
113
-
114
- def add_task(self, task: str):
115
- """Adds a task to the queue."""
116
- self.task_queue.put(task)
117
-
118
- def _process_task(self, agent: Agent):
119
- """Processes tasks from the queue using the provided agent."""
120
- while True:
121
- try:
122
- task = self.task_queue.get_nowait()
123
- except queue.Empty:
124
- break
125
- try:
126
- logger.info(
127
- f"Agent {agent.agent_name} is running task: {task}"
128
- )
129
- result = agent.run(task)
130
- with self.lock:
131
- self.metadata.tasks_completed += 1
132
- self.metadata.outputs.append(
133
- AgentOutput(
134
- agent_name=agent.agent_name,
135
- task=task,
136
- result=result,
137
- timestamp=time.strftime(
138
- "%Y-%m-%d %H:%M:%S"
139
- ),
140
- )
141
- )
142
- logger.info(
143
- f"Agent {agent.agent_name} completed task: {task}"
144
- )
145
- logger.debug(f"Result: {result}")
146
- except Exception as e:
147
- logger.error(
148
- f"Agent {agent.agent_name} failed to complete task: {task}"
149
- )
150
- logger.exception(e)
151
- finally:
152
- self.task_queue.task_done()
153
-
154
- def run(self):
155
- """Runs the swarm by having agents pick up tasks from the queue."""
156
- logger.info(f"Starting swarm run: {self.metadata.run_id}")
157
-
158
- threads = [
159
- threading.Thread(
160
- target=self._process_task, args=(agent,), daemon=True
161
- )
162
- for agent in self.agents
163
- ]
164
-
165
- for thread in threads:
166
- thread.start()
167
-
168
- self.task_queue.join()
169
-
170
- for thread in threads:
171
- thread.join()
172
-
173
- self.metadata.end_time = time.strftime("%Y%m%d%H%M%S")
174
-
175
- if self.autosave_on:
176
- self.save_json_to_file()
177
-
178
- # if self.return_metadata_on:
179
- # return self.metadata.model_dump_json(indent=4)
180
- return self.export_metadata()
181
-
182
- def save_json_to_file(self):
183
- json_string = self.export_metadata()
184
- file_path = os.path.join(
185
- self.workspace_dir, self.save_file_path
186
- )
187
- os.makedirs(os.path.dirname(file_path), exist_ok=True)
188
- with open(file_path, "w") as f:
189
- f.write(json_string)
190
- logger.info(f"Metadata saved to {file_path}")
191
-
192
- def export_metadata(self):
193
- return self.metadata.model_dump_json(indent=4)