swarms 7.6.4__py3-none-any.whl → 7.6.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- swarms/structs/__init__.py +1 -3
- swarms/structs/agent.py +77 -0
- swarms/tools/mcp_integration.py +321 -483
- swarms/utils/vllm_wrapper.py +146 -0
- {swarms-7.6.4.dist-info → swarms-7.6.5.dist-info}/METADATA +1 -1
- {swarms-7.6.4.dist-info → swarms-7.6.5.dist-info}/RECORD +9 -9
- swarms/structs/auto_swarm.py +0 -229
- {swarms-7.6.4.dist-info → swarms-7.6.5.dist-info}/LICENSE +0 -0
- {swarms-7.6.4.dist-info → swarms-7.6.5.dist-info}/WHEEL +0 -0
- {swarms-7.6.4.dist-info → swarms-7.6.5.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,146 @@
|
|
1
|
+
from typing import List, Optional, Dict, Any
|
2
|
+
from loguru import logger
|
3
|
+
|
4
|
+
try:
|
5
|
+
from vllm import LLM, SamplingParams
|
6
|
+
except ImportError:
|
7
|
+
import subprocess
|
8
|
+
import sys
|
9
|
+
|
10
|
+
print("Installing vllm")
|
11
|
+
subprocess.check_call(
|
12
|
+
[sys.executable, "-m", "pip", "install", "-U", "vllm"]
|
13
|
+
)
|
14
|
+
print("vllm installed")
|
15
|
+
from vllm import LLM, SamplingParams
|
16
|
+
|
17
|
+
|
18
|
+
class VLLMWrapper:
|
19
|
+
"""
|
20
|
+
A wrapper class for vLLM that provides a similar interface to LiteLLM.
|
21
|
+
This class handles model initialization and inference using vLLM.
|
22
|
+
"""
|
23
|
+
|
24
|
+
def __init__(
|
25
|
+
self,
|
26
|
+
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
27
|
+
system_prompt: Optional[str] = None,
|
28
|
+
stream: bool = False,
|
29
|
+
temperature: float = 0.5,
|
30
|
+
max_tokens: int = 4000,
|
31
|
+
max_completion_tokens: int = 4000,
|
32
|
+
tools_list_dictionary: Optional[List[Dict[str, Any]]] = None,
|
33
|
+
tool_choice: str = "auto",
|
34
|
+
parallel_tool_calls: bool = False,
|
35
|
+
*args,
|
36
|
+
**kwargs,
|
37
|
+
):
|
38
|
+
"""
|
39
|
+
Initialize the vLLM wrapper with the given parameters.
|
40
|
+
|
41
|
+
Args:
|
42
|
+
model_name (str): The name of the model to use. Defaults to "meta-llama/Llama-2-7b-chat-hf".
|
43
|
+
system_prompt (str, optional): The system prompt to use. Defaults to None.
|
44
|
+
stream (bool): Whether to stream the output. Defaults to False.
|
45
|
+
temperature (float): The temperature for sampling. Defaults to 0.5.
|
46
|
+
max_tokens (int): The maximum number of tokens to generate. Defaults to 4000.
|
47
|
+
max_completion_tokens (int): The maximum number of completion tokens. Defaults to 4000.
|
48
|
+
tools_list_dictionary (List[Dict[str, Any]], optional): List of available tools. Defaults to None.
|
49
|
+
tool_choice (str): How to choose tools. Defaults to "auto".
|
50
|
+
parallel_tool_calls (bool): Whether to allow parallel tool calls. Defaults to False.
|
51
|
+
"""
|
52
|
+
self.model_name = model_name
|
53
|
+
self.system_prompt = system_prompt
|
54
|
+
self.stream = stream
|
55
|
+
self.temperature = temperature
|
56
|
+
self.max_tokens = max_tokens
|
57
|
+
self.max_completion_tokens = max_completion_tokens
|
58
|
+
self.tools_list_dictionary = tools_list_dictionary
|
59
|
+
self.tool_choice = tool_choice
|
60
|
+
self.parallel_tool_calls = parallel_tool_calls
|
61
|
+
|
62
|
+
# Initialize vLLM
|
63
|
+
self.llm = LLM(model=model_name, **kwargs)
|
64
|
+
self.sampling_params = SamplingParams(
|
65
|
+
temperature=temperature,
|
66
|
+
max_tokens=max_tokens,
|
67
|
+
)
|
68
|
+
|
69
|
+
def _prepare_prompt(self, task: str) -> str:
|
70
|
+
"""
|
71
|
+
Prepare the prompt for the given task.
|
72
|
+
|
73
|
+
Args:
|
74
|
+
task (str): The task to prepare the prompt for.
|
75
|
+
|
76
|
+
Returns:
|
77
|
+
str: The prepared prompt.
|
78
|
+
"""
|
79
|
+
if self.system_prompt:
|
80
|
+
return f"{self.system_prompt}\n\nUser: {task}\nAssistant:"
|
81
|
+
return f"User: {task}\nAssistant:"
|
82
|
+
|
83
|
+
def run(self, task: str, *args, **kwargs) -> str:
|
84
|
+
"""
|
85
|
+
Run the model for the given task.
|
86
|
+
|
87
|
+
Args:
|
88
|
+
task (str): The task to run the model for.
|
89
|
+
*args: Additional positional arguments.
|
90
|
+
**kwargs: Additional keyword arguments.
|
91
|
+
|
92
|
+
Returns:
|
93
|
+
str: The model's response.
|
94
|
+
"""
|
95
|
+
try:
|
96
|
+
prompt = self._prepare_prompt(task)
|
97
|
+
|
98
|
+
outputs = self.llm.generate(prompt, self.sampling_params)
|
99
|
+
response = outputs[0].outputs[0].text.strip()
|
100
|
+
|
101
|
+
return response
|
102
|
+
|
103
|
+
except Exception as error:
|
104
|
+
logger.error(f"Error in VLLMWrapper: {error}")
|
105
|
+
raise error
|
106
|
+
|
107
|
+
def __call__(self, task: str, *args, **kwargs) -> str:
|
108
|
+
"""
|
109
|
+
Call the model for the given task.
|
110
|
+
|
111
|
+
Args:
|
112
|
+
task (str): The task to run the model for.
|
113
|
+
*args: Additional positional arguments.
|
114
|
+
**kwargs: Additional keyword arguments.
|
115
|
+
|
116
|
+
Returns:
|
117
|
+
str: The model's response.
|
118
|
+
"""
|
119
|
+
return self.run(task, *args, **kwargs)
|
120
|
+
|
121
|
+
def batched_run(
|
122
|
+
self, tasks: List[str], batch_size: int = 10
|
123
|
+
) -> List[str]:
|
124
|
+
"""
|
125
|
+
Run the model for multiple tasks in batches.
|
126
|
+
|
127
|
+
Args:
|
128
|
+
tasks (List[str]): List of tasks to run.
|
129
|
+
batch_size (int): Size of each batch. Defaults to 10.
|
130
|
+
|
131
|
+
Returns:
|
132
|
+
List[str]: List of model responses.
|
133
|
+
"""
|
134
|
+
logger.info(
|
135
|
+
f"Running tasks in batches of size {batch_size}. Total tasks: {len(tasks)}"
|
136
|
+
)
|
137
|
+
results = []
|
138
|
+
|
139
|
+
for i in range(0, len(tasks), batch_size):
|
140
|
+
batch = tasks[i : i + batch_size]
|
141
|
+
for task in batch:
|
142
|
+
logger.info(f"Running task: {task}")
|
143
|
+
results.append(self.run(task))
|
144
|
+
|
145
|
+
logger.info("Completed all tasks.")
|
146
|
+
return results
|
@@ -81,15 +81,14 @@ swarms/schemas/__init__.py,sha256=EqqtVcpoptF1kfy19Wykp22ut4AA0z-yMQ5H9WB7ptA,18
|
|
81
81
|
swarms/schemas/agent_input_schema.py,sha256=qhPyThMx2on91yG9mzNdP_08GpMh1IRDHDwFna29jPs,6345
|
82
82
|
swarms/schemas/agent_step_schemas.py,sha256=a14gb58vR0xOwB_fwSJQbN6yb9HddEaT30E6hUrzEQA,2573
|
83
83
|
swarms/schemas/base_schemas.py,sha256=UvBLVWg2qRen4tK5GJz50v42SiX95EQ5qK7hfyAHTEU,3267
|
84
|
-
swarms/structs/__init__.py,sha256=
|
85
|
-
swarms/structs/agent.py,sha256=
|
84
|
+
swarms/structs/__init__.py,sha256=ER0HI-9RQI22i10x6XQj6TaKoWJgk1a5XIP1KxiBsCU,4310
|
85
|
+
swarms/structs/agent.py,sha256=IChi9EZiFUwCmj7dPa9H70TBkYd6VnTt-5Jx5TLPbWI,95234
|
86
86
|
swarms/structs/agent_builder.py,sha256=tYNpfO4_8cgfMHfgA5DAOWffHnt70p6CLt59esqfVCY,12133
|
87
87
|
swarms/structs/agent_registry.py,sha256=il507cO1NF-d4ChyANVLuWrN8bXsEAi8_7bLJ_sTU6A,12112
|
88
88
|
swarms/structs/agent_roles.py,sha256=8XEw6RjOOZelaZaWt4gXaYQm5WMLEhSO7W6Z8sQjmFg,582
|
89
89
|
swarms/structs/agent_router.py,sha256=YZw5AaK2yTvxkOA7ouED_4MoYgn0XZggvo1wrglp-4E,13017
|
90
90
|
swarms/structs/agents_available.py,sha256=SedxDim-0IWgGsNwJZxRIUMfKyAFFXdvXSYeBNu0zGw,2804
|
91
91
|
swarms/structs/async_workflow.py,sha256=7YWsLPyGY-1-mMxoIXWQ0FnYH6F227nxsS9PFAJoF9Q,26214
|
92
|
-
swarms/structs/auto_swarm.py,sha256=AHWswlEWDL_i3V8IP362tx6pi_B2arlZhALykrkI5OA,8215
|
93
92
|
swarms/structs/auto_swarm_builder.py,sha256=vPM5Kq59D_FvuWJB8hxgHuEvTXsxDxovlBnHGVQsM4o,10938
|
94
93
|
swarms/structs/base_structure.py,sha256=GDu4QJQQmhU7IyuFJHIh9UVThACCva-L7uoMbVD9l4s,15901
|
95
94
|
swarms/structs/base_swarm.py,sha256=LSGJDPJdyUCcK6698mNtjxoC1OU3s_J2NxC2k_ccGUs,23779
|
@@ -153,7 +152,7 @@ swarms/tools/function_util.py,sha256=DAnAPO0Ik__TAqL7IJzFmkukHnhpsW_QtALl3yj837g
|
|
153
152
|
swarms/tools/json_former.py,sha256=4ugLQ_EZpghhuhFsVKsy-ehin9K64pqVE2gLU7BTO_M,14376
|
154
153
|
swarms/tools/json_utils.py,sha256=WKMZjcJ0Vt6lgIjiTBenslcfjgRSLX4UWs4uDkKFMQI,1316
|
155
154
|
swarms/tools/logits_processor.py,sha256=NifZZ5w9yemWGJAJ5nHFrphtZVX1XlyesgvYZTxK1GM,2965
|
156
|
-
swarms/tools/mcp_integration.py,sha256=
|
155
|
+
swarms/tools/mcp_integration.py,sha256=rUXxC9NvXQ3V4B7Lt1AoI4ZYiCl2-T4FW3_689HTRZk,12839
|
157
156
|
swarms/tools/openai_func_calling_schema_pydantic.py,sha256=6BAH9kuaVTvJIbjgSSJ5XvHhWvWszPxgarkfUuE5Ads,978
|
158
157
|
swarms/tools/openai_tool_creator_decorator.py,sha256=SYZjHnARjWvnH9cBdj7Kc_Yy1muvNxMT3RQz8KkA2SE,2578
|
159
158
|
swarms/tools/py_func_to_openai_func_str.py,sha256=W112Gu0CmAiHrNWnRMcnoGiVZEy2FxAU4xMvnG9XP4g,15710
|
@@ -182,9 +181,10 @@ swarms/utils/str_to_dict.py,sha256=T3Jsdjz87WIlkSo7jAW6BB80sv0Ns49WT1qXlOrdEoE,8
|
|
182
181
|
swarms/utils/swarm_reliability_checks.py,sha256=MsgUULt3HYg72D0HifZNmtCyJYpLA2UDA2wQixI-NbA,2562
|
183
182
|
swarms/utils/try_except_wrapper.py,sha256=appEGu9Afy3TmdkNNXUgQ9yU9lj2j0uNkIoW0JhVzzY,3917
|
184
183
|
swarms/utils/visualizer.py,sha256=0ylohEk62MAS6iPRaDOV03m9qo2k5J56tWlKJk_46p4,16927
|
184
|
+
swarms/utils/vllm_wrapper.py,sha256=OIGnU9Vf81vE_hul1FK-xEhChFK8fxqZX6-fhQeW22c,4987
|
185
185
|
swarms/utils/wrapper_clusterop.py,sha256=PMSCVM7ZT1vgj1D_MYAe835RR3SMLYxA-si2JS02yNQ,4220
|
186
|
-
swarms-7.6.
|
187
|
-
swarms-7.6.
|
188
|
-
swarms-7.6.
|
189
|
-
swarms-7.6.
|
190
|
-
swarms-7.6.
|
186
|
+
swarms-7.6.5.dist-info/LICENSE,sha256=jwRtEmTWjLrEsvFB6QFdYs2cEeZPRMdj-UMOFkPF8_0,11363
|
187
|
+
swarms-7.6.5.dist-info/METADATA,sha256=2w553wEExRZlKYKxX_LCvhpbyJbhefIxw43-I1Jvwmw,104909
|
188
|
+
swarms-7.6.5.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
189
|
+
swarms-7.6.5.dist-info/entry_points.txt,sha256=2K0rTtfO1X1WaO-waJlXIKw5Voa_EpAL_yU0HXE2Jgc,47
|
190
|
+
swarms-7.6.5.dist-info/RECORD,,
|
swarms/structs/auto_swarm.py
DELETED
@@ -1,229 +0,0 @@
|
|
1
|
-
from typing import Any, Callable, Dict, Optional, Sequence
|
2
|
-
|
3
|
-
from swarms.structs.base_swarm import BaseSwarm
|
4
|
-
from swarms.utils.loguru_logger import logger
|
5
|
-
|
6
|
-
|
7
|
-
class AutoSwarmRouter(BaseSwarm):
|
8
|
-
"""AutoSwarmRouter class represents a router for the AutoSwarm class.
|
9
|
-
|
10
|
-
This class is responsible for routing tasks to the appropriate swarm based on the provided name.
|
11
|
-
It allows customization of the preprocessing, routing, and postprocessing of tasks.
|
12
|
-
|
13
|
-
Attributes:
|
14
|
-
name (str): The name of the router.
|
15
|
-
description (str): The description of the router.
|
16
|
-
verbose (bool): Whether to enable verbose mode.
|
17
|
-
custom_params (dict): Custom parameters for the router.
|
18
|
-
swarms (list): A list of BaseSwarm objects.
|
19
|
-
custom_preprocess (callable): Custom preprocessing function for tasks.
|
20
|
-
custom_postprocess (callable): Custom postprocessing function for task results.
|
21
|
-
custom_router (callable): Custom routing function for tasks.
|
22
|
-
|
23
|
-
Methods:
|
24
|
-
run(task: str = None, *args, **kwargs) -> Any:
|
25
|
-
Run the swarm simulation and route the task to the appropriate swarm.
|
26
|
-
|
27
|
-
Flow:
|
28
|
-
name -> router -> swarm entry point
|
29
|
-
"""
|
30
|
-
|
31
|
-
def __init__(
|
32
|
-
self,
|
33
|
-
name: Optional[str] = None,
|
34
|
-
description: Optional[str] = None,
|
35
|
-
verbose: bool = False,
|
36
|
-
custom_params: Optional[Dict[str, Any]] = None,
|
37
|
-
swarms: Sequence[BaseSwarm] = None,
|
38
|
-
custom_preprocess: Optional[Callable] = None,
|
39
|
-
custom_postprocess: Optional[Callable] = None,
|
40
|
-
custom_router: Optional[Callable] = None,
|
41
|
-
*args,
|
42
|
-
**kwargs,
|
43
|
-
):
|
44
|
-
super().__init__(
|
45
|
-
name=name, description=description, *args, **kwargs
|
46
|
-
)
|
47
|
-
self.name = name
|
48
|
-
self.description = description
|
49
|
-
self.verbose = verbose
|
50
|
-
self.custom_params = custom_params
|
51
|
-
self.swarms = swarms
|
52
|
-
self.custom_preprocess = custom_preprocess
|
53
|
-
self.custom_postprocess = custom_postprocess
|
54
|
-
self.custom_router = custom_router
|
55
|
-
|
56
|
-
# Create a dictionary of swarms
|
57
|
-
self.swarm_dict = {swarm.name: swarm for swarm in self.swarms}
|
58
|
-
|
59
|
-
logger.info(
|
60
|
-
f"AutoSwarmRouter has been initialized with {self.len_of_swarms()} swarms."
|
61
|
-
)
|
62
|
-
|
63
|
-
def run(self, task: str = None, *args, **kwargs):
|
64
|
-
try:
|
65
|
-
"""Run the swarm simulation and route the task to the appropriate swarm."""
|
66
|
-
|
67
|
-
if self.custom_preprocess:
|
68
|
-
# If custom preprocess function is provided then run it
|
69
|
-
logger.info("Running custom preprocess function.")
|
70
|
-
task, args, kwargs = self.custom_preprocess(
|
71
|
-
task, args, kwargs
|
72
|
-
)
|
73
|
-
|
74
|
-
if self.custom_router:
|
75
|
-
# If custom router function is provided then use it to route the task
|
76
|
-
logger.info("Running custom router function.")
|
77
|
-
out = self.custom_router(self, task, *args, **kwargs)
|
78
|
-
|
79
|
-
if self.custom_postprocess:
|
80
|
-
# If custom postprocess function is provided then run it
|
81
|
-
out = self.custom_postprocess(out)
|
82
|
-
|
83
|
-
return out
|
84
|
-
|
85
|
-
if self.name in self.swarm_dict:
|
86
|
-
# If a match is found then send the task to the swarm
|
87
|
-
out = self.swarm_dict[self.name].run(
|
88
|
-
task, *args, **kwargs
|
89
|
-
)
|
90
|
-
|
91
|
-
if self.custom_postprocess:
|
92
|
-
# If custom postprocess function is provided then run it
|
93
|
-
out = self.custom_postprocess(out)
|
94
|
-
|
95
|
-
return out
|
96
|
-
|
97
|
-
# If no match is found then return None
|
98
|
-
raise ValueError(
|
99
|
-
f"Swarm with name {self.name} not found."
|
100
|
-
)
|
101
|
-
except Exception as e:
|
102
|
-
logger.error(f"Error: {e}")
|
103
|
-
raise e
|
104
|
-
|
105
|
-
def len_of_swarms(self):
|
106
|
-
return print(len(self.swarms))
|
107
|
-
|
108
|
-
def list_available_swarms(self):
|
109
|
-
for swarm in self.swarms:
|
110
|
-
try:
|
111
|
-
logger.info(
|
112
|
-
f"Swarm Name: {swarm.name} || Swarm Description: {swarm.description} "
|
113
|
-
)
|
114
|
-
except Exception as error:
|
115
|
-
logger.error(
|
116
|
-
f"Error Detected You may not have swarms available: {error}"
|
117
|
-
)
|
118
|
-
raise error
|
119
|
-
|
120
|
-
|
121
|
-
class AutoSwarm(BaseSwarm):
|
122
|
-
"""AutoSwarm class represents a swarm of agents that can be created automatically.
|
123
|
-
|
124
|
-
Flow:
|
125
|
-
name -> router -> swarm entry point
|
126
|
-
|
127
|
-
Args:
|
128
|
-
name (Optional[str]): The name of the swarm. Defaults to None.
|
129
|
-
description (Optional[str]): The description of the swarm. Defaults to None.
|
130
|
-
verbose (bool): Whether to enable verbose mode. Defaults to False.
|
131
|
-
custom_params (Optional[Dict[str, Any]]): Custom parameters for the swarm. Defaults to None.
|
132
|
-
router (Optional[AutoSwarmRouter]): The router for the swarm. Defaults to None.
|
133
|
-
"""
|
134
|
-
|
135
|
-
def __init__(
|
136
|
-
self,
|
137
|
-
name: Optional[str] = None,
|
138
|
-
description: Optional[str] = None,
|
139
|
-
verbose: bool = False,
|
140
|
-
custom_params: Optional[Dict[str, Any]] = None,
|
141
|
-
custom_preprocess: Optional[Callable] = None,
|
142
|
-
custom_postprocess: Optional[Callable] = None,
|
143
|
-
custom_router: Optional[Callable] = None,
|
144
|
-
max_loops: int = 1,
|
145
|
-
*args,
|
146
|
-
**kwargs,
|
147
|
-
):
|
148
|
-
super().__init__()
|
149
|
-
self.name = name
|
150
|
-
self.description = description
|
151
|
-
self.verbose = verbose
|
152
|
-
self.custom_params = custom_params
|
153
|
-
self.custom_preprocess = custom_preprocess
|
154
|
-
self.custom_postprocess = custom_postprocess
|
155
|
-
self.custom_router = custom_router
|
156
|
-
self.max_loops = max_loops
|
157
|
-
self.router = AutoSwarmRouter(
|
158
|
-
name=name,
|
159
|
-
description=description,
|
160
|
-
verbose=verbose,
|
161
|
-
custom_params=custom_params,
|
162
|
-
custom_preprocess=custom_preprocess,
|
163
|
-
custom_postprocess=custom_postprocess,
|
164
|
-
custom_router=custom_router,
|
165
|
-
*args,
|
166
|
-
**kwargs,
|
167
|
-
)
|
168
|
-
|
169
|
-
if name is None:
|
170
|
-
raise ValueError(
|
171
|
-
"A name must be provided for the AutoSwarm, what swarm do you want to use?"
|
172
|
-
)
|
173
|
-
|
174
|
-
if verbose is True:
|
175
|
-
self.init_logging()
|
176
|
-
|
177
|
-
def init_logging(self):
|
178
|
-
logger.info("AutoSwarm has been activated. Ready for usage.")
|
179
|
-
|
180
|
-
# def name_swarm_check(self, name: str = None):
|
181
|
-
|
182
|
-
def run(self, task: str = None, *args, **kwargs):
|
183
|
-
"""Run the swarm simulation."""
|
184
|
-
try:
|
185
|
-
loop = 0
|
186
|
-
|
187
|
-
while loop < self.max_loops:
|
188
|
-
if self.custom_preprocess:
|
189
|
-
# If custom preprocess function is provided then run it
|
190
|
-
logger.info("Running custom preprocess function.")
|
191
|
-
task, args, kwargs = self.custom_preprocess(
|
192
|
-
task, args, kwargs
|
193
|
-
)
|
194
|
-
|
195
|
-
if self.custom_router:
|
196
|
-
# If custom router function is provided then use it to route the task
|
197
|
-
logger.info("Running custom router function.")
|
198
|
-
out = self.custom_router(
|
199
|
-
self, task, *args, **kwargs
|
200
|
-
)
|
201
|
-
|
202
|
-
else:
|
203
|
-
out = self.router.run(task, *args, **kwargs)
|
204
|
-
|
205
|
-
if self.custom_postprocess:
|
206
|
-
# If custom postprocess function is provided then run it
|
207
|
-
out = self.custom_postprocess(out)
|
208
|
-
|
209
|
-
# LOOP
|
210
|
-
loop += 1
|
211
|
-
|
212
|
-
return out
|
213
|
-
except Exception as e:
|
214
|
-
logger.error(
|
215
|
-
f"Error: {e} try optimizing the inputs and try again."
|
216
|
-
)
|
217
|
-
raise e
|
218
|
-
|
219
|
-
def list_all_swarms(self):
|
220
|
-
for swarm in self.swarms:
|
221
|
-
try:
|
222
|
-
logger.info(
|
223
|
-
f"Swarm Name: {swarm.name} || Swarm Description: {swarm.description} "
|
224
|
-
)
|
225
|
-
except Exception as error:
|
226
|
-
logger.error(
|
227
|
-
f"Error Detected You may not have swarms available: {error}"
|
228
|
-
)
|
229
|
-
raise error
|
File without changes
|
File without changes
|
File without changes
|