swarms 7.5.4__py3-none-any.whl → 7.5.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- swarms/agents/__init__.py +14 -9
- swarms/agents/consistency_agent.py +11 -13
- swarms/agents/i_agent.py +18 -18
- swarms/agents/reasoning_agents.py +130 -0
- swarms/agents/reasoning_duo.py +33 -8
- swarms/utils/history_output_formatter.py +14 -0
- {swarms-7.5.4.dist-info → swarms-7.5.6.dist-info}/METADATA +1 -1
- {swarms-7.5.4.dist-info → swarms-7.5.6.dist-info}/RECORD +11 -9
- {swarms-7.5.4.dist-info → swarms-7.5.6.dist-info}/LICENSE +0 -0
- {swarms-7.5.4.dist-info → swarms-7.5.6.dist-info}/WHEEL +0 -0
- {swarms-7.5.4.dist-info → swarms-7.5.6.dist-info}/entry_points.txt +0 -0
swarms/agents/__init__.py
CHANGED
@@ -1,3 +1,15 @@
|
|
1
|
+
from swarms.agents.consistency_agent import SelfConsistencyAgent
|
2
|
+
|
3
|
+
# from swarms.agents.tool_agent import ToolAgent
|
4
|
+
from swarms.agents.create_agents_from_yaml import (
|
5
|
+
create_agents_from_yaml,
|
6
|
+
)
|
7
|
+
from swarms.agents.i_agent import IterativeReflectiveExpansion
|
8
|
+
from swarms.agents.reasoning_agents import (
|
9
|
+
ReasoningAgentRouter,
|
10
|
+
agent_types as reasoning_agent_types,
|
11
|
+
)
|
12
|
+
from swarms.agents.reasoning_duo import ReasoningDuo
|
1
13
|
from swarms.structs.stopping_conditions import (
|
2
14
|
check_cancelled,
|
3
15
|
check_complete,
|
@@ -11,15 +23,6 @@ from swarms.structs.stopping_conditions import (
|
|
11
23
|
check_success,
|
12
24
|
)
|
13
25
|
|
14
|
-
# from swarms.agents.tool_agent import ToolAgent
|
15
|
-
from swarms.agents.create_agents_from_yaml import (
|
16
|
-
create_agents_from_yaml,
|
17
|
-
)
|
18
|
-
|
19
|
-
from swarms.agents.i_agent import IterativeReflectiveExpansion
|
20
|
-
from swarms.agents.consistency_agent import SelfConsistencyAgent
|
21
|
-
from swarms.agents.reasoning_duo import ReasoningDuo
|
22
|
-
|
23
26
|
__all__ = [
|
24
27
|
# "ToolAgent",
|
25
28
|
"check_done",
|
@@ -36,4 +39,6 @@ __all__ = [
|
|
36
39
|
"IterativeReflectiveExpansion",
|
37
40
|
"SelfConsistencyAgent",
|
38
41
|
"ReasoningDuo",
|
42
|
+
"ReasoningAgentRouter",
|
43
|
+
"reasoning_agent_types",
|
39
44
|
]
|
@@ -7,7 +7,11 @@ from loguru import logger
|
|
7
7
|
from swarms.structs.agent import Agent
|
8
8
|
from swarms.structs.conversation import Conversation
|
9
9
|
from swarms.structs.malt import majority_voting_prompt
|
10
|
+
from swarms.structs.output_types import OutputType
|
10
11
|
from swarms.utils.any_to_str import any_to_str
|
12
|
+
from swarms.utils.history_output_formatter import (
|
13
|
+
history_output_formatter,
|
14
|
+
)
|
11
15
|
|
12
16
|
CONSISTENCY_SYSTEM_PROMPT = """
|
13
17
|
You are a reasoning agent designed for complex problem-solving and decision-making. Your objective is to provide clear and reliable responses through structured reasoning. Begin by thoroughly understanding the problem, rephrasing it for clarity, and identifying key components. Develop a logical plan that breaks the problem into manageable steps, detailing your approach and any assumptions made. Validate your information with reliable sources and assess the accuracy of your calculations. Explore multiple solutions, weighing their pros and cons, and maintain transparency by documenting your reasoning process, uncertainties, and biases. Summarize your findings in a concise final answer that reflects your thorough analysis, ensuring it is well-organized and accessible. Adapt your reasoning to the context of the problem, integrating new information as needed, and implement error-handling strategies to address any issues that arise. Finally, reflect on your reasoning process to identify areas for improvement and ensure consistency across all reasoning paths.
|
@@ -42,13 +46,12 @@ class SelfConsistencyAgent(Agent):
|
|
42
46
|
self,
|
43
47
|
name: str = "Self-Consistency-Agent",
|
44
48
|
description: str = "An agent that uses self consistency to generate a final answer.",
|
49
|
+
system_prompt: str = CONSISTENCY_SYSTEM_PROMPT,
|
45
50
|
num_samples: int = 5,
|
46
|
-
return_list: bool = False,
|
47
51
|
max_loops: int = 1,
|
48
|
-
return_dict: bool = False,
|
49
|
-
return_json: bool = False,
|
50
52
|
majority_voting_prompt: str = None,
|
51
53
|
eval: bool = False,
|
54
|
+
output_type: OutputType = "dict",
|
52
55
|
**kwargs,
|
53
56
|
):
|
54
57
|
"""
|
@@ -61,17 +64,15 @@ class SelfConsistencyAgent(Agent):
|
|
61
64
|
super().__init__(
|
62
65
|
name=name,
|
63
66
|
description=description,
|
64
|
-
system_prompt=CONSISTENCY_SYSTEM_PROMPT,
|
65
67
|
**kwargs,
|
66
68
|
)
|
67
69
|
self.num_samples = num_samples
|
68
70
|
self.conversation = Conversation()
|
69
|
-
self.return_list = return_list
|
70
71
|
self.max_loops = max_loops
|
71
|
-
self.return_dict = return_dict
|
72
|
-
self.return_json = return_json
|
73
72
|
self.majority_voting_prompt = majority_voting_prompt
|
74
73
|
self.eval = eval
|
74
|
+
self.output_type = output_type
|
75
|
+
self.system_prompt = system_prompt
|
75
76
|
|
76
77
|
def run(
|
77
78
|
self, task: str, answer: str = None, *args, **kwargs
|
@@ -124,12 +125,9 @@ class SelfConsistencyAgent(Agent):
|
|
124
125
|
role="Majority Voting Agent", content=final_answer
|
125
126
|
)
|
126
127
|
|
127
|
-
|
128
|
-
self.conversation.
|
129
|
-
|
130
|
-
self.conversation.return_json()
|
131
|
-
else:
|
132
|
-
return final_answer
|
128
|
+
return history_output_formatter(
|
129
|
+
self.conversation, self.output_type
|
130
|
+
)
|
133
131
|
|
134
132
|
def aggregate(self, responses: List[str]) -> str:
|
135
133
|
"""
|
swarms/agents/i_agent.py
CHANGED
@@ -22,6 +22,10 @@ from typing import List, Tuple
|
|
22
22
|
from loguru import logger
|
23
23
|
from swarms.structs.agent import Agent
|
24
24
|
from swarms.structs.conversation import Conversation
|
25
|
+
from swarms.structs.output_types import OutputType
|
26
|
+
from swarms.utils.history_output_formatter import (
|
27
|
+
history_output_formatter,
|
28
|
+
)
|
25
29
|
|
26
30
|
# Define a new system prompt for general problem solving
|
27
31
|
GENERAL_REASONING_AGENT_SYS_PROMPT = """
|
@@ -43,12 +47,13 @@ class IterativeReflectiveExpansion:
|
|
43
47
|
|
44
48
|
def __init__(
|
45
49
|
self,
|
50
|
+
agent_name: str = "General-Reasoning-Agent",
|
51
|
+
description: str = "A reasoning agent that can answer questions and help with tasks.",
|
46
52
|
agent: Agent = None,
|
47
53
|
max_iterations: int = 5,
|
48
|
-
|
49
|
-
return_dict: bool = False,
|
50
|
-
prompt: str = GENERAL_REASONING_AGENT_SYS_PROMPT,
|
54
|
+
system_prompt: str = GENERAL_REASONING_AGENT_SYS_PROMPT,
|
51
55
|
model_name: str = "gpt-4o-mini",
|
56
|
+
output_type: OutputType = "dict",
|
52
57
|
) -> None:
|
53
58
|
"""
|
54
59
|
Initialize the Iterative Reflective Expansion engine.
|
@@ -56,16 +61,17 @@ class IterativeReflectiveExpansion:
|
|
56
61
|
:param agent: The Swarms agent instance used to perform reasoning tasks.
|
57
62
|
:param max_iterations: Maximum number of iterations for the reasoning process.
|
58
63
|
"""
|
64
|
+
self.agent_name = agent_name
|
65
|
+
self.description = description
|
59
66
|
self.agent = agent
|
60
67
|
self.max_iterations = max_iterations
|
61
|
-
self.
|
62
|
-
self.
|
63
|
-
|
68
|
+
self.output_type = output_type
|
69
|
+
self.system_prompt = system_prompt
|
64
70
|
self.conversation = Conversation()
|
65
71
|
|
66
72
|
self.agent = Agent(
|
67
|
-
agent_name=
|
68
|
-
system_prompt=
|
73
|
+
agent_name=self.agent_name,
|
74
|
+
system_prompt=self.system_prompt,
|
69
75
|
model_name=model_name,
|
70
76
|
max_loops=1,
|
71
77
|
dynamic_temperature_enabled=True,
|
@@ -273,18 +279,12 @@ class IterativeReflectiveExpansion:
|
|
273
279
|
f"Candidate paths for next iteration: {candidate_paths}"
|
274
280
|
)
|
275
281
|
|
276
|
-
|
277
|
-
candidate_paths, memory_pool
|
278
|
-
)
|
282
|
+
self.synthesize_solution(candidate_paths, memory_pool)
|
279
283
|
logger.info("Final solution generated.")
|
280
284
|
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
return self.conversation.return_messages_as_dict()
|
285
|
-
|
286
|
-
else:
|
287
|
-
return final_solution
|
285
|
+
return history_output_formatter(
|
286
|
+
self.conversation, self.output_type
|
287
|
+
)
|
288
288
|
|
289
289
|
|
290
290
|
# def main() -> None:
|
@@ -0,0 +1,130 @@
|
|
1
|
+
from typing import List, Literal
|
2
|
+
|
3
|
+
from swarms.agents.consistency_agent import SelfConsistencyAgent
|
4
|
+
from swarms.agents.i_agent import (
|
5
|
+
IterativeReflectiveExpansion as IREAgent,
|
6
|
+
)
|
7
|
+
from swarms.agents.reasoning_duo import ReasoningDuo
|
8
|
+
from swarms.structs.output_types import OutputType
|
9
|
+
|
10
|
+
agent_types = Literal[
|
11
|
+
"reasoning-duo",
|
12
|
+
"self-consistency",
|
13
|
+
"ire",
|
14
|
+
"reasoning-agent",
|
15
|
+
"consistency-agent",
|
16
|
+
"ire-agent",
|
17
|
+
]
|
18
|
+
|
19
|
+
|
20
|
+
class ReasoningAgentRouter:
|
21
|
+
"""
|
22
|
+
A Reasoning Agent that can answer questions and assist with various tasks using different reasoning strategies.
|
23
|
+
|
24
|
+
Attributes:
|
25
|
+
agent_name (str): The name of the agent.
|
26
|
+
description (str): A brief description of the agent's capabilities.
|
27
|
+
model_name (str): The name of the model used for reasoning.
|
28
|
+
system_prompt (str): The prompt that guides the agent's reasoning process.
|
29
|
+
max_loops (int): The maximum number of loops for the reasoning process.
|
30
|
+
swarm_type (agent_types): The type of reasoning swarm to use (e.g., reasoning duo, self-consistency, IRE).
|
31
|
+
num_samples (int): The number of samples to generate for self-consistency agents.
|
32
|
+
output_type (OutputType): The format of the output (e.g., dict, list).
|
33
|
+
"""
|
34
|
+
|
35
|
+
def __init__(
|
36
|
+
self,
|
37
|
+
agent_name: str = "reasoning_agent",
|
38
|
+
description: str = "A reasoning agent that can answer questions and help with tasks.",
|
39
|
+
model_name: str = "gpt-4o-mini",
|
40
|
+
system_prompt: str = "You are a helpful assistant that can answer questions and help with tasks.",
|
41
|
+
max_loops: int = 1,
|
42
|
+
swarm_type: agent_types = "reasoning_duo",
|
43
|
+
num_samples: int = 1,
|
44
|
+
output_type: OutputType = "dict",
|
45
|
+
):
|
46
|
+
self.agent_name = agent_name
|
47
|
+
self.description = description
|
48
|
+
self.model_name = model_name
|
49
|
+
self.system_prompt = system_prompt
|
50
|
+
self.max_loops = max_loops
|
51
|
+
self.swarm_type = swarm_type
|
52
|
+
self.num_samples = num_samples
|
53
|
+
self.output_type = output_type
|
54
|
+
|
55
|
+
def select_swarm(self):
|
56
|
+
"""
|
57
|
+
Selects and initializes the appropriate reasoning swarm based on the specified swarm type.
|
58
|
+
|
59
|
+
Returns:
|
60
|
+
An instance of the selected reasoning swarm.
|
61
|
+
"""
|
62
|
+
if (
|
63
|
+
self.swarm_type == "reasoning-duo"
|
64
|
+
or self.swarm_type == "reasoning-agent"
|
65
|
+
):
|
66
|
+
return ReasoningDuo(
|
67
|
+
agent_name=self.agent_name,
|
68
|
+
agent_description=self.description,
|
69
|
+
model_name=[self.model_name, self.model_name],
|
70
|
+
system_prompt=self.system_prompt,
|
71
|
+
output_type=self.output_type,
|
72
|
+
)
|
73
|
+
|
74
|
+
elif (
|
75
|
+
self.swarm_type == "self-consistency"
|
76
|
+
or self.swarm_type == "consistency-agent"
|
77
|
+
):
|
78
|
+
return SelfConsistencyAgent(
|
79
|
+
agent_name=self.agent_name,
|
80
|
+
description=self.description,
|
81
|
+
model_name=self.model_name,
|
82
|
+
system_prompt=self.system_prompt,
|
83
|
+
max_loops=self.max_loops,
|
84
|
+
num_samples=self.num_samples,
|
85
|
+
output_type=self.output_type,
|
86
|
+
)
|
87
|
+
|
88
|
+
elif (
|
89
|
+
self.swarm_type == "ire" or self.swarm_type == "ire-agent"
|
90
|
+
):
|
91
|
+
return IREAgent(
|
92
|
+
agent_name=self.agent_name,
|
93
|
+
description=self.description,
|
94
|
+
model_name=self.model_name,
|
95
|
+
system_prompt=self.system_prompt,
|
96
|
+
max_loops=self.max_loops,
|
97
|
+
max_iterations=self.num_samples,
|
98
|
+
output_type=self.output_type,
|
99
|
+
)
|
100
|
+
|
101
|
+
else:
|
102
|
+
raise ValueError(f"Invalid swarm type: {self.swarm_type}")
|
103
|
+
|
104
|
+
def run(self, task: str, *args, **kwargs):
|
105
|
+
"""
|
106
|
+
Executes the selected swarm's reasoning process on the given task.
|
107
|
+
|
108
|
+
Args:
|
109
|
+
task (str): The task or question to be processed by the reasoning agent.
|
110
|
+
|
111
|
+
Returns:
|
112
|
+
The result of the reasoning process.
|
113
|
+
"""
|
114
|
+
swarm = self.select_swarm()
|
115
|
+
return swarm.run(task=task)
|
116
|
+
|
117
|
+
def batched_run(self, tasks: List[str], *args, **kwargs):
|
118
|
+
"""
|
119
|
+
Executes the reasoning process on a batch of tasks.
|
120
|
+
|
121
|
+
Args:
|
122
|
+
tasks (List[str]): A list of tasks to be processed.
|
123
|
+
|
124
|
+
Returns:
|
125
|
+
List of results from the reasoning process for each task.
|
126
|
+
"""
|
127
|
+
results = []
|
128
|
+
for task in tasks:
|
129
|
+
results.append(self.run(task, *args, **kwargs))
|
130
|
+
return results
|
swarms/agents/reasoning_duo.py
CHANGED
@@ -4,6 +4,11 @@ from loguru import logger
|
|
4
4
|
|
5
5
|
from swarms.prompts.reasoning_prompt import REASONING_PROMPT
|
6
6
|
from swarms.structs.agent import Agent
|
7
|
+
from swarms.structs.output_types import OutputType
|
8
|
+
from swarms.structs.conversation import Conversation
|
9
|
+
from swarms.utils.history_output_formatter import (
|
10
|
+
history_output_formatter,
|
11
|
+
)
|
7
12
|
|
8
13
|
|
9
14
|
class ReasoningDuo:
|
@@ -21,14 +26,19 @@ class ReasoningDuo:
|
|
21
26
|
|
22
27
|
def __init__(
|
23
28
|
self,
|
24
|
-
|
29
|
+
agent_name: str = "reasoning-agent-01",
|
30
|
+
agent_description: str = "A highly intelligent and thoughtful AI designed to provide accurate and well-reasoned answers to the user's questions.",
|
31
|
+
model_name: str = "gpt-4o-mini",
|
25
32
|
description: str = "A highly intelligent and thoughtful AI designed to provide accurate and well-reasoned answers to the user's questions.",
|
26
33
|
model_names: list[str] = ["gpt-4o-mini", "gpt-4o"],
|
27
34
|
system_prompt: str = "You are a helpful assistant that can answer questions and help with tasks.",
|
35
|
+
output_type: OutputType = "dict",
|
28
36
|
):
|
37
|
+
self.agent_name = agent_name
|
38
|
+
self.agent_description = agent_description
|
29
39
|
self.model_name = model_name
|
30
40
|
self.description = description
|
31
|
-
|
41
|
+
self.output_type = output_type
|
32
42
|
self.reasoning_agent = Agent(
|
33
43
|
agent_name="Your",
|
34
44
|
description="A highly intelligent and thoughtful AI designed to provide accurate and well-reasoned answers to the user's questions.",
|
@@ -39,14 +49,16 @@ class ReasoningDuo:
|
|
39
49
|
)
|
40
50
|
|
41
51
|
self.main_agent = Agent(
|
42
|
-
agent_name=
|
43
|
-
description=
|
52
|
+
agent_name=self.agent_name,
|
53
|
+
description=self.agent_description,
|
44
54
|
system_prompt=system_prompt,
|
45
55
|
max_loops=1,
|
46
56
|
model_name=model_names[1],
|
47
57
|
dynamic_temperature_enabled=True,
|
48
58
|
)
|
49
59
|
|
60
|
+
self.conversation = Conversation()
|
61
|
+
|
50
62
|
def run(self, task: str):
|
51
63
|
"""
|
52
64
|
Executes the reasoning and main agents on the provided task.
|
@@ -58,14 +70,27 @@ class ReasoningDuo:
|
|
58
70
|
str: The output from the main agent after processing the task.
|
59
71
|
"""
|
60
72
|
logger.info(f"Running task: {task}")
|
73
|
+
|
74
|
+
self.conversation.add(role="user", content=task)
|
75
|
+
|
61
76
|
output_reasoner = self.reasoning_agent.run(task)
|
62
77
|
|
63
|
-
|
64
|
-
|
78
|
+
self.conversation.add(
|
79
|
+
role=self.reasoning_agent.agent_name,
|
80
|
+
content=output_reasoner,
|
65
81
|
)
|
66
82
|
|
67
|
-
|
68
|
-
|
83
|
+
prompt = f"Task: {task} \n\n Your thoughts: {output_reasoner}"
|
84
|
+
|
85
|
+
output_main = self.main_agent.run(prompt)
|
86
|
+
|
87
|
+
self.conversation.add(
|
88
|
+
role=self.main_agent.agent_name, content=output_main
|
89
|
+
)
|
90
|
+
|
91
|
+
return history_output_formatter(
|
92
|
+
self.conversation, self.output_type
|
93
|
+
)
|
69
94
|
|
70
95
|
def batched_run(self, tasks: List[str]):
|
71
96
|
"""
|
@@ -0,0 +1,14 @@
|
|
1
|
+
from swarms.structs.conversation import Conversation
|
2
|
+
|
3
|
+
|
4
|
+
def history_output_formatter(
|
5
|
+
conversation: Conversation, type: str = "list"
|
6
|
+
):
|
7
|
+
if type == "list":
|
8
|
+
return conversation.return_messages_as_list()
|
9
|
+
elif type == "dict":
|
10
|
+
return conversation.to_dict()
|
11
|
+
elif type == "string" or type == "str":
|
12
|
+
return conversation.get_str()
|
13
|
+
else:
|
14
|
+
raise ValueError(f"Invalid type: {type}")
|
@@ -1,13 +1,14 @@
|
|
1
1
|
swarms/__init__.py,sha256=DDfir3E4H8z1PlQqpc2HzovJQtNvIAzye4Fs165J0o8,512
|
2
|
-
swarms/agents/__init__.py,sha256=
|
2
|
+
swarms/agents/__init__.py,sha256=HVR2hOuRVM_XcHtnbLwrrmhlrfBkhdDnZR-GHrVEqMI,1070
|
3
3
|
swarms/agents/agent_print.py,sha256=SXqWA2ZzXwRFdv8hkuYwOPMTasvaGTG6U29413qRCAA,918
|
4
4
|
swarms/agents/ape_agent.py,sha256=1kz_65LJgjLlY1yv2WLBeVMs7sP9BgEVWk0w1f67YLc,1563
|
5
5
|
swarms/agents/auto_generate_swarm_config.py,sha256=7eJ873xS7PJmyreMaa5Uub8qFu-qIinuyMuogB2Ehjc,8474
|
6
|
-
swarms/agents/consistency_agent.py,sha256=
|
6
|
+
swarms/agents/consistency_agent.py,sha256=41h0yvnjzmKsE8-q4UsN0ckHP7WWmB5E_z64ec9QaJM,7414
|
7
7
|
swarms/agents/create_agents_from_yaml.py,sha256=PgFIpuYZehxEl79BAK6TolSZwydDQzvGMAKhLsHuBbc,13008
|
8
|
-
swarms/agents/i_agent.py,sha256=
|
8
|
+
swarms/agents/i_agent.py,sha256=_eKUcgPfiVqQpF5Q-Sv1tT-JZxIeNl9Fp7OrnjVUtz8,12276
|
9
9
|
swarms/agents/openai_assistant.py,sha256=mTSEtj26J0mc5pCeWrmMY0EXzTRYQfyfw_BtOqtcCHc,11044
|
10
|
-
swarms/agents/
|
10
|
+
swarms/agents/reasoning_agents.py,sha256=ZVSKs92wdsEKyfyPZNNUvAfEOXWKyRFYqUC-M02Tews,4573
|
11
|
+
swarms/agents/reasoning_duo.py,sha256=s9SnXoproQaBrShLtiruGJituy8sJlZJATc5Vy_FdwI,3875
|
11
12
|
swarms/agents/tool_agent.py,sha256=G7rhBACsHsGUMT4H9eF5aY7e3Gx-5jOmJkhCF1jm9mU,5087
|
12
13
|
swarms/artifacts/__init__.py,sha256=M111xTw7IVVt8gLDwW7Kau5n1YdwkL3vbCJPVeEWktI,83
|
13
14
|
swarms/artifacts/main_artifact.py,sha256=bu2TcsTR81ttJEjVJ3NzT7D4x7uuM57okC92QuigV9I,11139
|
@@ -163,6 +164,7 @@ swarms/utils/disable_logging.py,sha256=-YXBrTMTLlXWCW-MhuY4XI6Q8KeEfBUJ_gmRWs1X8
|
|
163
164
|
swarms/utils/file_processing.py,sha256=QjQCIPTcwicQlfy656BXBYpIzMR0s2343E7ftnok5Uo,4865
|
164
165
|
swarms/utils/formatter.py,sha256=YykmcuWXkxvQ7a2Vq6OzWuqUDiIwro6VrtSt4ITbXcU,4194
|
165
166
|
swarms/utils/function_caller_model.py,sha256=ZfgCMzOizNnuZipYLclTziECNHszH9p8RQcUq7VNr4Q,4156
|
167
|
+
swarms/utils/history_output_formatter.py,sha256=iKmhiYjdVeZcLHfiU7I1BymZm3A5_miIgcdcekeEhuk,421
|
166
168
|
swarms/utils/litellm_tokenizer.py,sha256=0AAj4NffBe2eHii_3_5SpQAhSiBbunJR8MzaBTIm7hg,484
|
167
169
|
swarms/utils/litellm_wrapper.py,sha256=5JzxF5rfm92MIDHXelcYYkhAG6Vg0V-WRRHwY1o1Fxc,3741
|
168
170
|
swarms/utils/loguru_logger.py,sha256=hIoSK3NHLpe7eAmjHRURrEYzNXYC2gbR7_Vv63Yaydk,685
|
@@ -174,8 +176,8 @@ swarms/utils/swarm_reliability_checks.py,sha256=MsgUULt3HYg72D0HifZNmtCyJYpLA2UD
|
|
174
176
|
swarms/utils/try_except_wrapper.py,sha256=appEGu9Afy3TmdkNNXUgQ9yU9lj2j0uNkIoW0JhVzzY,3917
|
175
177
|
swarms/utils/visualizer.py,sha256=0ylohEk62MAS6iPRaDOV03m9qo2k5J56tWlKJk_46p4,16927
|
176
178
|
swarms/utils/wrapper_clusterop.py,sha256=PMSCVM7ZT1vgj1D_MYAe835RR3SMLYxA-si2JS02yNQ,4220
|
177
|
-
swarms-7.5.
|
178
|
-
swarms-7.5.
|
179
|
-
swarms-7.5.
|
180
|
-
swarms-7.5.
|
181
|
-
swarms-7.5.
|
179
|
+
swarms-7.5.6.dist-info/LICENSE,sha256=jwRtEmTWjLrEsvFB6QFdYs2cEeZPRMdj-UMOFkPF8_0,11363
|
180
|
+
swarms-7.5.6.dist-info/METADATA,sha256=0qmkVA4FDlnoR1bzuwy9fo5z5xhtwMLZjTwJ557CaIU,103019
|
181
|
+
swarms-7.5.6.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
|
182
|
+
swarms-7.5.6.dist-info/entry_points.txt,sha256=2K0rTtfO1X1WaO-waJlXIKw5Voa_EpAL_yU0HXE2Jgc,47
|
183
|
+
swarms-7.5.6.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|