survival 1.1.5__cp314-cp314-manylinux_2_39_x86_64.whl → 1.1.25__cp314-cp314-manylinux_2_39_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of survival might be problematic. Click here for more details.

@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: survival
3
- Version: 1.1.5
3
+ Version: 1.1.25
4
4
  Classifier: Development Status :: 5 - Production/Stable
5
5
  Classifier: Intended Audience :: Science/Research
6
6
  Classifier: Intended Audience :: Healthcare Industry
@@ -30,9 +30,9 @@ Maintainer-email: Cameron Lyons <cameron.lyons2@gmail.com>
30
30
  License: MIT
31
31
  Requires-Python: >=3.9
32
32
  Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
33
- Project-URL: Repository, https://github.com/Cameron-Lyons/survival
34
33
  Project-URL: Documentation, https://github.com/Cameron-Lyons/survival#readme
35
34
  Project-URL: Issues, https://github.com/Cameron-Lyons/survival/issues
35
+ Project-URL: Repository, https://github.com/Cameron-Lyons/survival
36
36
 
37
37
  # survival
38
38
 
@@ -78,7 +78,7 @@ pip install survival
78
78
 
79
79
  #### Prerequisites
80
80
 
81
- - Python 3.9+
81
+ - Python 3.10+
82
82
  - Rust (see [rustup.rs](https://rustup.rs/))
83
83
  - [maturin](https://github.com/PyO3/maturin)
84
84
 
@@ -386,6 +386,57 @@ print(f"Degrees of freedom: {result.degrees_of_freedom}")
386
386
  print(f"Variance matrix: {result.variance}")
387
387
  ```
388
388
 
389
+ ### Built-in Datasets
390
+
391
+ The library includes 30 classic survival analysis datasets:
392
+
393
+ ```python
394
+ from survival import load_lung, load_aml, load_veteran
395
+
396
+ # Load the lung cancer dataset
397
+ lung = load_lung()
398
+ print(f"Columns: {lung['columns']}")
399
+ print(f"Number of rows: {len(lung['data'])}")
400
+
401
+ # Load the acute myelogenous leukemia dataset
402
+ aml = load_aml()
403
+
404
+ # Load the veteran's lung cancer dataset
405
+ veteran = load_veteran()
406
+ ```
407
+
408
+ **Available datasets:**
409
+ - `load_lung()` - NCCTG Lung Cancer Data
410
+ - `load_aml()` - Acute Myelogenous Leukemia Survival Data
411
+ - `load_veteran()` - Veterans' Administration Lung Cancer Study
412
+ - `load_ovarian()` - Ovarian Cancer Survival Data
413
+ - `load_colon()` - Colon Cancer Data
414
+ - `load_pbc()` - Primary Biliary Cholangitis Data
415
+ - `load_cgd()` - Chronic Granulomatous Disease Data
416
+ - `load_bladder()` - Bladder Cancer Recurrences
417
+ - `load_heart()` - Stanford Heart Transplant Data
418
+ - `load_kidney()` - Kidney Catheter Data
419
+ - `load_rats()` - Rat Treatment Data
420
+ - `load_stanford2()` - Stanford Heart Transplant Data (Extended)
421
+ - `load_udca()` - UDCA Clinical Trial Data
422
+ - `load_myeloid()` - Acute Myeloid Leukemia Clinical Trial
423
+ - `load_flchain()` - Free Light Chain Data
424
+ - `load_transplant()` - Liver Transplant Data
425
+ - `load_mgus()` - Monoclonal Gammopathy Data
426
+ - `load_mgus2()` - Monoclonal Gammopathy Data (Updated)
427
+ - `load_diabetic()` - Diabetic Retinopathy Data
428
+ - `load_retinopathy()` - Retinopathy Data
429
+ - `load_gbsg()` - German Breast Cancer Study Group Data
430
+ - `load_rotterdam()` - Rotterdam Tumor Bank Data
431
+ - `load_logan()` - Logan Unemployment Data
432
+ - `load_nwtco()` - National Wilms Tumor Study Data
433
+ - `load_solder()` - Solder Joint Data
434
+ - `load_tobin()` - Tobin's Tobit Data
435
+ - `load_rats2()` - Rat Tumorigenesis Data
436
+ - `load_nafld()` - Non-Alcoholic Fatty Liver Disease Data
437
+ - `load_cgd0()` - CGD Baseline Data
438
+ - `load_pbcseq()` - PBC Sequential Data
439
+
389
440
  ## API Reference
390
441
 
391
442
  ### Classes
@@ -400,12 +451,15 @@ print(f"Variance matrix: {result.variance}")
400
451
 
401
452
  **Survival Curves:**
402
453
  - `SurvFitKMOutput`: Output from Kaplan-Meier survival curve fitting
454
+ - `SurvfitKMOptions`: Options for Kaplan-Meier fitting
455
+ - `KaplanMeierConfig`: Configuration for Kaplan-Meier
403
456
  - `SurvFitAJ`: Output from Aalen-Johansen survival curve fitting
404
457
  - `NelsonAalenResult`: Output from Nelson-Aalen estimator
405
458
  - `StratifiedKMResult`: Output from stratified Kaplan-Meier
406
459
 
407
460
  **Parametric Models:**
408
461
  - `SurvivalFit`: Output from parametric survival regression
462
+ - `SurvregConfig`: Configuration for parametric survival regression
409
463
  - `DistributionType`: Distribution types for parametric models (extreme_value, logistic, gaussian, weibull, lognormal)
410
464
  - `FineGrayOutput`: Output from Fine-Gray competing risks model
411
465
 
@@ -415,6 +469,7 @@ print(f"Variance matrix: {result.variance}")
415
469
  - `TrendTestResult`: Output from trend tests
416
470
  - `TestResult`: General test result output
417
471
  - `ProportionalityTest`: Output from proportional hazards test
472
+ - `SurvObrienResult`: Output from O'Brien transformation
418
473
 
419
474
  **Validation:**
420
475
  - `BootstrapResult`: Output from bootstrap confidence interval calculations
@@ -445,6 +500,10 @@ print(f"Variance matrix: {result.variance}")
445
500
  **Utilities:**
446
501
  - `CoxCountOutput`: Output from Cox counting functions
447
502
  - `SplitResult`: Output from time-splitting
503
+ - `CondenseResult`: Output from data condensing
504
+ - `Surv2DataResult`: Output from survival-to-data conversion
505
+ - `TimelineResult`: Output from timeline conversion
506
+ - `IntervalResult`: Output from interval calculations
448
507
  - `LinkFunctionParams`: Link function parameters
449
508
  - `CchMethod`: Case-cohort method specification
450
509
  - `CohortData`: Cohort data structure
@@ -458,6 +517,7 @@ print(f"Variance matrix: {result.variance}")
458
517
 
459
518
  **Survival Curves:**
460
519
  - `survfitkm(...)`: Fit Kaplan-Meier survival curves
520
+ - `survfitkm_with_options(...)`: Fit Kaplan-Meier with configuration options
461
521
  - `survfitaj(...)`: Fit Aalen-Johansen survival curves (multi-state)
462
522
  - `nelson_aalen_estimator(...)`: Calculate Nelson-Aalen estimator
463
523
  - `stratified_kaplan_meier(...)`: Calculate stratified Kaplan-Meier curves
@@ -473,6 +533,7 @@ print(f"Variance matrix: {result.variance}")
473
533
  - `wald_test_py(...)`: Wald test
474
534
  - `score_test_py(...)`: Score test
475
535
  - `ph_test(...)`: Proportional hazards assumption test
536
+ - `survobrien(...)`: O'Brien transformation for survival data
476
537
 
477
538
  **Residuals:**
478
539
  - `coxmart(...)`: Calculate Cox martingale residuals
@@ -484,7 +545,7 @@ print(f"Variance matrix: {result.variance}")
484
545
  - `perform_concordance1_calculation(...)`: Calculate concordance index (version 1)
485
546
  - `perform_concordance3_calculation(...)`: Calculate concordance index (version 3)
486
547
  - `perform_concordance_calculation(...)`: Calculate concordance index (version 5)
487
- - `concordance(...)`: General concordance calculation
548
+ - `compute_concordance(...)`: General concordance calculation
488
549
 
489
550
  **Validation:**
490
551
  - `bootstrap_cox_ci(...)`: Bootstrap confidence intervals for Cox models
@@ -527,6 +588,10 @@ print(f"Variance matrix: {result.variance}")
527
588
  - `perform_score_calculation(...)`: Calculate score statistics
528
589
  - `perform_agscore3_calculation(...)`: Calculate score statistics (version 3)
529
590
  - `survsplit(...)`: Split survival data at specified times
591
+ - `survcondense(...)`: Condense survival data by collapsing adjacent intervals
592
+ - `surv2data(...)`: Convert survival objects to data format
593
+ - `to_timeline(...)`: Convert data to timeline format
594
+ - `from_timeline(...)`: Convert from timeline format to intervals
530
595
  - `tmerge(...)`: Merge time-dependent covariates
531
596
  - `tmerge2(...)`: Merge time-dependent covariates (version 2)
532
597
  - `tmerge3(...)`: Merge time-dependent covariates (version 3)
@@ -557,7 +622,7 @@ The `PSpline` class provides penalized spline smoothing:
557
622
  - `"BIC"` - Bayesian Information Criterion
558
623
  - `boundary_knots`: Tuple of (min, max) for the spline basis
559
624
  - `intercept`: Whether to include an intercept in the basis
560
- - `penalty`: Whether to apply the penalty
625
+ - `penalty`: Whether or not to apply the penalty
561
626
 
562
627
  **Methods:**
563
628
  - `fit()`: Fit the spline model, returns coefficients
@@ -0,0 +1,8 @@
1
+ survival/__init__.py,sha256=GnlNEQ5WtMH1BtVycBOXD_TI0wZuqrEqGJYsXgjbhVI,115
2
+ survival/__init__.pyi,sha256=phbQd5RA8G_WqOUfceRiboKGkcVCLKybWxf1f1XDjZY,22470
3
+ survival/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
+ survival/survival.cpython-314-x86_64-linux-gnu.so,sha256=VkJZCHIQWBbtm37bJQBWMEezi6FtvKn8BnHgA9bDat8,9602496
5
+ survival-1.1.25.dist-info/METADATA,sha256=9FJR7iNddBgoI7OYVJlxgdTxCvPA_L2JSAJzlADsqbY,22502
6
+ survival-1.1.25.dist-info/WHEEL,sha256=_o9oHk1OVYO_YBcAsevfNRcoiEMWsjoKVsktSPclqx0,109
7
+ survival-1.1.25.dist-info/licenses/LICENSE,sha256=hS2BuXZUcQTPPxaojumqQeGtQjachYGOChZXBWbQQ7E,1070
8
+ survival-1.1.25.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: maturin (1.10.2)
2
+ Generator: maturin (1.11.5)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp314-cp314-manylinux_2_39_x86_64
@@ -1,8 +0,0 @@
1
- survival-1.1.5.dist-info/METADATA,sha256=gHFqOT-FandBIsN_F4jNoXbAgQI2xmoUlKWHpu9OvR0,19768
2
- survival-1.1.5.dist-info/WHEEL,sha256=uA8R8Isj5NbOrR8mK_75d05cdCpVF6Qi-kd6xTlhotQ,109
3
- survival-1.1.5.dist-info/licenses/LICENSE,sha256=hS2BuXZUcQTPPxaojumqQeGtQjachYGOChZXBWbQQ7E,1070
4
- survival/__init__.py,sha256=GnlNEQ5WtMH1BtVycBOXD_TI0wZuqrEqGJYsXgjbhVI,115
5
- survival/__init__.pyi,sha256=phbQd5RA8G_WqOUfceRiboKGkcVCLKybWxf1f1XDjZY,22470
6
- survival/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
- survival/survival.cpython-314-x86_64-linux-gnu.so,sha256=G8mqZVHHYjXmKNEfbRlZEclN59x44hufuzZq1pYrhtI,4811416
8
- survival-1.1.5.dist-info/RECORD,,