survival 1.1.36__cp314-cp314-macosx_10_12_x86_64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
survival/_survival.pyi ADDED
@@ -0,0 +1,732 @@
1
+ from typing import Any
2
+
3
+ class GBSurvLoss:
4
+ AFT: GBSurvLoss
5
+ CoxPH: GBSurvLoss
6
+ Huber: GBSurvLoss
7
+ SquaredError: GBSurvLoss
8
+
9
+ class SplitRule:
10
+ Conservation: SplitRule
11
+ Hellinger: SplitRule
12
+ LogRank: SplitRule
13
+ LogRankScore: SplitRule
14
+
15
+ class Activation:
16
+ ReLU: Activation
17
+ SELU: Activation
18
+ Tanh: Activation
19
+ def __init__(self, name: str) -> None: ...
20
+
21
+ class DistributionType:
22
+ ExtremeValue: DistributionType
23
+ Weibull: DistributionType
24
+ Gaussian: DistributionType
25
+ Logistic: DistributionType
26
+ LogNormal: DistributionType
27
+ LogLogistic: DistributionType
28
+
29
+ class DimType:
30
+ Age: DimType
31
+ Continuous: DimType
32
+ Factor: DimType
33
+ Year: DimType
34
+
35
+ class ReliabilityScale:
36
+ ClogLog: ReliabilityScale
37
+ Cumhaz: ReliabilityScale
38
+ LogLogistic: ReliabilityScale
39
+ Probit: ReliabilityScale
40
+ Surv: ReliabilityScale
41
+
42
+ class GradientBoostSurvivalConfig:
43
+ n_estimators: int
44
+ learning_rate: float
45
+ max_depth: int
46
+ min_samples_split: int
47
+ min_samples_leaf: int
48
+ subsample: float
49
+ max_features: int | None
50
+ seed: int | None
51
+ loss: GBSurvLoss
52
+ dropout_rate: float
53
+
54
+ def __init__(
55
+ self,
56
+ n_estimators: int = 100,
57
+ learning_rate: float = 0.1,
58
+ max_depth: int = 3,
59
+ min_samples_split: int = 10,
60
+ min_samples_leaf: int = 5,
61
+ subsample: float = 1.0,
62
+ max_features: int | None = None,
63
+ seed: int | None = None,
64
+ loss: GBSurvLoss | None = None,
65
+ dropout_rate: float = 0.0,
66
+ ) -> None: ...
67
+
68
+ class GradientBoostSurvival:
69
+ @property
70
+ def n_estimators(self) -> int: ...
71
+ @property
72
+ def learning_rate(self) -> float: ...
73
+ @property
74
+ def unique_times(self) -> list[float]: ...
75
+ @property
76
+ def feature_importance(self) -> list[float]: ...
77
+ @property
78
+ def baseline_hazard(self) -> list[float]: ...
79
+ @property
80
+ def train_loss(self) -> list[float]: ...
81
+ @staticmethod
82
+ def fit(
83
+ x: list[float],
84
+ n: int,
85
+ p: int,
86
+ time: list[float],
87
+ status: list[int],
88
+ config: GradientBoostSurvivalConfig,
89
+ ) -> GradientBoostSurvival: ...
90
+ def predict_risk(self, x_new: list[float], n_new: int) -> list[float]: ...
91
+ def predict_survival(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
92
+ def predict_cumulative_hazard(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
93
+ def predict_survival_time(
94
+ self, x_new: list[float], n_new: int, percentile: float = 0.5
95
+ ) -> list[float | None]: ...
96
+ def predict_median_survival_time(
97
+ self, x_new: list[float], n_new: int
98
+ ) -> list[float | None]: ...
99
+
100
+ class SurvivalForestConfig:
101
+ n_trees: int
102
+ max_depth: int | None
103
+ min_node_size: int
104
+ mtry: int | None
105
+ sample_fraction: float
106
+ seed: int | None
107
+ oob_error: bool
108
+ split_rule: SplitRule
109
+ n_random_splits: int
110
+
111
+ def __init__(
112
+ self,
113
+ n_trees: int = 500,
114
+ max_depth: int | None = None,
115
+ min_node_size: int = 15,
116
+ mtry: int | None = None,
117
+ sample_fraction: float = 0.632,
118
+ seed: int | None = None,
119
+ oob_error: bool = True,
120
+ split_rule: SplitRule | None = None,
121
+ n_random_splits: int = 10,
122
+ ) -> None: ...
123
+
124
+ class SurvivalForest:
125
+ @property
126
+ def n_trees(self) -> int: ...
127
+ @property
128
+ def unique_times(self) -> list[float]: ...
129
+ @property
130
+ def variable_importance(self) -> list[float]: ...
131
+ @property
132
+ def oob_error(self) -> float | None: ...
133
+ @staticmethod
134
+ def fit(
135
+ x: list[float],
136
+ n: int,
137
+ p: int,
138
+ time: list[float],
139
+ status: list[int],
140
+ config: SurvivalForestConfig,
141
+ ) -> SurvivalForest: ...
142
+ def predict_risk(self, x_new: list[float], n_new: int) -> list[float]: ...
143
+ def predict_survival(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
144
+ def predict_cumulative_hazard(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
145
+ def predict_survival_time(
146
+ self, x_new: list[float], n_new: int, percentile: float = 0.5
147
+ ) -> list[float | None]: ...
148
+ def predict_median_survival_time(
149
+ self, x_new: list[float], n_new: int
150
+ ) -> list[float | None]: ...
151
+
152
+ class DeepSurvConfig:
153
+ hidden_layers: list[int]
154
+ activation: Activation
155
+ dropout_rate: float
156
+ learning_rate: float
157
+ batch_size: int
158
+ n_epochs: int
159
+ l2_reg: float
160
+ seed: int | None
161
+ early_stopping_patience: int | None
162
+ validation_fraction: float
163
+
164
+ def __init__(
165
+ self,
166
+ hidden_layers: list[int] | None = None,
167
+ activation: Activation | None = None,
168
+ dropout_rate: float = 0.2,
169
+ learning_rate: float = 0.001,
170
+ batch_size: int = 256,
171
+ n_epochs: int = 100,
172
+ l2_reg: float = 0.0001,
173
+ seed: int | None = None,
174
+ early_stopping_patience: int | None = None,
175
+ validation_fraction: float = 0.1,
176
+ ) -> None: ...
177
+
178
+ class DeepSurv:
179
+ @property
180
+ def n_features(self) -> int: ...
181
+ @property
182
+ def hidden_layers(self) -> list[int]: ...
183
+ @property
184
+ def unique_times(self) -> list[float]: ...
185
+ @property
186
+ def baseline_hazard(self) -> list[float]: ...
187
+ @property
188
+ def train_loss(self) -> list[float]: ...
189
+ @property
190
+ def val_loss(self) -> list[float]: ...
191
+ @staticmethod
192
+ def fit(
193
+ x: list[float],
194
+ n: int,
195
+ p: int,
196
+ time: list[float],
197
+ status: list[int],
198
+ config: DeepSurvConfig,
199
+ ) -> DeepSurv: ...
200
+ def predict_risk(self, x_new: list[float], n_new: int) -> list[float]: ...
201
+ def predict_survival(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
202
+ def predict_cumulative_hazard(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
203
+ def predict_survival_time(
204
+ self, x_new: list[float], n_new: int, percentile: float = 0.5
205
+ ) -> list[float | None]: ...
206
+ def predict_median_survival_time(
207
+ self, x_new: list[float], n_new: int
208
+ ) -> list[float | None]: ...
209
+
210
+ class Subject:
211
+ def __init__(
212
+ self,
213
+ covariates: list[float],
214
+ time: float,
215
+ status: int,
216
+ weight: float = 1.0,
217
+ ) -> None: ...
218
+
219
+ class CoxPHModel:
220
+ @property
221
+ def coefficients(self) -> list[float]: ...
222
+ @property
223
+ def std_errors(self) -> list[float]: ...
224
+ @property
225
+ def vcov(self) -> list[list[float]]: ...
226
+ @property
227
+ def log_likelihood(self) -> float: ...
228
+ @property
229
+ def n_observations(self) -> int: ...
230
+ @property
231
+ def n_events(self) -> int: ...
232
+ @property
233
+ def event_times(self) -> list[float]: ...
234
+ @property
235
+ def baseline_hazard(self) -> list[float]: ...
236
+ @property
237
+ def censoring(self) -> list[int]: ...
238
+ @staticmethod
239
+ def new_with_data(
240
+ covariates: list[list[float]],
241
+ time: list[float],
242
+ status: list[int],
243
+ ) -> CoxPHModel: ...
244
+ def add_subject(self, subject: Subject) -> None: ...
245
+ def fit(self, n_iters: int = 20) -> None: ...
246
+ def predict(self, covariates: list[list[float]]) -> list[float]: ...
247
+ def predict_survival(self, covariates: list[list[float]]) -> list[list[float]]: ...
248
+ def predicted_survival_time(
249
+ self, covariates: list[list[float]], percentile: float = 0.5
250
+ ) -> list[float | None]: ...
251
+ def survival_curve(
252
+ self, covariates: list[list[float]], times: list[float] | None = None
253
+ ) -> tuple[list[float], list[list[float]]]: ...
254
+ def cumulative_hazard(self, covariates: list[list[float]]) -> list[list[float]]: ...
255
+ def risk_scores(self, covariates: list[list[float]]) -> list[float]: ...
256
+ def hazard_ratios(self) -> list[float]: ...
257
+ def hazard_ratios_with_ci(
258
+ self, confidence_level: float = 0.95
259
+ ) -> list[tuple[float, float, float]]: ...
260
+ def martingale_residuals(self) -> list[float]: ...
261
+ def deviance_residuals(self) -> list[float]: ...
262
+ def dfbeta(self) -> list[list[float]]: ...
263
+ def brier_score(self, time: float) -> float: ...
264
+ def restricted_mean_survival_time(self, tau: float) -> float: ...
265
+ def summary(self) -> str: ...
266
+ def aic(self) -> float: ...
267
+ def bic(self) -> float: ...
268
+ def calculate_baseline_hazard(self) -> None: ...
269
+ def compute_standard_errors(self) -> None: ...
270
+ def compute_fisher_information(self) -> list[list[float]]: ...
271
+
272
+ class SurvFitKMOutput:
273
+ @property
274
+ def time(self) -> list[float]: ...
275
+ @property
276
+ def surv(self) -> list[float]: ...
277
+ @property
278
+ def n_risk(self) -> list[int]: ...
279
+ @property
280
+ def n_event(self) -> list[int]: ...
281
+ @property
282
+ def n_censor(self) -> list[int]: ...
283
+ @property
284
+ def std_err(self) -> list[float]: ...
285
+ @property
286
+ def lower(self) -> list[float]: ...
287
+ @property
288
+ def upper(self) -> list[float]: ...
289
+ @property
290
+ def cumhaz(self) -> list[float]: ...
291
+
292
+ class KaplanMeierConfig:
293
+ def __init__(
294
+ self,
295
+ conf_level: float = 0.95,
296
+ conf_type: str = "log-log",
297
+ se_type: str = "greenwood",
298
+ ) -> None: ...
299
+
300
+ class SurvfitKMOptions:
301
+ def __init__(
302
+ self,
303
+ conf_level: float = 0.95,
304
+ conf_type: str = "log-log",
305
+ se_type: str = "greenwood",
306
+ start_time: float | None = None,
307
+ ) -> None: ...
308
+
309
+ class NelsonAalenResult:
310
+ @property
311
+ def time(self) -> list[float]: ...
312
+ @property
313
+ def cumhaz(self) -> list[float]: ...
314
+ @property
315
+ def variance(self) -> list[float]: ...
316
+ @property
317
+ def lower(self) -> list[float]: ...
318
+ @property
319
+ def upper(self) -> list[float]: ...
320
+ @property
321
+ def n_risk(self) -> list[int]: ...
322
+ @property
323
+ def n_event(self) -> list[int]: ...
324
+
325
+ class LogRankResult:
326
+ @property
327
+ def statistic(self) -> float: ...
328
+ @property
329
+ def p_value(self) -> float: ...
330
+ @property
331
+ def df(self) -> int: ...
332
+ @property
333
+ def observed(self) -> list[float]: ...
334
+ @property
335
+ def expected(self) -> list[float]: ...
336
+ @property
337
+ def var_observed(self) -> list[float]: ...
338
+
339
+ class RMSTResult:
340
+ @property
341
+ def rmst(self) -> float: ...
342
+ @property
343
+ def se(self) -> float: ...
344
+ @property
345
+ def lower(self) -> float: ...
346
+ @property
347
+ def upper(self) -> float: ...
348
+ @property
349
+ def tau(self) -> float: ...
350
+
351
+ class CalibrationResult:
352
+ @property
353
+ def observed(self) -> list[float]: ...
354
+ @property
355
+ def predicted(self) -> list[float]: ...
356
+ @property
357
+ def n_groups(self) -> int: ...
358
+ @property
359
+ def hosmer_lemeshow_stat(self) -> float: ...
360
+ @property
361
+ def hosmer_lemeshow_p(self) -> float: ...
362
+
363
+ class UnoCIndexResult:
364
+ @property
365
+ def c_index(self) -> float: ...
366
+ @property
367
+ def se(self) -> float: ...
368
+ @property
369
+ def lower(self) -> float: ...
370
+ @property
371
+ def upper(self) -> float: ...
372
+ @property
373
+ def n_pairs(self) -> int: ...
374
+ @property
375
+ def n_concordant(self) -> int: ...
376
+
377
+ class SurvivalFit:
378
+ @property
379
+ def coefficients(self) -> list[float]: ...
380
+ @property
381
+ def std_errors(self) -> list[float]: ...
382
+ @property
383
+ def vcov(self) -> list[list[float]]: ...
384
+ @property
385
+ def log_likelihood(self) -> float: ...
386
+ @property
387
+ def scale(self) -> float: ...
388
+ @property
389
+ def distribution(self) -> str: ...
390
+ @property
391
+ def n_observations(self) -> int: ...
392
+ @property
393
+ def n_events(self) -> int: ...
394
+ @property
395
+ def aic(self) -> float: ...
396
+ @property
397
+ def bic(self) -> float: ...
398
+
399
+ class SurvregConfig:
400
+ def __init__(
401
+ self,
402
+ distribution: DistributionType | None = None,
403
+ max_iter: int = 100,
404
+ tol: float = 1e-9,
405
+ ) -> None: ...
406
+
407
+ class BootstrapResult:
408
+ @property
409
+ def estimate(self) -> float: ...
410
+ @property
411
+ def se(self) -> float: ...
412
+ @property
413
+ def lower(self) -> float: ...
414
+ @property
415
+ def upper(self) -> float: ...
416
+ @property
417
+ def bootstrap_estimates(self) -> list[float]: ...
418
+
419
+ class CVResult:
420
+ @property
421
+ def mean_score(self) -> float: ...
422
+ @property
423
+ def std_score(self) -> float: ...
424
+ @property
425
+ def scores(self) -> list[float]: ...
426
+ @property
427
+ def n_folds(self) -> int: ...
428
+
429
+ class TestResult:
430
+ @property
431
+ def statistic(self) -> float: ...
432
+ @property
433
+ def p_value(self) -> float: ...
434
+ @property
435
+ def df(self) -> int: ...
436
+
437
+ class BayesianCoxResult:
438
+ @property
439
+ def coefficients(self) -> list[float]: ...
440
+ @property
441
+ def std_errors(self) -> list[float]: ...
442
+ @property
443
+ def credible_intervals(self) -> list[tuple[float, float]]: ...
444
+ @property
445
+ def effective_sample_size(self) -> list[float]: ...
446
+ @property
447
+ def rhat(self) -> list[float]: ...
448
+
449
+ class ElasticNetCoxResult:
450
+ @property
451
+ def coefficients(self) -> list[float]: ...
452
+ @property
453
+ def intercept(self) -> float: ...
454
+ @property
455
+ def alpha(self) -> float: ...
456
+ @property
457
+ def l1_ratio(self) -> float: ...
458
+ @property
459
+ def n_iter(self) -> int: ...
460
+ @property
461
+ def nonzero_features(self) -> list[int]: ...
462
+
463
+ class MixtureCureResult:
464
+ @property
465
+ def cure_coefficients(self) -> list[float]: ...
466
+ @property
467
+ def survival_coefficients(self) -> list[float]: ...
468
+ @property
469
+ def cure_rate(self) -> float: ...
470
+ @property
471
+ def log_likelihood(self) -> float: ...
472
+
473
+ class JointModelResult:
474
+ @property
475
+ def longitudinal_coefficients(self) -> list[float]: ...
476
+ @property
477
+ def survival_coefficients(self) -> list[float]: ...
478
+ @property
479
+ def association(self) -> float: ...
480
+ @property
481
+ def log_likelihood(self) -> float: ...
482
+
483
+ class IPCWResult:
484
+ @property
485
+ def weights(self) -> list[float]: ...
486
+ @property
487
+ def estimate(self) -> float: ...
488
+ @property
489
+ def se(self) -> float: ...
490
+ @property
491
+ def lower(self) -> float: ...
492
+ @property
493
+ def upper(self) -> float: ...
494
+
495
+ class GComputationResult:
496
+ @property
497
+ def ate(self) -> float: ...
498
+ @property
499
+ def se(self) -> float: ...
500
+ @property
501
+ def lower(self) -> float: ...
502
+ @property
503
+ def upper(self) -> float: ...
504
+ @property
505
+ def survival_treated(self) -> list[float]: ...
506
+ @property
507
+ def survival_control(self) -> list[float]: ...
508
+
509
+ class QALYResult:
510
+ @property
511
+ def qaly(self) -> float: ...
512
+ @property
513
+ def se(self) -> float: ...
514
+ @property
515
+ def lower(self) -> float: ...
516
+ @property
517
+ def upper(self) -> float: ...
518
+
519
+ class RCLLResult:
520
+ @property
521
+ def rcll(self) -> float: ...
522
+ @property
523
+ def se(self) -> float: ...
524
+ @property
525
+ def n_samples(self) -> int: ...
526
+
527
+ def survfitkm(
528
+ time: list[float],
529
+ status: list[int],
530
+ conf_level: float = 0.95,
531
+ ) -> SurvFitKMOutput: ...
532
+ def survfitkm_with_options(
533
+ time: list[float],
534
+ status: list[int],
535
+ options: SurvfitKMOptions,
536
+ ) -> SurvFitKMOutput: ...
537
+ def nelson_aalen_estimator(
538
+ time: list[float],
539
+ status: list[int],
540
+ conf_level: float = 0.95,
541
+ ) -> NelsonAalenResult: ...
542
+ def stratified_kaplan_meier(
543
+ time: list[float],
544
+ status: list[int],
545
+ strata: list[int],
546
+ conf_level: float = 0.95,
547
+ ) -> dict[int, SurvFitKMOutput]: ...
548
+ def logrank_test(
549
+ time: list[float],
550
+ status: list[int],
551
+ group: list[int],
552
+ ) -> LogRankResult: ...
553
+ def fleming_harrington_test(
554
+ time: list[float],
555
+ status: list[int],
556
+ group: list[int],
557
+ rho: float = 0.0,
558
+ gamma: float = 0.0,
559
+ ) -> LogRankResult: ...
560
+ def rmst(
561
+ time: list[float],
562
+ status: list[int],
563
+ tau: float,
564
+ conf_level: float = 0.95,
565
+ ) -> RMSTResult: ...
566
+ def rmst_comparison(
567
+ time: list[float],
568
+ status: list[int],
569
+ group: list[int],
570
+ tau: float,
571
+ conf_level: float = 0.95,
572
+ ) -> dict[str, Any]: ...
573
+ def survreg(
574
+ time: list[float],
575
+ status: list[int],
576
+ x: list[list[float]],
577
+ config: SurvregConfig | None = None,
578
+ ) -> SurvivalFit: ...
579
+ def calibration(
580
+ predicted: list[float],
581
+ time: list[float],
582
+ status: list[int],
583
+ n_groups: int = 10,
584
+ ) -> CalibrationResult: ...
585
+ def uno_c_index(
586
+ time: list[float],
587
+ status: list[int],
588
+ risk_scores: list[float],
589
+ tau: float | None = None,
590
+ ) -> UnoCIndexResult: ...
591
+ def brier(
592
+ time: list[float],
593
+ status: list[int],
594
+ predicted: list[float],
595
+ eval_time: float,
596
+ ) -> float: ...
597
+ def integrated_brier(
598
+ time: list[float],
599
+ status: list[int],
600
+ predicted: list[list[float]],
601
+ eval_times: list[float],
602
+ ) -> float: ...
603
+ def bootstrap_cox_ci(
604
+ time: list[float],
605
+ status: list[int],
606
+ x: list[list[float]],
607
+ n_bootstrap: int = 1000,
608
+ conf_level: float = 0.95,
609
+ ) -> BootstrapResult: ...
610
+ def cv_cox_concordance(
611
+ time: list[float],
612
+ status: list[int],
613
+ x: list[list[float]],
614
+ n_folds: int = 5,
615
+ ) -> CVResult: ...
616
+ def lrt_test(
617
+ log_likelihood_full: float,
618
+ log_likelihood_reduced: float,
619
+ df: int,
620
+ ) -> TestResult: ...
621
+ def bayesian_cox(
622
+ time: list[float],
623
+ status: list[int],
624
+ x: list[list[float]],
625
+ n_samples: int = 1000,
626
+ n_warmup: int = 500,
627
+ prior_scale: float = 1.0,
628
+ ) -> BayesianCoxResult: ...
629
+ def elastic_net_cox(
630
+ time: list[float],
631
+ status: list[int],
632
+ x: list[list[float]],
633
+ alpha: float = 1.0,
634
+ l1_ratio: float = 0.5,
635
+ max_iter: int = 1000,
636
+ ) -> ElasticNetCoxResult: ...
637
+ def mixture_cure_model(
638
+ time: list[float],
639
+ status: list[int],
640
+ x_cure: list[list[float]],
641
+ x_survival: list[list[float]],
642
+ max_iter: int = 100,
643
+ ) -> MixtureCureResult: ...
644
+ def joint_model(
645
+ longitudinal_time: list[float],
646
+ longitudinal_value: list[float],
647
+ subject_id: list[int],
648
+ survival_time: list[float],
649
+ survival_status: list[int],
650
+ x: list[list[float]],
651
+ ) -> JointModelResult: ...
652
+ def ipcw_kaplan_meier(
653
+ time: list[float],
654
+ status: list[int],
655
+ weights: list[float],
656
+ ) -> SurvFitKMOutput: ...
657
+ def g_computation(
658
+ time: list[float],
659
+ status: list[int],
660
+ treatment: list[int],
661
+ x: list[list[float]],
662
+ n_bootstrap: int = 1000,
663
+ ) -> GComputationResult: ...
664
+ def qaly_calculation(
665
+ time: list[float],
666
+ status: list[int],
667
+ utility: list[float],
668
+ tau: float,
669
+ ) -> QALYResult: ...
670
+ def rcll(
671
+ time: list[float],
672
+ status: list[int],
673
+ predicted_survival: list[list[float]],
674
+ eval_times: list[float],
675
+ ) -> RCLLResult: ...
676
+ def gradient_boost_survival(
677
+ x: list[float],
678
+ n: int,
679
+ p: int,
680
+ time: list[float],
681
+ status: list[int],
682
+ config: GradientBoostSurvivalConfig | None = None,
683
+ ) -> GradientBoostSurvival: ...
684
+ def survival_forest(
685
+ x: list[float],
686
+ n: int,
687
+ p: int,
688
+ time: list[float],
689
+ status: list[int],
690
+ config: SurvivalForestConfig | None = None,
691
+ ) -> SurvivalForest: ...
692
+ def deep_surv(
693
+ x: list[float],
694
+ n: int,
695
+ p: int,
696
+ time: list[float],
697
+ status: list[int],
698
+ config: DeepSurvConfig | None = None,
699
+ ) -> DeepSurv: ...
700
+ def load_lung() -> dict[str, list[Any]]: ...
701
+ def load_aml() -> dict[str, list[Any]]: ...
702
+ def load_veteran() -> dict[str, list[Any]]: ...
703
+ def load_ovarian() -> dict[str, list[Any]]: ...
704
+ def load_colon() -> dict[str, list[Any]]: ...
705
+ def load_pbc() -> dict[str, list[Any]]: ...
706
+ def load_cgd() -> dict[str, list[Any]]: ...
707
+ def load_bladder() -> dict[str, list[Any]]: ...
708
+ def load_heart() -> dict[str, list[Any]]: ...
709
+ def load_kidney() -> dict[str, list[Any]]: ...
710
+ def load_rats() -> dict[str, list[Any]]: ...
711
+ def load_stanford2() -> dict[str, list[Any]]: ...
712
+ def load_udca() -> dict[str, list[Any]]: ...
713
+ def load_myeloid() -> dict[str, list[Any]]: ...
714
+ def load_flchain() -> dict[str, list[Any]]: ...
715
+ def load_transplant() -> dict[str, list[Any]]: ...
716
+ def load_mgus() -> dict[str, list[Any]]: ...
717
+ def load_mgus2() -> dict[str, list[Any]]: ...
718
+ def load_diabetic() -> dict[str, list[Any]]: ...
719
+ def load_retinopathy() -> dict[str, list[Any]]: ...
720
+ def load_gbsg() -> dict[str, list[Any]]: ...
721
+ def load_rotterdam() -> dict[str, list[Any]]: ...
722
+ def load_logan() -> dict[str, list[Any]]: ...
723
+ def load_nwtco() -> dict[str, list[Any]]: ...
724
+ def load_solder() -> dict[str, list[Any]]: ...
725
+ def load_tobin() -> dict[str, list[Any]]: ...
726
+ def load_rats2() -> dict[str, list[Any]]: ...
727
+ def load_nafld() -> dict[str, list[Any]]: ...
728
+ def load_cgd0() -> dict[str, list[Any]]: ...
729
+ def load_pbcseq() -> dict[str, list[Any]]: ...
730
+ def load_hoel() -> dict[str, list[Any]]: ...
731
+ def load_myeloma() -> dict[str, list[Any]]: ...
732
+ def load_rhdnase() -> dict[str, list[Any]]: ...