survival 1.1.19__cp314-cp314-manylinux_2_39_x86_64.whl → 1.1.32__cp314-cp314-manylinux_2_39_x86_64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of survival might be problematic. Click here for more details.
- survival/__init__.py +15 -5
- survival/{survival.cpython-314-x86_64-linux-gnu.so → _survival.cpython-314-x86_64-linux-gnu.so} +0 -0
- survival/_survival.pyi +660 -0
- survival/sklearn_compat.py +1128 -0
- {survival-1.1.19.dist-info → survival-1.1.32.dist-info}/METADATA +7 -4
- survival-1.1.32.dist-info/RECORD +9 -0
- survival/__init__.pyi +0 -963
- survival-1.1.19.dist-info/RECORD +0 -8
- {survival-1.1.19.dist-info → survival-1.1.32.dist-info}/WHEEL +0 -0
- {survival-1.1.19.dist-info → survival-1.1.32.dist-info}/licenses/LICENSE +0 -0
survival/__init__.py
CHANGED
|
@@ -1,5 +1,15 @@
|
|
|
1
|
-
from .
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
|
|
5
|
-
|
|
1
|
+
from survival._survival import * # noqa: F401, F403
|
|
2
|
+
from survival.sklearn_compat import ( # noqa: F401
|
|
3
|
+
AFTEstimator,
|
|
4
|
+
CoxPHEstimator,
|
|
5
|
+
GradientBoostSurvivalEstimator,
|
|
6
|
+
StreamingAFTEstimator,
|
|
7
|
+
StreamingCoxPHEstimator,
|
|
8
|
+
StreamingGradientBoostSurvivalEstimator,
|
|
9
|
+
StreamingMixin,
|
|
10
|
+
StreamingSurvivalForestEstimator,
|
|
11
|
+
SurvivalForestEstimator,
|
|
12
|
+
iter_chunks,
|
|
13
|
+
predict_large_dataset,
|
|
14
|
+
survival_curves_to_disk,
|
|
15
|
+
)
|
survival/{survival.cpython-314-x86_64-linux-gnu.so → _survival.cpython-314-x86_64-linux-gnu.so}
RENAMED
|
Binary file
|
survival/_survival.pyi
ADDED
|
@@ -0,0 +1,660 @@
|
|
|
1
|
+
from typing import Any
|
|
2
|
+
|
|
3
|
+
class GBSurvLoss:
|
|
4
|
+
AFT: GBSurvLoss
|
|
5
|
+
CoxPH: GBSurvLoss
|
|
6
|
+
Huber: GBSurvLoss
|
|
7
|
+
SquaredError: GBSurvLoss
|
|
8
|
+
|
|
9
|
+
class SplitRule:
|
|
10
|
+
Conservation: SplitRule
|
|
11
|
+
Hellinger: SplitRule
|
|
12
|
+
LogRank: SplitRule
|
|
13
|
+
LogRankScore: SplitRule
|
|
14
|
+
|
|
15
|
+
class DistributionType:
|
|
16
|
+
ExtremeValue: DistributionType
|
|
17
|
+
Weibull: DistributionType
|
|
18
|
+
Gaussian: DistributionType
|
|
19
|
+
Logistic: DistributionType
|
|
20
|
+
LogNormal: DistributionType
|
|
21
|
+
LogLogistic: DistributionType
|
|
22
|
+
|
|
23
|
+
class DimType:
|
|
24
|
+
Age: DimType
|
|
25
|
+
Continuous: DimType
|
|
26
|
+
Factor: DimType
|
|
27
|
+
Year: DimType
|
|
28
|
+
|
|
29
|
+
class ReliabilityScale:
|
|
30
|
+
ClogLog: ReliabilityScale
|
|
31
|
+
Cumhaz: ReliabilityScale
|
|
32
|
+
LogLogistic: ReliabilityScale
|
|
33
|
+
Probit: ReliabilityScale
|
|
34
|
+
Surv: ReliabilityScale
|
|
35
|
+
|
|
36
|
+
class GradientBoostSurvivalConfig:
|
|
37
|
+
n_estimators: int
|
|
38
|
+
learning_rate: float
|
|
39
|
+
max_depth: int
|
|
40
|
+
min_samples_split: int
|
|
41
|
+
min_samples_leaf: int
|
|
42
|
+
subsample: float
|
|
43
|
+
max_features: int | None
|
|
44
|
+
seed: int | None
|
|
45
|
+
loss: GBSurvLoss
|
|
46
|
+
dropout_rate: float
|
|
47
|
+
|
|
48
|
+
def __init__(
|
|
49
|
+
self,
|
|
50
|
+
n_estimators: int = 100,
|
|
51
|
+
learning_rate: float = 0.1,
|
|
52
|
+
max_depth: int = 3,
|
|
53
|
+
min_samples_split: int = 10,
|
|
54
|
+
min_samples_leaf: int = 5,
|
|
55
|
+
subsample: float = 1.0,
|
|
56
|
+
max_features: int | None = None,
|
|
57
|
+
seed: int | None = None,
|
|
58
|
+
loss: GBSurvLoss | None = None,
|
|
59
|
+
dropout_rate: float = 0.0,
|
|
60
|
+
) -> None: ...
|
|
61
|
+
|
|
62
|
+
class GradientBoostSurvival:
|
|
63
|
+
@property
|
|
64
|
+
def n_estimators(self) -> int: ...
|
|
65
|
+
@property
|
|
66
|
+
def learning_rate(self) -> float: ...
|
|
67
|
+
@property
|
|
68
|
+
def unique_times(self) -> list[float]: ...
|
|
69
|
+
@property
|
|
70
|
+
def feature_importance(self) -> list[float]: ...
|
|
71
|
+
@property
|
|
72
|
+
def baseline_hazard(self) -> list[float]: ...
|
|
73
|
+
@property
|
|
74
|
+
def train_loss(self) -> list[float]: ...
|
|
75
|
+
@staticmethod
|
|
76
|
+
def fit(
|
|
77
|
+
x: list[float],
|
|
78
|
+
n: int,
|
|
79
|
+
p: int,
|
|
80
|
+
time: list[float],
|
|
81
|
+
status: list[int],
|
|
82
|
+
config: GradientBoostSurvivalConfig,
|
|
83
|
+
) -> GradientBoostSurvival: ...
|
|
84
|
+
def predict_risk(self, x_new: list[float], n_new: int) -> list[float]: ...
|
|
85
|
+
def predict_survival(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
|
|
86
|
+
def predict_cumulative_hazard(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
|
|
87
|
+
def predict_survival_time(
|
|
88
|
+
self, x_new: list[float], n_new: int, percentile: float = 0.5
|
|
89
|
+
) -> list[float | None]: ...
|
|
90
|
+
def predict_median_survival_time(
|
|
91
|
+
self, x_new: list[float], n_new: int
|
|
92
|
+
) -> list[float | None]: ...
|
|
93
|
+
|
|
94
|
+
class SurvivalForestConfig:
|
|
95
|
+
n_trees: int
|
|
96
|
+
max_depth: int | None
|
|
97
|
+
min_node_size: int
|
|
98
|
+
mtry: int | None
|
|
99
|
+
sample_fraction: float
|
|
100
|
+
seed: int | None
|
|
101
|
+
oob_error: bool
|
|
102
|
+
split_rule: SplitRule
|
|
103
|
+
n_random_splits: int
|
|
104
|
+
|
|
105
|
+
def __init__(
|
|
106
|
+
self,
|
|
107
|
+
n_trees: int = 500,
|
|
108
|
+
max_depth: int | None = None,
|
|
109
|
+
min_node_size: int = 15,
|
|
110
|
+
mtry: int | None = None,
|
|
111
|
+
sample_fraction: float = 0.632,
|
|
112
|
+
seed: int | None = None,
|
|
113
|
+
oob_error: bool = True,
|
|
114
|
+
split_rule: SplitRule | None = None,
|
|
115
|
+
n_random_splits: int = 10,
|
|
116
|
+
) -> None: ...
|
|
117
|
+
|
|
118
|
+
class SurvivalForest:
|
|
119
|
+
@property
|
|
120
|
+
def n_trees(self) -> int: ...
|
|
121
|
+
@property
|
|
122
|
+
def unique_times(self) -> list[float]: ...
|
|
123
|
+
@property
|
|
124
|
+
def variable_importance(self) -> list[float]: ...
|
|
125
|
+
@property
|
|
126
|
+
def oob_error(self) -> float | None: ...
|
|
127
|
+
@staticmethod
|
|
128
|
+
def fit(
|
|
129
|
+
x: list[float],
|
|
130
|
+
n: int,
|
|
131
|
+
p: int,
|
|
132
|
+
time: list[float],
|
|
133
|
+
status: list[int],
|
|
134
|
+
config: SurvivalForestConfig,
|
|
135
|
+
) -> SurvivalForest: ...
|
|
136
|
+
def predict_risk(self, x_new: list[float], n_new: int) -> list[float]: ...
|
|
137
|
+
def predict_survival(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
|
|
138
|
+
def predict_cumulative_hazard(self, x_new: list[float], n_new: int) -> list[list[float]]: ...
|
|
139
|
+
def predict_survival_time(
|
|
140
|
+
self, x_new: list[float], n_new: int, percentile: float = 0.5
|
|
141
|
+
) -> list[float | None]: ...
|
|
142
|
+
def predict_median_survival_time(
|
|
143
|
+
self, x_new: list[float], n_new: int
|
|
144
|
+
) -> list[float | None]: ...
|
|
145
|
+
|
|
146
|
+
class Subject:
|
|
147
|
+
def __init__(
|
|
148
|
+
self,
|
|
149
|
+
covariates: list[float],
|
|
150
|
+
time: float,
|
|
151
|
+
status: int,
|
|
152
|
+
weight: float = 1.0,
|
|
153
|
+
) -> None: ...
|
|
154
|
+
|
|
155
|
+
class CoxPHModel:
|
|
156
|
+
@property
|
|
157
|
+
def coefficients(self) -> list[float]: ...
|
|
158
|
+
@property
|
|
159
|
+
def std_errors(self) -> list[float]: ...
|
|
160
|
+
@property
|
|
161
|
+
def vcov(self) -> list[list[float]]: ...
|
|
162
|
+
@property
|
|
163
|
+
def log_likelihood(self) -> float: ...
|
|
164
|
+
@property
|
|
165
|
+
def n_observations(self) -> int: ...
|
|
166
|
+
@property
|
|
167
|
+
def n_events(self) -> int: ...
|
|
168
|
+
@property
|
|
169
|
+
def event_times(self) -> list[float]: ...
|
|
170
|
+
@property
|
|
171
|
+
def baseline_hazard(self) -> list[float]: ...
|
|
172
|
+
@property
|
|
173
|
+
def censoring(self) -> list[int]: ...
|
|
174
|
+
@staticmethod
|
|
175
|
+
def new_with_data(
|
|
176
|
+
covariates: list[list[float]],
|
|
177
|
+
time: list[float],
|
|
178
|
+
status: list[int],
|
|
179
|
+
) -> CoxPHModel: ...
|
|
180
|
+
def add_subject(self, subject: Subject) -> None: ...
|
|
181
|
+
def fit(self, n_iters: int = 20) -> None: ...
|
|
182
|
+
def predict(self, covariates: list[list[float]]) -> list[float]: ...
|
|
183
|
+
def predict_survival(self, covariates: list[list[float]]) -> list[list[float]]: ...
|
|
184
|
+
def predicted_survival_time(
|
|
185
|
+
self, covariates: list[list[float]], percentile: float = 0.5
|
|
186
|
+
) -> list[float | None]: ...
|
|
187
|
+
def survival_curve(
|
|
188
|
+
self, covariates: list[list[float]], times: list[float] | None = None
|
|
189
|
+
) -> tuple[list[float], list[list[float]]]: ...
|
|
190
|
+
def cumulative_hazard(self, covariates: list[list[float]]) -> list[list[float]]: ...
|
|
191
|
+
def risk_scores(self, covariates: list[list[float]]) -> list[float]: ...
|
|
192
|
+
def hazard_ratios(self) -> list[float]: ...
|
|
193
|
+
def hazard_ratios_with_ci(
|
|
194
|
+
self, confidence_level: float = 0.95
|
|
195
|
+
) -> list[tuple[float, float, float]]: ...
|
|
196
|
+
def martingale_residuals(self) -> list[float]: ...
|
|
197
|
+
def deviance_residuals(self) -> list[float]: ...
|
|
198
|
+
def dfbeta(self) -> list[list[float]]: ...
|
|
199
|
+
def brier_score(self, time: float) -> float: ...
|
|
200
|
+
def restricted_mean_survival_time(self, tau: float) -> float: ...
|
|
201
|
+
def summary(self) -> str: ...
|
|
202
|
+
def aic(self) -> float: ...
|
|
203
|
+
def bic(self) -> float: ...
|
|
204
|
+
def calculate_baseline_hazard(self) -> None: ...
|
|
205
|
+
def compute_standard_errors(self) -> None: ...
|
|
206
|
+
def compute_fisher_information(self) -> list[list[float]]: ...
|
|
207
|
+
|
|
208
|
+
class SurvFitKMOutput:
|
|
209
|
+
@property
|
|
210
|
+
def time(self) -> list[float]: ...
|
|
211
|
+
@property
|
|
212
|
+
def surv(self) -> list[float]: ...
|
|
213
|
+
@property
|
|
214
|
+
def n_risk(self) -> list[int]: ...
|
|
215
|
+
@property
|
|
216
|
+
def n_event(self) -> list[int]: ...
|
|
217
|
+
@property
|
|
218
|
+
def n_censor(self) -> list[int]: ...
|
|
219
|
+
@property
|
|
220
|
+
def std_err(self) -> list[float]: ...
|
|
221
|
+
@property
|
|
222
|
+
def lower(self) -> list[float]: ...
|
|
223
|
+
@property
|
|
224
|
+
def upper(self) -> list[float]: ...
|
|
225
|
+
@property
|
|
226
|
+
def cumhaz(self) -> list[float]: ...
|
|
227
|
+
|
|
228
|
+
class KaplanMeierConfig:
|
|
229
|
+
def __init__(
|
|
230
|
+
self,
|
|
231
|
+
conf_level: float = 0.95,
|
|
232
|
+
conf_type: str = "log-log",
|
|
233
|
+
se_type: str = "greenwood",
|
|
234
|
+
) -> None: ...
|
|
235
|
+
|
|
236
|
+
class SurvfitKMOptions:
|
|
237
|
+
def __init__(
|
|
238
|
+
self,
|
|
239
|
+
conf_level: float = 0.95,
|
|
240
|
+
conf_type: str = "log-log",
|
|
241
|
+
se_type: str = "greenwood",
|
|
242
|
+
start_time: float | None = None,
|
|
243
|
+
) -> None: ...
|
|
244
|
+
|
|
245
|
+
class NelsonAalenResult:
|
|
246
|
+
@property
|
|
247
|
+
def time(self) -> list[float]: ...
|
|
248
|
+
@property
|
|
249
|
+
def cumhaz(self) -> list[float]: ...
|
|
250
|
+
@property
|
|
251
|
+
def variance(self) -> list[float]: ...
|
|
252
|
+
@property
|
|
253
|
+
def lower(self) -> list[float]: ...
|
|
254
|
+
@property
|
|
255
|
+
def upper(self) -> list[float]: ...
|
|
256
|
+
@property
|
|
257
|
+
def n_risk(self) -> list[int]: ...
|
|
258
|
+
@property
|
|
259
|
+
def n_event(self) -> list[int]: ...
|
|
260
|
+
|
|
261
|
+
class LogRankResult:
|
|
262
|
+
@property
|
|
263
|
+
def statistic(self) -> float: ...
|
|
264
|
+
@property
|
|
265
|
+
def p_value(self) -> float: ...
|
|
266
|
+
@property
|
|
267
|
+
def df(self) -> int: ...
|
|
268
|
+
@property
|
|
269
|
+
def observed(self) -> list[float]: ...
|
|
270
|
+
@property
|
|
271
|
+
def expected(self) -> list[float]: ...
|
|
272
|
+
@property
|
|
273
|
+
def var_observed(self) -> list[float]: ...
|
|
274
|
+
|
|
275
|
+
class RMSTResult:
|
|
276
|
+
@property
|
|
277
|
+
def rmst(self) -> float: ...
|
|
278
|
+
@property
|
|
279
|
+
def se(self) -> float: ...
|
|
280
|
+
@property
|
|
281
|
+
def lower(self) -> float: ...
|
|
282
|
+
@property
|
|
283
|
+
def upper(self) -> float: ...
|
|
284
|
+
@property
|
|
285
|
+
def tau(self) -> float: ...
|
|
286
|
+
|
|
287
|
+
class CalibrationResult:
|
|
288
|
+
@property
|
|
289
|
+
def observed(self) -> list[float]: ...
|
|
290
|
+
@property
|
|
291
|
+
def predicted(self) -> list[float]: ...
|
|
292
|
+
@property
|
|
293
|
+
def n_groups(self) -> int: ...
|
|
294
|
+
@property
|
|
295
|
+
def hosmer_lemeshow_stat(self) -> float: ...
|
|
296
|
+
@property
|
|
297
|
+
def hosmer_lemeshow_p(self) -> float: ...
|
|
298
|
+
|
|
299
|
+
class UnoCIndexResult:
|
|
300
|
+
@property
|
|
301
|
+
def c_index(self) -> float: ...
|
|
302
|
+
@property
|
|
303
|
+
def se(self) -> float: ...
|
|
304
|
+
@property
|
|
305
|
+
def lower(self) -> float: ...
|
|
306
|
+
@property
|
|
307
|
+
def upper(self) -> float: ...
|
|
308
|
+
@property
|
|
309
|
+
def n_pairs(self) -> int: ...
|
|
310
|
+
@property
|
|
311
|
+
def n_concordant(self) -> int: ...
|
|
312
|
+
|
|
313
|
+
class SurvivalFit:
|
|
314
|
+
@property
|
|
315
|
+
def coefficients(self) -> list[float]: ...
|
|
316
|
+
@property
|
|
317
|
+
def std_errors(self) -> list[float]: ...
|
|
318
|
+
@property
|
|
319
|
+
def vcov(self) -> list[list[float]]: ...
|
|
320
|
+
@property
|
|
321
|
+
def log_likelihood(self) -> float: ...
|
|
322
|
+
@property
|
|
323
|
+
def scale(self) -> float: ...
|
|
324
|
+
@property
|
|
325
|
+
def distribution(self) -> str: ...
|
|
326
|
+
@property
|
|
327
|
+
def n_observations(self) -> int: ...
|
|
328
|
+
@property
|
|
329
|
+
def n_events(self) -> int: ...
|
|
330
|
+
@property
|
|
331
|
+
def aic(self) -> float: ...
|
|
332
|
+
@property
|
|
333
|
+
def bic(self) -> float: ...
|
|
334
|
+
|
|
335
|
+
class SurvregConfig:
|
|
336
|
+
def __init__(
|
|
337
|
+
self,
|
|
338
|
+
distribution: DistributionType | None = None,
|
|
339
|
+
max_iter: int = 100,
|
|
340
|
+
tol: float = 1e-9,
|
|
341
|
+
) -> None: ...
|
|
342
|
+
|
|
343
|
+
class BootstrapResult:
|
|
344
|
+
@property
|
|
345
|
+
def estimate(self) -> float: ...
|
|
346
|
+
@property
|
|
347
|
+
def se(self) -> float: ...
|
|
348
|
+
@property
|
|
349
|
+
def lower(self) -> float: ...
|
|
350
|
+
@property
|
|
351
|
+
def upper(self) -> float: ...
|
|
352
|
+
@property
|
|
353
|
+
def bootstrap_estimates(self) -> list[float]: ...
|
|
354
|
+
|
|
355
|
+
class CVResult:
|
|
356
|
+
@property
|
|
357
|
+
def mean_score(self) -> float: ...
|
|
358
|
+
@property
|
|
359
|
+
def std_score(self) -> float: ...
|
|
360
|
+
@property
|
|
361
|
+
def scores(self) -> list[float]: ...
|
|
362
|
+
@property
|
|
363
|
+
def n_folds(self) -> int: ...
|
|
364
|
+
|
|
365
|
+
class TestResult:
|
|
366
|
+
@property
|
|
367
|
+
def statistic(self) -> float: ...
|
|
368
|
+
@property
|
|
369
|
+
def p_value(self) -> float: ...
|
|
370
|
+
@property
|
|
371
|
+
def df(self) -> int: ...
|
|
372
|
+
|
|
373
|
+
class BayesianCoxResult:
|
|
374
|
+
@property
|
|
375
|
+
def coefficients(self) -> list[float]: ...
|
|
376
|
+
@property
|
|
377
|
+
def std_errors(self) -> list[float]: ...
|
|
378
|
+
@property
|
|
379
|
+
def credible_intervals(self) -> list[tuple[float, float]]: ...
|
|
380
|
+
@property
|
|
381
|
+
def effective_sample_size(self) -> list[float]: ...
|
|
382
|
+
@property
|
|
383
|
+
def rhat(self) -> list[float]: ...
|
|
384
|
+
|
|
385
|
+
class ElasticNetCoxResult:
|
|
386
|
+
@property
|
|
387
|
+
def coefficients(self) -> list[float]: ...
|
|
388
|
+
@property
|
|
389
|
+
def intercept(self) -> float: ...
|
|
390
|
+
@property
|
|
391
|
+
def alpha(self) -> float: ...
|
|
392
|
+
@property
|
|
393
|
+
def l1_ratio(self) -> float: ...
|
|
394
|
+
@property
|
|
395
|
+
def n_iter(self) -> int: ...
|
|
396
|
+
@property
|
|
397
|
+
def nonzero_features(self) -> list[int]: ...
|
|
398
|
+
|
|
399
|
+
class MixtureCureResult:
|
|
400
|
+
@property
|
|
401
|
+
def cure_coefficients(self) -> list[float]: ...
|
|
402
|
+
@property
|
|
403
|
+
def survival_coefficients(self) -> list[float]: ...
|
|
404
|
+
@property
|
|
405
|
+
def cure_rate(self) -> float: ...
|
|
406
|
+
@property
|
|
407
|
+
def log_likelihood(self) -> float: ...
|
|
408
|
+
|
|
409
|
+
class JointModelResult:
|
|
410
|
+
@property
|
|
411
|
+
def longitudinal_coefficients(self) -> list[float]: ...
|
|
412
|
+
@property
|
|
413
|
+
def survival_coefficients(self) -> list[float]: ...
|
|
414
|
+
@property
|
|
415
|
+
def association(self) -> float: ...
|
|
416
|
+
@property
|
|
417
|
+
def log_likelihood(self) -> float: ...
|
|
418
|
+
|
|
419
|
+
class IPCWResult:
|
|
420
|
+
@property
|
|
421
|
+
def weights(self) -> list[float]: ...
|
|
422
|
+
@property
|
|
423
|
+
def estimate(self) -> float: ...
|
|
424
|
+
@property
|
|
425
|
+
def se(self) -> float: ...
|
|
426
|
+
@property
|
|
427
|
+
def lower(self) -> float: ...
|
|
428
|
+
@property
|
|
429
|
+
def upper(self) -> float: ...
|
|
430
|
+
|
|
431
|
+
class GComputationResult:
|
|
432
|
+
@property
|
|
433
|
+
def ate(self) -> float: ...
|
|
434
|
+
@property
|
|
435
|
+
def se(self) -> float: ...
|
|
436
|
+
@property
|
|
437
|
+
def lower(self) -> float: ...
|
|
438
|
+
@property
|
|
439
|
+
def upper(self) -> float: ...
|
|
440
|
+
@property
|
|
441
|
+
def survival_treated(self) -> list[float]: ...
|
|
442
|
+
@property
|
|
443
|
+
def survival_control(self) -> list[float]: ...
|
|
444
|
+
|
|
445
|
+
class QALYResult:
|
|
446
|
+
@property
|
|
447
|
+
def qaly(self) -> float: ...
|
|
448
|
+
@property
|
|
449
|
+
def se(self) -> float: ...
|
|
450
|
+
@property
|
|
451
|
+
def lower(self) -> float: ...
|
|
452
|
+
@property
|
|
453
|
+
def upper(self) -> float: ...
|
|
454
|
+
|
|
455
|
+
class RCLLResult:
|
|
456
|
+
@property
|
|
457
|
+
def rcll(self) -> float: ...
|
|
458
|
+
@property
|
|
459
|
+
def se(self) -> float: ...
|
|
460
|
+
@property
|
|
461
|
+
def n_samples(self) -> int: ...
|
|
462
|
+
|
|
463
|
+
def survfitkm(
|
|
464
|
+
time: list[float],
|
|
465
|
+
status: list[int],
|
|
466
|
+
conf_level: float = 0.95,
|
|
467
|
+
) -> SurvFitKMOutput: ...
|
|
468
|
+
def survfitkm_with_options(
|
|
469
|
+
time: list[float],
|
|
470
|
+
status: list[int],
|
|
471
|
+
options: SurvfitKMOptions,
|
|
472
|
+
) -> SurvFitKMOutput: ...
|
|
473
|
+
def nelson_aalen_estimator(
|
|
474
|
+
time: list[float],
|
|
475
|
+
status: list[int],
|
|
476
|
+
conf_level: float = 0.95,
|
|
477
|
+
) -> NelsonAalenResult: ...
|
|
478
|
+
def stratified_kaplan_meier(
|
|
479
|
+
time: list[float],
|
|
480
|
+
status: list[int],
|
|
481
|
+
strata: list[int],
|
|
482
|
+
conf_level: float = 0.95,
|
|
483
|
+
) -> dict[int, SurvFitKMOutput]: ...
|
|
484
|
+
def logrank_test(
|
|
485
|
+
time: list[float],
|
|
486
|
+
status: list[int],
|
|
487
|
+
group: list[int],
|
|
488
|
+
) -> LogRankResult: ...
|
|
489
|
+
def fleming_harrington_test(
|
|
490
|
+
time: list[float],
|
|
491
|
+
status: list[int],
|
|
492
|
+
group: list[int],
|
|
493
|
+
rho: float = 0.0,
|
|
494
|
+
gamma: float = 0.0,
|
|
495
|
+
) -> LogRankResult: ...
|
|
496
|
+
def rmst(
|
|
497
|
+
time: list[float],
|
|
498
|
+
status: list[int],
|
|
499
|
+
tau: float,
|
|
500
|
+
conf_level: float = 0.95,
|
|
501
|
+
) -> RMSTResult: ...
|
|
502
|
+
def rmst_comparison(
|
|
503
|
+
time: list[float],
|
|
504
|
+
status: list[int],
|
|
505
|
+
group: list[int],
|
|
506
|
+
tau: float,
|
|
507
|
+
conf_level: float = 0.95,
|
|
508
|
+
) -> dict[str, Any]: ...
|
|
509
|
+
def survreg(
|
|
510
|
+
time: list[float],
|
|
511
|
+
status: list[int],
|
|
512
|
+
x: list[list[float]],
|
|
513
|
+
config: SurvregConfig | None = None,
|
|
514
|
+
) -> SurvivalFit: ...
|
|
515
|
+
def calibration(
|
|
516
|
+
predicted: list[float],
|
|
517
|
+
time: list[float],
|
|
518
|
+
status: list[int],
|
|
519
|
+
n_groups: int = 10,
|
|
520
|
+
) -> CalibrationResult: ...
|
|
521
|
+
def uno_c_index(
|
|
522
|
+
time: list[float],
|
|
523
|
+
status: list[int],
|
|
524
|
+
risk_scores: list[float],
|
|
525
|
+
tau: float | None = None,
|
|
526
|
+
) -> UnoCIndexResult: ...
|
|
527
|
+
def brier(
|
|
528
|
+
time: list[float],
|
|
529
|
+
status: list[int],
|
|
530
|
+
predicted: list[float],
|
|
531
|
+
eval_time: float,
|
|
532
|
+
) -> float: ...
|
|
533
|
+
def integrated_brier(
|
|
534
|
+
time: list[float],
|
|
535
|
+
status: list[int],
|
|
536
|
+
predicted: list[list[float]],
|
|
537
|
+
eval_times: list[float],
|
|
538
|
+
) -> float: ...
|
|
539
|
+
def bootstrap_cox_ci(
|
|
540
|
+
time: list[float],
|
|
541
|
+
status: list[int],
|
|
542
|
+
x: list[list[float]],
|
|
543
|
+
n_bootstrap: int = 1000,
|
|
544
|
+
conf_level: float = 0.95,
|
|
545
|
+
) -> BootstrapResult: ...
|
|
546
|
+
def cv_cox_concordance(
|
|
547
|
+
time: list[float],
|
|
548
|
+
status: list[int],
|
|
549
|
+
x: list[list[float]],
|
|
550
|
+
n_folds: int = 5,
|
|
551
|
+
) -> CVResult: ...
|
|
552
|
+
def lrt_test(
|
|
553
|
+
log_likelihood_full: float,
|
|
554
|
+
log_likelihood_reduced: float,
|
|
555
|
+
df: int,
|
|
556
|
+
) -> TestResult: ...
|
|
557
|
+
def bayesian_cox(
|
|
558
|
+
time: list[float],
|
|
559
|
+
status: list[int],
|
|
560
|
+
x: list[list[float]],
|
|
561
|
+
n_samples: int = 1000,
|
|
562
|
+
n_warmup: int = 500,
|
|
563
|
+
prior_scale: float = 1.0,
|
|
564
|
+
) -> BayesianCoxResult: ...
|
|
565
|
+
def elastic_net_cox(
|
|
566
|
+
time: list[float],
|
|
567
|
+
status: list[int],
|
|
568
|
+
x: list[list[float]],
|
|
569
|
+
alpha: float = 1.0,
|
|
570
|
+
l1_ratio: float = 0.5,
|
|
571
|
+
max_iter: int = 1000,
|
|
572
|
+
) -> ElasticNetCoxResult: ...
|
|
573
|
+
def mixture_cure_model(
|
|
574
|
+
time: list[float],
|
|
575
|
+
status: list[int],
|
|
576
|
+
x_cure: list[list[float]],
|
|
577
|
+
x_survival: list[list[float]],
|
|
578
|
+
max_iter: int = 100,
|
|
579
|
+
) -> MixtureCureResult: ...
|
|
580
|
+
def joint_model(
|
|
581
|
+
longitudinal_time: list[float],
|
|
582
|
+
longitudinal_value: list[float],
|
|
583
|
+
subject_id: list[int],
|
|
584
|
+
survival_time: list[float],
|
|
585
|
+
survival_status: list[int],
|
|
586
|
+
x: list[list[float]],
|
|
587
|
+
) -> JointModelResult: ...
|
|
588
|
+
def ipcw_kaplan_meier(
|
|
589
|
+
time: list[float],
|
|
590
|
+
status: list[int],
|
|
591
|
+
weights: list[float],
|
|
592
|
+
) -> SurvFitKMOutput: ...
|
|
593
|
+
def g_computation(
|
|
594
|
+
time: list[float],
|
|
595
|
+
status: list[int],
|
|
596
|
+
treatment: list[int],
|
|
597
|
+
x: list[list[float]],
|
|
598
|
+
n_bootstrap: int = 1000,
|
|
599
|
+
) -> GComputationResult: ...
|
|
600
|
+
def qaly_calculation(
|
|
601
|
+
time: list[float],
|
|
602
|
+
status: list[int],
|
|
603
|
+
utility: list[float],
|
|
604
|
+
tau: float,
|
|
605
|
+
) -> QALYResult: ...
|
|
606
|
+
def rcll(
|
|
607
|
+
time: list[float],
|
|
608
|
+
status: list[int],
|
|
609
|
+
predicted_survival: list[list[float]],
|
|
610
|
+
eval_times: list[float],
|
|
611
|
+
) -> RCLLResult: ...
|
|
612
|
+
def gradient_boost_survival(
|
|
613
|
+
x: list[float],
|
|
614
|
+
n: int,
|
|
615
|
+
p: int,
|
|
616
|
+
time: list[float],
|
|
617
|
+
status: list[int],
|
|
618
|
+
config: GradientBoostSurvivalConfig | None = None,
|
|
619
|
+
) -> GradientBoostSurvival: ...
|
|
620
|
+
def survival_forest(
|
|
621
|
+
x: list[float],
|
|
622
|
+
n: int,
|
|
623
|
+
p: int,
|
|
624
|
+
time: list[float],
|
|
625
|
+
status: list[int],
|
|
626
|
+
config: SurvivalForestConfig | None = None,
|
|
627
|
+
) -> SurvivalForest: ...
|
|
628
|
+
def load_lung() -> dict[str, list[Any]]: ...
|
|
629
|
+
def load_aml() -> dict[str, list[Any]]: ...
|
|
630
|
+
def load_veteran() -> dict[str, list[Any]]: ...
|
|
631
|
+
def load_ovarian() -> dict[str, list[Any]]: ...
|
|
632
|
+
def load_colon() -> dict[str, list[Any]]: ...
|
|
633
|
+
def load_pbc() -> dict[str, list[Any]]: ...
|
|
634
|
+
def load_cgd() -> dict[str, list[Any]]: ...
|
|
635
|
+
def load_bladder() -> dict[str, list[Any]]: ...
|
|
636
|
+
def load_heart() -> dict[str, list[Any]]: ...
|
|
637
|
+
def load_kidney() -> dict[str, list[Any]]: ...
|
|
638
|
+
def load_rats() -> dict[str, list[Any]]: ...
|
|
639
|
+
def load_stanford2() -> dict[str, list[Any]]: ...
|
|
640
|
+
def load_udca() -> dict[str, list[Any]]: ...
|
|
641
|
+
def load_myeloid() -> dict[str, list[Any]]: ...
|
|
642
|
+
def load_flchain() -> dict[str, list[Any]]: ...
|
|
643
|
+
def load_transplant() -> dict[str, list[Any]]: ...
|
|
644
|
+
def load_mgus() -> dict[str, list[Any]]: ...
|
|
645
|
+
def load_mgus2() -> dict[str, list[Any]]: ...
|
|
646
|
+
def load_diabetic() -> dict[str, list[Any]]: ...
|
|
647
|
+
def load_retinopathy() -> dict[str, list[Any]]: ...
|
|
648
|
+
def load_gbsg() -> dict[str, list[Any]]: ...
|
|
649
|
+
def load_rotterdam() -> dict[str, list[Any]]: ...
|
|
650
|
+
def load_logan() -> dict[str, list[Any]]: ...
|
|
651
|
+
def load_nwtco() -> dict[str, list[Any]]: ...
|
|
652
|
+
def load_solder() -> dict[str, list[Any]]: ...
|
|
653
|
+
def load_tobin() -> dict[str, list[Any]]: ...
|
|
654
|
+
def load_rats2() -> dict[str, list[Any]]: ...
|
|
655
|
+
def load_nafld() -> dict[str, list[Any]]: ...
|
|
656
|
+
def load_cgd0() -> dict[str, list[Any]]: ...
|
|
657
|
+
def load_pbcseq() -> dict[str, list[Any]]: ...
|
|
658
|
+
def load_hoel() -> dict[str, list[Any]]: ...
|
|
659
|
+
def load_myeloma() -> dict[str, list[Any]]: ...
|
|
660
|
+
def load_rhdnase() -> dict[str, list[Any]]: ...
|