supervisely 6.73.359__py3-none-any.whl → 6.73.360__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -31,6 +31,8 @@ from supervisely import (
31
31
  Project,
32
32
  ProjectInfo,
33
33
  ProjectMeta,
34
+ ProjectType,
35
+ VideoProject,
34
36
  WorkflowMeta,
35
37
  WorkflowSettings,
36
38
  batched,
@@ -152,8 +154,8 @@ class TrainApp:
152
154
  self.sly_project = None
153
155
  # -------------------------- #
154
156
 
155
- # Train/Val splits
156
- self.train_split, self.val_split = None, None
157
+ self._train_split = None
158
+ self._val_split = None
157
159
  # -------------------------- #
158
160
 
159
161
  # Input
@@ -376,6 +378,8 @@ class TrainApp:
376
378
  :return: List of selected classes names.
377
379
  :rtype: List[str]
378
380
  """
381
+ if not self._has_classes_selector:
382
+ return []
379
383
  selected_classes = set(self.gui.classes_selector.get_selected_classes())
380
384
  # remap classes with project_meta order
381
385
  return [x for x in self.project_meta.obj_classes.keys() if x in selected_classes]
@@ -388,8 +392,29 @@ class TrainApp:
388
392
  :return: Number of selected classes.
389
393
  :rtype: int
390
394
  """
395
+ if not self._has_classes_selector:
396
+ return 0
391
397
  return len(self.gui.classes_selector.get_selected_classes())
392
398
 
399
+ @property
400
+ def tags(self) -> List[str]:
401
+ """
402
+ Returns the selected tags for training.
403
+ """
404
+ if not self._has_tags_selector:
405
+ return []
406
+ selected_tags = set(self.gui.tags_selector.get_selected_tags())
407
+ return [x for x in self.project_meta.tag_metas.keys() if x in selected_tags]
408
+
409
+ @property
410
+ def num_tags(self) -> int:
411
+ """
412
+ Returns the number of selected tags for training.
413
+ """
414
+ if not self._has_tags_selector:
415
+ return 0
416
+ return len(self.gui.tags_selector.get_selected_tags())
417
+
393
418
  # Hyperparameters
394
419
  @property
395
420
  def hyperparameters(self) -> Dict[str, Any]:
@@ -448,6 +473,24 @@ class TrainApp:
448
473
  # Output
449
474
  # ----------------------------------------- #
450
475
 
476
+ # Helper properties
477
+ @property
478
+ def _has_splits_selector(self) -> bool:
479
+ """Return True if Train/Val splits selector is enabled in GUI."""
480
+ return self.gui.train_val_splits_selector is not None
481
+
482
+ @property
483
+ def _has_classes_selector(self) -> bool:
484
+ """Return True if Classes selector is enabled in GUI."""
485
+ return self.gui.classes_selector is not None
486
+
487
+ @property
488
+ def _has_tags_selector(self) -> bool:
489
+ """Return True if Tags selector is enabled in GUI."""
490
+ return self.gui.tags_selector is not None
491
+
492
+ # ----------------------------------------- #
493
+
451
494
  # Wrappers
452
495
  @property
453
496
  def start(self):
@@ -546,6 +589,7 @@ class TrainApp:
546
589
  try:
547
590
  # Convert GT project
548
591
  gt_project_id, bm_splits_data = None, train_splits_data
592
+ # @TODO: check with anyshape classes
549
593
  if self._app_options.get("auto_convert_classes", True):
550
594
  if self.gui.need_convert_shapes_for_bm:
551
595
  self._set_text_status("convert_gt_project")
@@ -644,9 +688,12 @@ class TrainApp:
644
688
  :return: Application state.
645
689
  :rtype: dict
646
690
  """
691
+ # Prepare optional sections depending on what selectors are enabled in GUI
647
692
  train_val_splits = self._get_train_val_splits_for_app_state()
648
- model = self._get_model_config_for_app_state(experiment_info)
693
+ classes = self.classes
694
+ tags = self.tags
649
695
 
696
+ model = self._get_model_config_for_app_state(experiment_info)
650
697
  options = {
651
698
  "model_benchmark": {
652
699
  "enable": self.gui.hyperparameters_selector.get_model_benchmark_checkbox_value(),
@@ -656,12 +703,14 @@ class TrainApp:
656
703
  }
657
704
 
658
705
  app_state = {
659
- "train_val_split": train_val_splits,
660
- "classes": self.classes,
661
706
  "model": model,
662
707
  "hyperparameters": self.hyperparameters_yaml,
663
708
  "options": options,
664
709
  }
710
+
711
+ app_state["train_val_split"] = train_val_splits
712
+ app_state["classes"] = classes
713
+ app_state["tags"] = tags
665
714
  return app_state
666
715
 
667
716
  def load_app_state(self, app_state: dict) -> None:
@@ -675,12 +724,13 @@ class TrainApp:
675
724
 
676
725
  app_state = {
677
726
  "input": {"project_id": 55555},
678
- "train_val_splits": {
727
+ "train_val_split": {
679
728
  "method": "random",
680
729
  "split": "train",
681
730
  "percent": 90
682
731
  },
683
732
  "classes": ["apple"],
733
+ "tags": ["green", "red"],
684
734
  "model": {
685
735
  "source": "Pretrained models",
686
736
  "model_name": "rtdetr_r50vd_coco_objects365"
@@ -786,25 +836,44 @@ class TrainApp:
786
836
 
787
837
  # Preprocess
788
838
  # Download Project
839
+ def _read_project(self, remove_unselected_classes: bool = True) -> None:
840
+ """
841
+ Reads the project data from Supervisely.
842
+
843
+ :param remove_unselected_classes: Whether to remove unselected classes from the project.
844
+ :type remove_unselected_classes: bool
845
+ """
846
+ if self.project_info.type == ProjectType.IMAGES.value:
847
+ self.sly_project = Project(self.project_dir, OpenMode.READ)
848
+ if remove_unselected_classes:
849
+ self.sly_project.remove_classes_except(self.project_dir, self.classes, True)
850
+ elif self.project_info.type == ProjectType.VIDEOS.value:
851
+ self.sly_project = VideoProject(self.project_dir, OpenMode.READ)
852
+ else:
853
+ raise ValueError(
854
+ f"Unsupported project type: {self.project_info.type}. Only images and videos are supported."
855
+ )
856
+
789
857
  def _download_project(self) -> None:
790
858
  """
791
859
  Downloads the project data from Supervisely.
792
860
  If the cache is enabled, it will attempt to retrieve the project from the cache.
793
861
  """
794
862
  dataset_infos = [dataset for _, dataset in self._api.dataset.tree(self.project_id)]
795
-
796
- if self.gui.train_val_splits_selector.get_split_method() == "Based on datasets":
797
- selected_ds_ids = (
798
- self.gui.train_val_splits_selector.get_train_dataset_ids()
799
- + self.gui.train_val_splits_selector.get_val_dataset_ids()
800
- )
801
- dataset_infos = [ds_info for ds_info in dataset_infos if ds_info.id in selected_ds_ids]
863
+ if self.gui.train_val_splits_selector is not None:
864
+ if self.gui.train_val_splits_selector.get_split_method() == "Based on datasets":
865
+ selected_ds_ids = (
866
+ self.gui.train_val_splits_selector.get_train_dataset_ids()
867
+ + self.gui.train_val_splits_selector.get_val_dataset_ids()
868
+ )
869
+ dataset_infos = [
870
+ ds_info for ds_info in dataset_infos if ds_info.id in selected_ds_ids
871
+ ]
802
872
 
803
873
  total_images = sum(ds_info.images_count for ds_info in dataset_infos)
804
- if not self.gui.input_selector.get_cache_value() or is_development():
874
+ if not self.gui.input_selector.get_cache_value():
805
875
  self._download_no_cache(dataset_infos, total_images)
806
- self.sly_project = Project(self.project_dir, OpenMode.READ)
807
- self.sly_project.remove_classes_except(self.project_dir, self.classes, True)
876
+ self._read_project()
808
877
  return
809
878
 
810
879
  try:
@@ -818,8 +887,7 @@ class TrainApp:
818
887
  sly_fs.clean_dir(self.project_dir)
819
888
  self._download_no_cache(dataset_infos, total_images)
820
889
  finally:
821
- self.sly_project = Project(self.project_dir, OpenMode.READ)
822
- self.sly_project.remove_classes_except(self.project_dir, self.classes, True)
890
+ self._read_project()
823
891
  logger.info(f"Project downloaded successfully to: '{self.project_dir}'")
824
892
 
825
893
  def _download_no_cache(self, dataset_infos: List[DatasetInfo], total_images: int) -> None:
@@ -919,6 +987,15 @@ class TrainApp:
919
987
  All images and annotations will be renamed and moved to the appropriate directories.
920
988
  Assigns self.sly_project to the new project, which contains only 2 datasets: train and val.
921
989
  """
990
+ if not self._has_splits_selector:
991
+ # Splits disabled in options, init empty splits
992
+ self.train_dataset_dir = None
993
+ self.val_dataset_dir = None
994
+ self._train_val_split_file = None
995
+ self._train_split = []
996
+ self._val_split = []
997
+ return
998
+
922
999
  # Load splits
923
1000
  self.gui.train_val_splits_selector.set_sly_project(self.sly_project)
924
1001
  self._train_split, self._val_split = (
@@ -1005,7 +1082,7 @@ class TrainApp:
1005
1082
 
1006
1083
  # Clean up temporary directory
1007
1084
  sly_fs.remove_dir(project_split_path)
1008
- self.sly_project = Project(self.project_dir, OpenMode.READ)
1085
+ self._read_project(False)
1009
1086
 
1010
1087
  # ----------------------------------------- #
1011
1088
 
@@ -1272,6 +1349,9 @@ class TrainApp:
1272
1349
  train_dataset_ids = None
1273
1350
  train_images_ids = None
1274
1351
 
1352
+ if not self._has_splits_selector:
1353
+ return {} # splits disabled in options
1354
+
1275
1355
  split_method = self.gui.train_val_splits_selector.get_split_method()
1276
1356
  train_set, val_set = self._train_split, self._val_split
1277
1357
  if split_method == "Based on datasets":
@@ -1482,6 +1562,9 @@ class TrainApp:
1482
1562
  :param remote_dir: Remote directory path.
1483
1563
  :type remote_dir: str
1484
1564
  """
1565
+ if not self._has_splits_selector:
1566
+ return # splits disabled in options
1567
+
1485
1568
  local_train_val_split_path = join(self.output_dir, self._train_val_split_file)
1486
1569
  remote_train_val_split_path = join(remote_dir, self._train_val_split_file)
1487
1570
 
@@ -1575,9 +1658,6 @@ class TrainApp:
1575
1658
  "export": export_weights,
1576
1659
  "app_state": self._app_state_file,
1577
1660
  "model_meta": self._model_meta_file,
1578
- "train_val_split": self._train_val_split_file,
1579
- "train_size": len(self._train_split),
1580
- "val_size": len(self._val_split),
1581
1661
  "hyperparameters": self._hyperparameters_file,
1582
1662
  "artifacts_dir": remote_dir,
1583
1663
  "datetime": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
@@ -1587,6 +1667,11 @@ class TrainApp:
1587
1667
  "logs": {"type": "tensorboard", "link": f"{remote_dir}logs/"},
1588
1668
  }
1589
1669
 
1670
+ if self._has_splits_selector:
1671
+ experiment_info["train_val_split"] = self._train_val_split_file
1672
+ experiment_info["train_size"] = len(self._train_split)
1673
+ experiment_info["val_size"] = len(self._val_split)
1674
+
1590
1675
  remote_checkpoints_dir = join(remote_dir, self._remote_checkpoints_dir_name)
1591
1676
  checkpoint_files = self._api.file.list(
1592
1677
  self.team_id, remote_checkpoints_dir, return_type="fileinfo"
@@ -1703,6 +1788,9 @@ class TrainApp:
1703
1788
  :return: Train and val splits information based on selected split method.
1704
1789
  :rtype: dict
1705
1790
  """
1791
+ if not self._has_splits_selector:
1792
+ return {} # splits disabled in options
1793
+
1706
1794
  split_method = self.gui.train_val_splits_selector.get_split_method()
1707
1795
  train_val_splits = {"method": split_method.lower()}
1708
1796
  if split_method == "Random":
@@ -2067,20 +2155,25 @@ class TrainApp:
2067
2155
  else:
2068
2156
  raise ValueError(f"Task type: '{task_type}' is not supported for Model Benchmark")
2069
2157
 
2070
- if self.gui.train_val_splits_selector.get_split_method() == "Based on datasets":
2071
- train_info = {
2072
- "app_session_id": self.task_id,
2073
- "train_dataset_ids": train_dataset_ids,
2074
- "train_images_ids": None,
2075
- "images_count": len(self._train_split),
2076
- }
2158
+ if self._has_splits_selector:
2159
+ if self.gui.train_val_splits_selector.get_split_method() == "Based on datasets":
2160
+ train_info = {
2161
+ "app_session_id": self.task_id,
2162
+ "train_dataset_ids": train_dataset_ids,
2163
+ "train_images_ids": None,
2164
+ "images_count": len(self._train_split),
2165
+ }
2166
+ else:
2167
+ train_info = {
2168
+ "app_session_id": self.task_id,
2169
+ "train_dataset_ids": None,
2170
+ "train_images_ids": train_images_ids,
2171
+ "images_count": len(self._train_split),
2172
+ }
2077
2173
  else:
2078
- train_info = {
2079
- "app_session_id": self.task_id,
2080
- "train_dataset_ids": None,
2081
- "train_images_ids": train_images_ids,
2082
- "images_count": len(self._train_split),
2083
- }
2174
+ # @TODO: Add train info for apps without splits
2175
+ train_info = None
2176
+
2084
2177
  bm.train_info = train_info
2085
2178
 
2086
2179
  # 2. Run inference
@@ -2144,14 +2237,17 @@ class TrainApp:
2144
2237
  """
2145
2238
  Adds the input data to the workflow.
2146
2239
  """
2147
- try:
2148
- project_version_id = self._api.project.version.create(
2149
- self.project_info,
2150
- self._app_name,
2151
- f"This backup was created automatically by Supervisely before the {self._app_name} task with ID: {self._api.task_id}",
2152
- )
2153
- except Exception as e:
2154
- logger.warning(f"Failed to create a project version: {repr(e)}")
2240
+ if self.project_info.type == ProjectType.IMAGES.value:
2241
+ try:
2242
+ project_version_id = self._api.project.version.create(
2243
+ self.project_info,
2244
+ self._app_name,
2245
+ f"This backup was created automatically by Supervisely before the {self._app_name} task with ID: {self._api.task_id}",
2246
+ )
2247
+ except Exception as e:
2248
+ logger.warning(f"Failed to create a project version: {repr(e)}")
2249
+ project_version_id = None
2250
+ else:
2155
2251
  project_version_id = None
2156
2252
 
2157
2253
  try: