supervisely 6.73.253__py3-none-any.whl → 6.73.255__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of supervisely might be problematic. Click here for more details.

Files changed (60) hide show
  1. supervisely/api/file_api.py +16 -5
  2. supervisely/api/task_api.py +4 -2
  3. supervisely/app/widgets/field/field.py +10 -7
  4. supervisely/app/widgets/grid_gallery_v2/grid_gallery_v2.py +3 -1
  5. supervisely/convert/image/sly/sly_image_converter.py +1 -1
  6. supervisely/nn/benchmark/base_benchmark.py +33 -35
  7. supervisely/nn/benchmark/base_evaluator.py +27 -1
  8. supervisely/nn/benchmark/base_visualizer.py +8 -11
  9. supervisely/nn/benchmark/comparison/base_visualizer.py +147 -0
  10. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/__init__.py +1 -1
  11. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/avg_precision_by_class.py +5 -7
  12. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/calibration_score.py +4 -6
  13. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/{explore_predicttions.py → explore_predictions.py} +17 -17
  14. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/localization_accuracy.py +3 -5
  15. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/outcome_counts.py +7 -9
  16. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/overview.py +11 -22
  17. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/pr_curve.py +3 -5
  18. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/precision_recal_f1.py +22 -20
  19. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/speedtest.py +12 -6
  20. supervisely/nn/benchmark/comparison/detection_visualization/visualizer.py +31 -76
  21. supervisely/nn/benchmark/comparison/model_comparison.py +112 -19
  22. supervisely/nn/benchmark/comparison/semantic_segmentation/__init__.py +0 -0
  23. supervisely/nn/benchmark/comparison/semantic_segmentation/text_templates.py +128 -0
  24. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/__init__.py +21 -0
  25. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/classwise_error_analysis.py +68 -0
  26. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/explore_predictions.py +141 -0
  27. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/frequently_confused.py +71 -0
  28. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/iou_eou.py +68 -0
  29. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/overview.py +223 -0
  30. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/renormalized_error_ou.py +57 -0
  31. supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/speedtest.py +314 -0
  32. supervisely/nn/benchmark/comparison/semantic_segmentation/visualizer.py +159 -0
  33. supervisely/nn/benchmark/instance_segmentation/evaluator.py +1 -1
  34. supervisely/nn/benchmark/object_detection/evaluator.py +1 -1
  35. supervisely/nn/benchmark/object_detection/vis_metrics/overview.py +1 -3
  36. supervisely/nn/benchmark/object_detection/vis_metrics/precision.py +3 -0
  37. supervisely/nn/benchmark/object_detection/vis_metrics/recall.py +3 -0
  38. supervisely/nn/benchmark/object_detection/vis_metrics/recall_vs_precision.py +1 -1
  39. supervisely/nn/benchmark/object_detection/visualizer.py +5 -10
  40. supervisely/nn/benchmark/semantic_segmentation/evaluator.py +12 -2
  41. supervisely/nn/benchmark/semantic_segmentation/metric_provider.py +8 -9
  42. supervisely/nn/benchmark/semantic_segmentation/text_templates.py +2 -2
  43. supervisely/nn/benchmark/semantic_segmentation/vis_metrics/key_metrics.py +31 -1
  44. supervisely/nn/benchmark/semantic_segmentation/vis_metrics/overview.py +1 -3
  45. supervisely/nn/benchmark/semantic_segmentation/visualizer.py +7 -6
  46. supervisely/nn/benchmark/utils/semantic_segmentation/evaluator.py +3 -21
  47. supervisely/nn/benchmark/visualization/renderer.py +25 -10
  48. supervisely/nn/benchmark/visualization/widgets/gallery/gallery.py +1 -0
  49. supervisely/nn/inference/inference.py +1 -0
  50. supervisely/nn/training/gui/gui.py +32 -10
  51. supervisely/nn/training/gui/training_artifacts.py +145 -0
  52. supervisely/nn/training/gui/training_process.py +3 -19
  53. supervisely/nn/training/train_app.py +179 -70
  54. {supervisely-6.73.253.dist-info → supervisely-6.73.255.dist-info}/METADATA +1 -1
  55. {supervisely-6.73.253.dist-info → supervisely-6.73.255.dist-info}/RECORD +59 -47
  56. supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/vis_metric.py +0 -19
  57. {supervisely-6.73.253.dist-info → supervisely-6.73.255.dist-info}/LICENSE +0 -0
  58. {supervisely-6.73.253.dist-info → supervisely-6.73.255.dist-info}/WHEEL +0 -0
  59. {supervisely-6.73.253.dist-info → supervisely-6.73.255.dist-info}/entry_points.txt +0 -0
  60. {supervisely-6.73.253.dist-info → supervisely-6.73.255.dist-info}/top_level.txt +0 -0
@@ -25,7 +25,7 @@ supervisely/api/annotation_api.py,sha256=kB9l0NhQEkunGDC9fWjNzf5DdhqRF1tv-RRnIbk
25
25
  supervisely/api/api.py,sha256=A4EY7MtLWw4a29Wd63SjQs2CkS3KAiYkVLyuuZn1LdM,65371
26
26
  supervisely/api/app_api.py,sha256=-T4sISQ7POyR2yirf1kEWj4JaJFpJxCyRWqbf_99Jak,67036
27
27
  supervisely/api/dataset_api.py,sha256=eovT6l62jgjlRyCZ6IvoudUBfDxv9Hjj3Ap8IuCLd7I,41290
28
- supervisely/api/file_api.py,sha256=c4iIzH2BF8-GLFLk_wc9Qz225AbHhbzH22wv5HdsGg4,83128
28
+ supervisely/api/file_api.py,sha256=7yWt8lRQ4UfLmnMZ9T18UXzu8jihrtHtcqi6GZJG-0w,83414
29
29
  supervisely/api/github_api.py,sha256=NIexNjEer9H5rf5sw2LEZd7C1WR-tK4t6IZzsgeAAwQ,623
30
30
  supervisely/api/image_annotation_tool_api.py,sha256=YcUo78jRDBJYvIjrd-Y6FJAasLta54nnxhyaGyanovA,5237
31
31
  supervisely/api/image_api.py,sha256=2cki-IzA5jnN3QqqdSIbIbHJhDWxFGYxXY94WqBOoio,176836
@@ -42,7 +42,7 @@ supervisely/api/remote_storage_api.py,sha256=xy9-j5hSftVcAILyqF_mQdQ1DUywt9msq2Q
42
42
  supervisely/api/report_api.py,sha256=Om7CGulUbQ4BuJ16eDtz7luLe0JQNqab-LoLpUXu7YE,7123
43
43
  supervisely/api/role_api.py,sha256=aBL4mxtn08LDPXQuS153-lQFN6N2kcwiz8MbescZ8Gk,3044
44
44
  supervisely/api/storage_api.py,sha256=FPGYf3Rn3LBoe38RBNdoiURs306oshzvKOEOQ56XAbs,13030
45
- supervisely/api/task_api.py,sha256=rGUcWC0avCj7sbY4WF29Tcv_oC6ScXYOrJPiBRldTf4,39554
45
+ supervisely/api/task_api.py,sha256=yX0GqL5Kg5DuPXP0GpoRSVmjrzSzIvMMHo5Lrf4_R1c,39610
46
46
  supervisely/api/team_api.py,sha256=bEoz3mrykvliLhKnzEy52vzdd_H8VBJCpxF-Bnek9Q8,19467
47
47
  supervisely/api/user_api.py,sha256=4S97yIc6AMTZCa0N57lzETnpIE8CeqClvCb6kjUkgfc,24940
48
48
  supervisely/api/video_annotation_tool_api.py,sha256=Uy1MvT-M7vjC6y-0-V4wFCO-fZt8_aWneNiEJgr_jhU,5133
@@ -256,7 +256,7 @@ supervisely/app/widgets/fast_table/script.js,sha256=U3lmOucE_IJBuW0n6he1y3um6Ge3
256
256
  supervisely/app/widgets/fast_table/style.css,sha256=nr3wUB_n9sjQy_A8D85OIxhC6qX9LcEFaCNljzP6DGQ,15409
257
257
  supervisely/app/widgets/fast_table/template.html,sha256=P4mkLysZywc5F_jWuRMzYi89juudGm-6Dh7mo5SsDLo,1060
258
258
  supervisely/app/widgets/field/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
259
- supervisely/app/widgets/field/field.py,sha256=dkuiDWUqidawySQF3Boj3QCEIGi1B6pGFzBK9VeZdoM,6344
259
+ supervisely/app/widgets/field/field.py,sha256=FqBqfIEcUK7R3va30YS_zijWTUSD5QT3-kpLKJNPq7o,6258
260
260
  supervisely/app/widgets/field/style.css,sha256=sLMbqxS4EDPykcQZNMXeYdR4v1y1OP6iqcX0tRz7C68,56
261
261
  supervisely/app/widgets/field/template.html,sha256=MMSHzw0MTItFxKBwI1FLRxzuzz6ZRosIShShntweNJo,740
262
262
  supervisely/app/widgets/file_storage_upload/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -285,7 +285,7 @@ supervisely/app/widgets/grid_gallery/grid_gallery.py,sha256=UxlIUaTJ6rB-O7-LweBo
285
285
  supervisely/app/widgets/grid_gallery/style.css,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
286
286
  supervisely/app/widgets/grid_gallery/template.html,sha256=crmcdJDTQwTvD4nXu5NxORmwq5b3ATqFB2-MxrewVt4,2026
287
287
  supervisely/app/widgets/grid_gallery_v2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
288
- supervisely/app/widgets/grid_gallery_v2/grid_gallery_v2.py,sha256=6ldBYMnT1B4GXHHttP_JkWVCvKxK2pI-ofqeU7aMNpQ,9117
288
+ supervisely/app/widgets/grid_gallery_v2/grid_gallery_v2.py,sha256=4QGhK2fQtOWVV4-olqoUPXJhMWJVf8-wsNS8wqPPdfQ,9179
289
289
  supervisely/app/widgets/grid_gallery_v2/template.html,sha256=eokcONj7KxH8zi1EzMLpvK6sF-txAdeixkKVjYTN-6s,566
290
290
  supervisely/app/widgets/grid_plot/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
291
291
  supervisely/app/widgets/grid_plot/grid_plot.py,sha256=o3X3Crw2w8BFd8A2TxdzVl3EFYwFx9NVB1sDByAhJHM,4846
@@ -600,7 +600,7 @@ supervisely/convert/image/pdf/pdf_converter.py,sha256=LKvVng9jPp0cSIjYEjKLOb48wt
600
600
  supervisely/convert/image/pdf/pdf_helper.py,sha256=IDwLEvsVy8lu-KC1lXvSRkZZ9BCC6ylebnNEtLQU5L4,1288
601
601
  supervisely/convert/image/sly/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
602
602
  supervisely/convert/image/sly/fast_sly_image_converter.py,sha256=pZmQzhx9FrHwgVnJgqp-37Cn3zAnPww6MLa1grL6aWM,5429
603
- supervisely/convert/image/sly/sly_image_converter.py,sha256=RfCOUqe4Li7FlCSpcbR4-ScqvV1yuBkUVJDEwNUxsEw,12819
603
+ supervisely/convert/image/sly/sly_image_converter.py,sha256=097ijLa_62ZBu0elRx0xX_wpi9tmwgNZonVvBccfclg,12842
604
604
  supervisely/convert/image/sly/sly_image_helper.py,sha256=5Ri8fKb5dzh5b3v8AJ5u8xVFOQfAtoWqZ7HktPsCjTI,7373
605
605
  supervisely/convert/image/yolo/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
606
606
  supervisely/convert/image/yolo/yolo_converter.py,sha256=cg5___X5MzvR-rZbNLmaKtr0MdRnyqtEzbBq5UBnYZ0,11171
@@ -728,40 +728,51 @@ supervisely/nn/artifacts/utils.py,sha256=C4EaMi95MAwtK5TOnhK4sQ1BWvgwYBxXyRStkhY
728
728
  supervisely/nn/artifacts/yolov5.py,sha256=slh05EpQsxqgKwB9KMClshdBxPBN3ZWZ6S4B80ECEt4,1724
729
729
  supervisely/nn/artifacts/yolov8.py,sha256=sFd9kU7Gdowq6WH1S3NdlQeoL9jjQKmRYb51fG_wbDk,1446
730
730
  supervisely/nn/benchmark/__init__.py,sha256=7jDezvavJFtO9mDeB2TqW8N4sD8TsHQBPpA9RESleIQ,610
731
- supervisely/nn/benchmark/base_benchmark.py,sha256=yb0zaMjQIQ5A0hcukf1MVuIh877ie2yUVJLmaHCXI90,25451
732
- supervisely/nn/benchmark/base_evaluator.py,sha256=MqLw42bXxGLKbI8pKMoCe8qmTouQ38zoBpxO3jAtEtM,4355
733
- supervisely/nn/benchmark/base_visualizer.py,sha256=APW2y-rRC6sriqn-jPRY_3oMTtP7jSviEPM2F8QCQbY,10210
731
+ supervisely/nn/benchmark/base_benchmark.py,sha256=2bNKZgcU3l1CTkdP9Glfze5-G2JGtU-V3BFEOKnrdXw,25281
732
+ supervisely/nn/benchmark/base_evaluator.py,sha256=6JbAkphcZTghfIYFyrWDWb59_exbPVx23yot_LPOfIA,5221
733
+ supervisely/nn/benchmark/base_visualizer.py,sha256=7woiYmztDzYZlbhL1hTfJnIi26RFi4obF2VLA519uxQ,10092
734
734
  supervisely/nn/benchmark/cv_tasks.py,sha256=ShoAbuNzfMYj0Se-KOnl_-dJnrmvN6Aukxa0eq28bFw,239
735
735
  supervisely/nn/benchmark/comparison/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
736
- supervisely/nn/benchmark/comparison/model_comparison.py,sha256=HHSdMHjhR355nnxn4RqP4ew2oYvWKWQiB_enUjmBYe0,3321
736
+ supervisely/nn/benchmark/comparison/base_visualizer.py,sha256=ldJHfGnrbudbxP6ErzBIorPv9r2L9vV8o6UTNqLBfGI,5341
737
+ supervisely/nn/benchmark/comparison/model_comparison.py,sha256=qgd8TwXJ2aiIqB29__EnDV391fBcRfdaIzUYpTyFp9w,7055
737
738
  supervisely/nn/benchmark/comparison/detection_visualization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
738
739
  supervisely/nn/benchmark/comparison/detection_visualization/text_templates.py,sha256=lBqcNsyOX04R2jL6Efu43xB2aHC1qx28Kw27DLuk66o,28336
739
- supervisely/nn/benchmark/comparison/detection_visualization/visualizer.py,sha256=JuLtDL37nY5pYZW2aHq4exqyqwRcWvyC9_yO45NxoeU,12869
740
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/__init__.py,sha256=L01ExPfYQsAUVKeDyR7sybDo4lqW152q8ubs4mYMi80,1126
741
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/avg_precision_by_class.py,sha256=0_2sUoS-9e7ZSpTCJBepwbZHYQiE9mJtWlwZMBmM1Lk,4634
742
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/calibration_score.py,sha256=ut6xDtDSjvgZaxdlwni3R2KL41_Ze0WPCFy0IBd_oNY,7653
743
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/explore_predicttions.py,sha256=oADcHrid3GcvZVwM5UHHgIxJswpTBQBB4Ih3RvYXdGA,6392
744
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/localization_accuracy.py,sha256=-fAvX4WPMrEoam170ROqAeeYg8pfobJBW6TXZMHhafo,5397
745
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/outcome_counts.py,sha256=QlMha7kdqJl_hshC1ZAuDgi0afZHwp8SyMGRpbtXT3s,13201
746
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/overview.py,sha256=TZen3vC1TCOEm54vZbyKNkZtHb0mSvvSTzQnWx4sJu0,9592
747
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/pr_curve.py,sha256=vBqkfdDmtlOG23CtFD9MYXrOzcQnLXsMmOF7sNQOdOc,4852
748
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/precision_recal_f1.py,sha256=9k49G-SRxT2CeE0LZtFVqV4e0uX_YqjgxCyvRPRABS4,11496
749
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/speedtest.py,sha256=0NtSB-SHkw4ynRaIl8Mm0ed-h6bFr9L-ZKxnzXJbn70,10658
750
- supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/vis_metric.py,sha256=sRIf1q9a2ulTgm2xEZ3IMOsse8ZljbMake0_VGCnbbU,587
740
+ supervisely/nn/benchmark/comparison/detection_visualization/visualizer.py,sha256=JSaFJnKptkITPjzBK_1T-HpYLnVuEzIvRVeismmk5O0,11159
741
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/__init__.py,sha256=2cqjAOwahJoptYhbFKEWws8gRW3K3bxlA9KnQleCrsA,1125
742
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/avg_precision_by_class.py,sha256=f4FMY-XCiNs0VA-e0aOFVNImjTQSnF4wTLNRSlj2oYA,4636
743
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/calibration_score.py,sha256=IKg2rofo21xGxQIoQyNlZ-UqOpAVviSn_A9SDkokC0w,7592
744
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/explore_predictions.py,sha256=axaviTZ4dLVWIc2R-o0Kv8g8Zr1SQVfyeokoLEA9Eqw,6484
745
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/localization_accuracy.py,sha256=OYmnloods1UYQ8SIPAcyOK33w0iYSn637OeMKNTrgbA,5342
746
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/outcome_counts.py,sha256=vev6EOc7-01i-5VAyQQwm9FGOMFYcWfJ2Y6ufUWg-DQ,13143
747
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/overview.py,sha256=YZIadwwQQvr5XfzFGj6_NGylad00ERLV1fYnke_g_VA,9256
748
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/pr_curve.py,sha256=66hs426dR1_TUps9K-UhBp5_xBiFjIouKcF_5gP-Hn8,4797
749
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/precision_recal_f1.py,sha256=602GFNpKZjeRhxUTdlcE6ZczcFEGEjp0qLoTbkM54M4,11558
750
+ supervisely/nn/benchmark/comparison/detection_visualization/vis_metrics/speedtest.py,sha256=sQDkzfpVNaSYBHVcHYqydRSWN0i-yV9uhtEAggg295A,10879
751
+ supervisely/nn/benchmark/comparison/semantic_segmentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
752
+ supervisely/nn/benchmark/comparison/semantic_segmentation/text_templates.py,sha256=iHybWNpH9-LTjx8-iuyNawVoBXwXzho66a1K_afY_9Q,7622
753
+ supervisely/nn/benchmark/comparison/semantic_segmentation/visualizer.py,sha256=m07QAyrM7Em3WdLubqnIaEspaWUMQy8dx8NVdc0HLj8,6407
754
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/__init__.py,sha256=UN9u97qGGyEkpKB7o9wNhXW42_8vjhvvtbX4NfyuRnk,885
755
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/classwise_error_analysis.py,sha256=UvN2ZtCVym1l5lzPYS92mhY3aYpl0BHJ9D52y62PQ_c,2635
756
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/explore_predictions.py,sha256=Wpw56dKvcIEZwPD0A4HKR0NGjWJ7_oljNFyX8ldrYgU,6262
757
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/frequently_confused.py,sha256=4KP_D70Anhq72muCT25WXwJiyFXcSHcKgABWWl9Kge4,2644
758
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/iou_eou.py,sha256=xRwTxpPZ5BfaiBF2vDNKkwkZvg3Kb9mOgrQZRmvhVr4,2470
759
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/overview.py,sha256=ZS8Gx0sWA88StWr8D4RUWOdmwvjUmL9O3t8LyyRsUPg,8542
760
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/renormalized_error_ou.py,sha256=rp13L8IRg5QoPphjEZASsJoahaqkUn1Y9uSEMb1Vddo,1949
761
+ supervisely/nn/benchmark/comparison/semantic_segmentation/vis_metrics/speedtest.py,sha256=sQDkzfpVNaSYBHVcHYqydRSWN0i-yV9uhtEAggg295A,10879
751
762
  supervisely/nn/benchmark/instance_segmentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
752
763
  supervisely/nn/benchmark/instance_segmentation/benchmark.py,sha256=lTDzgKGpfeF5o_a2nS56wiAsUQPH1eubk37b9CaB2KI,1171
753
764
  supervisely/nn/benchmark/instance_segmentation/evaluation_params.yaml,sha256=POzpiaxnxuwAPSNQOGgjoUPfsk6Lf5hb9GLHwltWY5Y,94
754
- supervisely/nn/benchmark/instance_segmentation/evaluator.py,sha256=omuKm7JiGa7VLxtNOYo60rjUoVfHxgIhSDf_nTKlctw,2783
765
+ supervisely/nn/benchmark/instance_segmentation/evaluator.py,sha256=KZhCZ0UWfw_eCrNDtv4WJj3ZQI2w66qGl4Lu9Bl85_Q,2784
755
766
  supervisely/nn/benchmark/instance_segmentation/text_templates.py,sha256=sGiGnpIyuOP35f4NoDT0BWNmscsx_T1XZ_igGvCkkBg,25481
756
767
  supervisely/nn/benchmark/instance_segmentation/visualizer.py,sha256=8NscOKy7JK4AG-Czu3SM0qJQXLDfKD9URdG1d4nz89E,564
757
768
  supervisely/nn/benchmark/object_detection/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
758
769
  supervisely/nn/benchmark/object_detection/base_vis_metric.py,sha256=XjUnFCnCMYLrpjojIOwiRNaSsSLYpozTHWfwLkaCd5U,1612
759
770
  supervisely/nn/benchmark/object_detection/benchmark.py,sha256=Wb4xlFXilIMVfsifNNQY25uE52NeEDLzQpnq8QPYq9U,1086
760
771
  supervisely/nn/benchmark/object_detection/evaluation_params.yaml,sha256=POzpiaxnxuwAPSNQOGgjoUPfsk6Lf5hb9GLHwltWY5Y,94
761
- supervisely/nn/benchmark/object_detection/evaluator.py,sha256=zukOpH0wNfqSIMO88YqgPAfj2BA1FC5o8oXEkAL3gRA,6800
772
+ supervisely/nn/benchmark/object_detection/evaluator.py,sha256=Oajs2a-lpudSF076_99-he7uDtqnmQGp4aayoQjNRH0,6801
762
773
  supervisely/nn/benchmark/object_detection/metric_provider.py,sha256=j7-_ZGjW8qRpv_v9EMyqO1rK9pkcgjRcInTA8CL3we4,20169
763
774
  supervisely/nn/benchmark/object_detection/text_templates.py,sha256=wv6BkcrfdEKldbXtz4ljkbENIIOdeiUr79U4iRgUx6A,25727
764
- supervisely/nn/benchmark/object_detection/visualizer.py,sha256=drqndVZT-APwwTiDuMWeYXpnHF89rDsIEspneWqYSSE,31838
775
+ supervisely/nn/benchmark/object_detection/visualizer.py,sha256=Nemp2ZjipbK3S119Yx_izoZuS86jx2U-wtah8TfthS0,31734
765
776
  supervisely/nn/benchmark/object_detection/vis_metrics/__init__.py,sha256=AXCLHEySEdR-B-5sfDoWBmmOLBVlyW2U_xr8Ta42sQI,2096
766
777
  supervisely/nn/benchmark/object_detection/vis_metrics/confidence_distribution.py,sha256=OlwkPgzEQ-RegcLZHVUVOL0n6I_2iayPVpAIie4y2O8,3615
767
778
  supervisely/nn/benchmark/object_detection/vis_metrics/confidence_score.py,sha256=r_saaZI4WB7C7ykNb1obmf8kEOkphLA4pInDoS6dXXU,4005
@@ -774,23 +785,23 @@ supervisely/nn/benchmark/object_detection/vis_metrics/key_metrics.py,sha256=Z8qA
774
785
  supervisely/nn/benchmark/object_detection/vis_metrics/model_predictions.py,sha256=gsGDsesiwOcqeFvHr33b4PSJNw6MoA5brO-qRydRtsA,5944
775
786
  supervisely/nn/benchmark/object_detection/vis_metrics/outcome_counts.py,sha256=HuTgisYmXCSUeF5WOahy-uaCdvRLsNzg28BDrZ-5hww,7161
776
787
  supervisely/nn/benchmark/object_detection/vis_metrics/outcome_counts_per_class.py,sha256=GBq0KlPka5z4cxHcKCe2eVOI_h3qlWUqGCyhYs6mjrk,6825
777
- supervisely/nn/benchmark/object_detection/vis_metrics/overview.py,sha256=2ToNTbgzQA6EGdtGFPqd9jHzcLCCzpIL1FS7jwstQLg,5131
788
+ supervisely/nn/benchmark/object_detection/vis_metrics/overview.py,sha256=tEHxK8NuquAcMcDxdn2G6GEIHp7eauOiTIQP1yFvgSs,5058
778
789
  supervisely/nn/benchmark/object_detection/vis_metrics/pr_curve.py,sha256=EeZmyNlTVQLQ-0wIDGdvFmRkahJBBiOKSmWiAJ8Bfks,3478
779
790
  supervisely/nn/benchmark/object_detection/vis_metrics/pr_curve_by_class.py,sha256=Bl_buVvH8SVqwsc4DcHnojMOqpwTnRgXFt9yw_Y1BR0,1607
780
- supervisely/nn/benchmark/object_detection/vis_metrics/precision.py,sha256=473bhBQ31-kFoyNsDNTs4GPwOiexSskxKPP8AP_nHDg,2605
791
+ supervisely/nn/benchmark/object_detection/vis_metrics/precision.py,sha256=cAgMrp13uulHfM8xnPDZyR6PqS8nck1Fo7YPpvHPCbw,2708
781
792
  supervisely/nn/benchmark/object_detection/vis_metrics/precision_avg_per_class.py,sha256=X-hyf7OP7hzQzI5Yb2yDU536hxYQLvxcnVyYa3x27XA,2076
782
- supervisely/nn/benchmark/object_detection/vis_metrics/recall.py,sha256=VQZqrlYLUbrFV7ugp2Bo1SIaKCs_jA7qrodatzB4_rE,2483
783
- supervisely/nn/benchmark/object_detection/vis_metrics/recall_vs_precision.py,sha256=md9pj3V5hL7GE92ehVhhCz3uEWd3HsqtGIfyIZPas68,1937
793
+ supervisely/nn/benchmark/object_detection/vis_metrics/recall.py,sha256=AAxg3eJDjWIZEarOMZNcdIcYpVDFFDlbc5bwF4X3GIo,2579
794
+ supervisely/nn/benchmark/object_detection/vis_metrics/recall_vs_precision.py,sha256=u-00HH54XzlhFuzc7U-mk2-IhUSEPYzv23BIIz8STvk,1984
784
795
  supervisely/nn/benchmark/object_detection/vis_metrics/reliability_diagram.py,sha256=_8ie3dPfwOyNCg-YhqO5jFW6kubCfQC2Obn9QSZFVeQ,3615
785
796
  supervisely/nn/benchmark/object_detection/vis_metrics/speedtest.py,sha256=uAYu42WUcQCBdfm-PZxOPAGLDsPlcnDJL7PCXDRStbY,5449
786
797
  supervisely/nn/benchmark/semantic_segmentation/__init__.py,sha256=Hx5bFhRZq8BXvN_ATAxlrhsxWcVy32pT4xIkqa-16RM,326
787
798
  supervisely/nn/benchmark/semantic_segmentation/base_vis_metric.py,sha256=mwGjRUTPrIj56WHsxNW_4fcZM0uw1xm6B5wh25FijyQ,1788
788
799
  supervisely/nn/benchmark/semantic_segmentation/benchmark.py,sha256=8rnU6I94q0GUdXWwluZu0_Sac_eU2-Az133tHF1dA3U,1202
789
800
  supervisely/nn/benchmark/semantic_segmentation/evaluation_params.yaml,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
790
- supervisely/nn/benchmark/semantic_segmentation/evaluator.py,sha256=0xlrBLLixik4wJBFeumILyuvO0JK_xfbDFtybkQejHk,6946
791
- supervisely/nn/benchmark/semantic_segmentation/metric_provider.py,sha256=KvbiiEqNOuTSwp4IfV6GC8azYFb-9OZ6ZrYV7pw4KEc,6491
792
- supervisely/nn/benchmark/semantic_segmentation/text_templates.py,sha256=fYJQeO75LTMzbz0KG01TPGYrMatEuHAF9cnPWolUsoQ,8585
793
- supervisely/nn/benchmark/semantic_segmentation/visualizer.py,sha256=qbpz6b3aUhvByTFvE44u0X7DdTRgaITTBYD4TWIysI4,13102
801
+ supervisely/nn/benchmark/semantic_segmentation/evaluator.py,sha256=0zNR60As5-8ww3BVj_qNq70VJUDyuUAxcUiSj7FQS_Q,7233
802
+ supervisely/nn/benchmark/semantic_segmentation/metric_provider.py,sha256=GwdRvyG0_nFpng6jN8ISFcMLfDbBd-fwdtoWR2XPKw4,6552
803
+ supervisely/nn/benchmark/semantic_segmentation/text_templates.py,sha256=7yRRD2FAdJHGSRqBVIjNjzCduKzaepA1OWtggi7B0Dg,8580
804
+ supervisely/nn/benchmark/semantic_segmentation/visualizer.py,sha256=Nt2-OOWKQ8fbaXFk5QeEaMtMURKPQebgjzDytVgQk0g,13196
794
805
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
795
806
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/acknowledgement.py,sha256=Lm82x8AIMKv1WqmqA0W9fugSlQ_JrP9dwYYYReZmhvI,440
796
807
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/classwise_error_analysis.py,sha256=0bmL43a4cqw3grFoG68NN8Y1fkRpHBIRJptcxMor-78,1884
@@ -798,9 +809,9 @@ supervisely/nn/benchmark/semantic_segmentation/vis_metrics/confusion_matrix.py,s
798
809
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/explore_predictions.py,sha256=QVtcGQv4S8W7jLANUsvuJaPP-OrUQ_LB2oEpjpLBecw,2936
799
810
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/frequently_confused.py,sha256=SyVgMD66EFLfgrClb5RCJjLhgRfTYqGsUORPYIuSe58,3697
800
811
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/iou_eou.py,sha256=IdUho3712dDLyVsgR01aNSQBcraPzYwpJmTc9AB0Txw,1401
801
- supervisely/nn/benchmark/semantic_segmentation/vis_metrics/key_metrics.py,sha256=vJb30-aQ-ffUTo_vX4ZQL8wjN0VYI6jwR2ILH5jXGDw,1886
812
+ supervisely/nn/benchmark/semantic_segmentation/vis_metrics/key_metrics.py,sha256=5FQhaYS_Vvnc4qQy50utj57Bfw26ZwnBvb5P3vXJH5Q,2765
802
813
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/model_predictions.py,sha256=1ysQLOmYJvrCPdqkXhRb5p_TyyXWdAVBDXoCJpfZrNo,3807
803
- supervisely/nn/benchmark/semantic_segmentation/vis_metrics/overview.py,sha256=3E8TqjTWkhFFvcl0v0SjVz7muIkaZRfsG6fiW76ooqE,4851
814
+ supervisely/nn/benchmark/semantic_segmentation/vis_metrics/overview.py,sha256=RT-oYD_4wqyWoTRlQ_m-UlO9adatBzdh8G5RpYxNF5Y,4778
804
815
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/renormalized_error_ou.py,sha256=w4oqirf_o7uz0fwaapaFR0ByjCBSEfMv--ZgEZTkuFQ,1575
805
816
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/speedtest.py,sha256=0UP_HReIciHQyU6sOXnWhAzyVBoGznV7ZHF8m4vEVX0,5941
806
817
  supervisely/nn/benchmark/semantic_segmentation/vis_metrics/vis_texts.py,sha256=rRdYZxmhQX4T3RsXJVGp34NMZPz8jUHtVvBN5BpPJ5I,603
@@ -813,12 +824,12 @@ supervisely/nn/benchmark/utils/detection/sly2coco.py,sha256=0O2LSCU5zIX34mD4hZIv
813
824
  supervisely/nn/benchmark/utils/detection/utlis.py,sha256=dKhsOGmQKH20-IlD90DWfZzi171j65N71hNdHRCX5Hs,954
814
825
  supervisely/nn/benchmark/utils/semantic_segmentation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
815
826
  supervisely/nn/benchmark/utils/semantic_segmentation/calculate_metrics.py,sha256=4ifC5r_Q880yIr8gWnjEzwKbS0vizMWqSF4XeyaMvh0,924
816
- supervisely/nn/benchmark/utils/semantic_segmentation/evaluator.py,sha256=R1U_mnOiUUH6P87xiKalYqMpj1uGCJKuOBcsTmVHawY,32894
827
+ supervisely/nn/benchmark/utils/semantic_segmentation/evaluator.py,sha256=18k-pUVOOcYUI421Z65CSB7GY7aPx5mpb0DMR_oDW5s,32270
817
828
  supervisely/nn/benchmark/utils/semantic_segmentation/loader.py,sha256=_5ZZ7Nkd8WWYJnKwc1Dx3bEPS_1R84gG_hQc0w0TXWw,1957
818
829
  supervisely/nn/benchmark/utils/semantic_segmentation/utils.py,sha256=X5NiR02R-0To2_SuSGHZZccl_-Bupg5F9d7nziIMRMc,3874
819
830
  supervisely/nn/benchmark/visualization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
820
831
  supervisely/nn/benchmark/visualization/evaluation_result.py,sha256=733HJL4rJa5XqCJydW9vSyaepvpHzym9wQsw1wFEgeI,10251
821
- supervisely/nn/benchmark/visualization/renderer.py,sha256=qxWUYu2glTqksxI5UG08nwDmZA4A2bfGb1wk9DaDct8,3340
832
+ supervisely/nn/benchmark/visualization/renderer.py,sha256=s1YexuKDHrI2gP-Qpz1fAXCh30dBQM7whnMwjbOf61M,3804
822
833
  supervisely/nn/benchmark/visualization/report_template.html,sha256=tylBK5Bb2cqKACK1GZUKyIjPS9yHQFHAS-QeEEwhqTE,2172
823
834
  supervisely/nn/benchmark/visualization/vis_click_data.py,sha256=hBeVepHngTGVHK3MiWe8qZY87taifxnoUXq22W2xaqo,3724
824
835
  supervisely/nn/benchmark/visualization/widgets/__init__.py,sha256=UovmhwLH4Au81JFrFz0NwPasaIqPEI-zXN-JntTc2FU,949
@@ -831,7 +842,7 @@ supervisely/nn/benchmark/visualization/widgets/collapse/collapse.py,sha256=iRtf5
831
842
  supervisely/nn/benchmark/visualization/widgets/container/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
832
843
  supervisely/nn/benchmark/visualization/widgets/container/container.py,sha256=ZV7auhFLZDsEVv8FoAKygiGKCeFjDG078Wmcpx7U6-w,1802
833
844
  supervisely/nn/benchmark/visualization/widgets/gallery/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
834
- supervisely/nn/benchmark/visualization/widgets/gallery/gallery.py,sha256=Lid8sZexDfgoWDupCWOiHowVnKn687F7S1fnDomrtfA,5578
845
+ supervisely/nn/benchmark/visualization/widgets/gallery/gallery.py,sha256=kHWf0i0WsOHxxCqQJ6C4gQJjgrk-ipZLLvIF8nmWzkU,5635
835
846
  supervisely/nn/benchmark/visualization/widgets/gallery/template.html,sha256=GuxIVCuqUN41Pe-F11RrrMZxomkWld2UM6j5U8RL2UU,2003
836
847
  supervisely/nn/benchmark/visualization/widgets/markdown/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
837
848
  supervisely/nn/benchmark/visualization/widgets/markdown/markdown.py,sha256=j0e3lVZJZVrFrtAxpNTOlmUpsjeqoS9yJHR5m8zJMiI,1528
@@ -845,7 +856,7 @@ supervisely/nn/benchmark/visualization/widgets/table/__init__.py,sha256=47DEQpj8
845
856
  supervisely/nn/benchmark/visualization/widgets/table/table.py,sha256=atmDnF1Af6qLQBUjLhK18RMDKAYlxnsuVHMSEa5a-e8,4319
846
857
  supervisely/nn/inference/__init__.py,sha256=mtEci4Puu-fRXDnGn8RP47o97rv3VTE0hjbYO34Zwqg,1622
847
858
  supervisely/nn/inference/cache.py,sha256=KvzCgMbEBLdiJAxJDLicIPKAlYb52P9_kpNPWfiVY8Y,28194
848
- supervisely/nn/inference/inference.py,sha256=exEoWGd6a9XlAWyMi0jOlhix0vMFVjtqDalPynZZFYo,128344
859
+ supervisely/nn/inference/inference.py,sha256=1QLeQmAmo29LoM9uFQjI5iDcuOyoltL4QR2Han9f2MM,128420
849
860
  supervisely/nn/inference/session.py,sha256=jmkkxbe2kH-lEgUU6Afh62jP68dxfhF5v6OGDfLU62E,35757
850
861
  supervisely/nn/inference/video_inference.py,sha256=8Bshjr6rDyLay5Za8IB8Dr6FURMO2R_v7aELasO8pR4,5746
851
862
  supervisely/nn/inference/gui/__init__.py,sha256=wCxd-lF5Zhcwsis-wScDA8n1Gk_1O00PKgDviUZ3F1U,221
@@ -941,16 +952,17 @@ supervisely/nn/tracker/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NM
941
952
  supervisely/nn/tracker/utils/gmc.py,sha256=3JX8979H3NA-YHNaRQyj9Z-xb9qtyMittPEjGw8y2Jo,11557
942
953
  supervisely/nn/tracker/utils/kalman_filter.py,sha256=eSFmCjM0mikHCAFvj-KCVzw-0Jxpoc3Cfc2NWEjJC1Q,17268
943
954
  supervisely/nn/training/__init__.py,sha256=gY4PCykJ-42MWKsqb9kl-skemKa8yB6t_fb5kzqR66U,111
944
- supervisely/nn/training/train_app.py,sha256=YsN0ilrYuFIAKENBhH-iGmH68n0fzqIgq4or-MC-Xoc,88561
955
+ supervisely/nn/training/train_app.py,sha256=Q3evZS3DChaWMEB7kZrabMSsHv621-XEQuyGdfq91nY,93101
945
956
  supervisely/nn/training/gui/__init__.py,sha256=Nqnn8clbgv-5l0PgxcTOldg8mkMKrFn4TvPL-rYUUGg,1
946
957
  supervisely/nn/training/gui/classes_selector.py,sha256=8UgzA4aogOAr1s42smwEcDbgaBj_i0JLhjwlZ9bFdIA,3772
947
- supervisely/nn/training/gui/gui.py,sha256=Xco1yXcfVSPnbBwZDYGIOysyN7WRxIV_r6G1vtCgkpE,22591
958
+ supervisely/nn/training/gui/gui.py,sha256=ERMyRqZABLBXcLxvvsF1TtL8VKK8Ak4MwoN9wrL4Dzw,23357
948
959
  supervisely/nn/training/gui/hyperparameters_selector.py,sha256=2qryuBss0bLcZJV8PNJ6_hKZM5Dbj2FIxTb3EULHQrE,6670
949
960
  supervisely/nn/training/gui/input_selector.py,sha256=Jp9PnVVADv1fhndPuZdMlKuzWTOBQZogrOks5dwATlc,2179
950
961
  supervisely/nn/training/gui/model_selector.py,sha256=QTFHMf-8-rREYPk64QKoRvE4zKPC8V6tcP4H4N6nyt0,4082
951
962
  supervisely/nn/training/gui/train_val_splits_selector.py,sha256=MLryFD2Tj_RobkFzZOeQXzXpch0eGiVFisq3FGA3dFg,8549
963
+ supervisely/nn/training/gui/training_artifacts.py,sha256=JoeNn1cXSRrkatjxhYNwL_-yDsBT2aqYugjICMn4KUk,5887
952
964
  supervisely/nn/training/gui/training_logs.py,sha256=1CBqnL0l5kiZVaegJ-NLgOVI1T4EDB_rLAtumuw18Jo,3222
953
- supervisely/nn/training/gui/training_process.py,sha256=yaAUHL6A9GVeiGFTd9DSTHMAQNxnlUa7oZ-j0xmLfEE,3881
965
+ supervisely/nn/training/gui/training_process.py,sha256=wqlwt1cHG-HoVEOotDiBjp9YTTIbeMr1bHY2zVRaNH8,3071
954
966
  supervisely/nn/training/gui/utils.py,sha256=Bi7-BRsAqN7fUkhd7rXVEAqsxhBdIZ2MrrJtrNqVf8I,3905
955
967
  supervisely/nn/training/loggers/__init__.py,sha256=DOqR-4NJv25C4Y1HCWggvGNM5mgo1CbwQOdvROOL-60,777
956
968
  supervisely/nn/training/loggers/base_train_logger.py,sha256=Gf_TKwSfQdSVG6P3wAeWf5t2_EJWJqOPqt_TsJ5jpBY,1914
@@ -1042,9 +1054,9 @@ supervisely/worker_proto/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
1042
1054
  supervisely/worker_proto/worker_api_pb2.py,sha256=VQfi5JRBHs2pFCK1snec3JECgGnua3Xjqw_-b3aFxuM,59142
1043
1055
  supervisely/worker_proto/worker_api_pb2_grpc.py,sha256=3BwQXOaP9qpdi0Dt9EKG--Lm8KGN0C5AgmUfRv77_Jk,28940
1044
1056
  supervisely_lib/__init__.py,sha256=7-3QnN8Zf0wj8NCr2oJmqoQWMKKPKTECvjH9pd2S5vY,159
1045
- supervisely-6.73.253.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1046
- supervisely-6.73.253.dist-info/METADATA,sha256=kp6hHxnNB6C3Z7dktlJdus0Mxv_xr9xdbLBEIbsMDRM,33573
1047
- supervisely-6.73.253.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
1048
- supervisely-6.73.253.dist-info/entry_points.txt,sha256=U96-5Hxrp2ApRjnCoUiUhWMqijqh8zLR03sEhWtAcms,102
1049
- supervisely-6.73.253.dist-info/top_level.txt,sha256=kcFVwb7SXtfqZifrZaSE3owHExX4gcNYe7Q2uoby084,28
1050
- supervisely-6.73.253.dist-info/RECORD,,
1057
+ supervisely-6.73.255.dist-info/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
1058
+ supervisely-6.73.255.dist-info/METADATA,sha256=Ifb1c2LAS2PxE8b6tm-M8fAQhtfEB_addqJqjjNoeAk,33573
1059
+ supervisely-6.73.255.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
1060
+ supervisely-6.73.255.dist-info/entry_points.txt,sha256=U96-5Hxrp2ApRjnCoUiUhWMqijqh8zLR03sEhWtAcms,102
1061
+ supervisely-6.73.255.dist-info/top_level.txt,sha256=kcFVwb7SXtfqZifrZaSE3owHExX4gcNYe7Q2uoby084,28
1062
+ supervisely-6.73.255.dist-info/RECORD,,
@@ -1,19 +0,0 @@
1
- from typing import List
2
-
3
- from supervisely.nn.benchmark.visualization.evaluation_result import EvalResult
4
- from supervisely.nn.benchmark.visualization.widgets import GalleryWidget
5
-
6
-
7
- class BaseVisMetric:
8
-
9
- def __init__(
10
- self,
11
- vis_texts,
12
- eval_results: List[EvalResult],
13
- explore_modal_table: GalleryWidget = None,
14
- diff_modal_table: GalleryWidget = None,
15
- ) -> None:
16
- self.vis_texts = vis_texts
17
- self.eval_results = eval_results
18
- self.explore_modal_table = explore_modal_table
19
- self.diff_modal_table = diff_modal_table