sudoku-smt-solvers 0.1.0__py3-none-any.whl
Sign up to get free protection for your applications and to get access to all the features.
- sudoku_smt_solvers/__init__.py +4 -0
- sudoku_smt_solvers/benchmarks/__init__.py +5 -0
- sudoku_smt_solvers/benchmarks/benchmark_runner.py +211 -0
- sudoku_smt_solvers/solvers/__init__.py +4 -0
- sudoku_smt_solvers/solvers/cvc5_solver.py +207 -0
- sudoku_smt_solvers/solvers/dpll_solver.py +175 -0
- sudoku_smt_solvers/solvers/dpllt_solver.py +211 -0
- sudoku_smt_solvers/solvers/sudoku_error.py +8 -0
- sudoku_smt_solvers/solvers/z3_solver.py +160 -0
- sudoku_smt_solvers-0.1.0.dist-info/LICENSE +21 -0
- sudoku_smt_solvers-0.1.0.dist-info/METADATA +161 -0
- sudoku_smt_solvers-0.1.0.dist-info/RECORD +14 -0
- sudoku_smt_solvers-0.1.0.dist-info/WHEEL +5 -0
- sudoku_smt_solvers-0.1.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,5 @@
|
|
1
|
+
from .benchmark_runner import BenchmarkRunner
|
2
|
+
from .sudoku_generator.dfs_solver import DFSSolver
|
3
|
+
from .sudoku_generator.sudoku_generator import SudokuGenerator
|
4
|
+
from .sudoku_generator.las_vegas import LasVegasGenerator
|
5
|
+
from .sudoku_generator.hole_digger import HoleDigger
|
@@ -0,0 +1,211 @@
|
|
1
|
+
import json
|
2
|
+
import os
|
3
|
+
import time
|
4
|
+
import multiprocessing
|
5
|
+
from typing import Dict, List, Optional
|
6
|
+
|
7
|
+
from ..solvers import CVC5Solver, DPLLSolver, DPLLTSolver, Z3Solver
|
8
|
+
|
9
|
+
|
10
|
+
class BenchmarkRunner:
|
11
|
+
"""A benchmark runner for comparing different Sudoku solver implementations.
|
12
|
+
|
13
|
+
This class manages running performance benchmarks across multiple Sudoku solvers,
|
14
|
+
collecting metrics like solve time and propagation counts, and saving results
|
15
|
+
to CSV files.
|
16
|
+
|
17
|
+
Attributes:
|
18
|
+
puzzles_dir (str): Directory containing puzzle JSON files
|
19
|
+
results_dir (str): Directory where benchmark results are saved
|
20
|
+
timeout (int): Maximum time in seconds allowed for each solver attempt
|
21
|
+
solvers (dict): Dictionary mapping solver names to solver classes
|
22
|
+
"""
|
23
|
+
|
24
|
+
def __init__(
|
25
|
+
self,
|
26
|
+
puzzles_dir: str = "benchmarks/puzzles",
|
27
|
+
results_dir: str = "benchmarks/results",
|
28
|
+
timeout: int = 120,
|
29
|
+
):
|
30
|
+
"""Initialize the benchmark runner.
|
31
|
+
|
32
|
+
Args:
|
33
|
+
puzzles_dir: Directory containing puzzle JSON files
|
34
|
+
results_dir: Directory where benchmark results will be saved
|
35
|
+
timeout: Maximum time in seconds allowed for each solver attempt
|
36
|
+
"""
|
37
|
+
self.puzzles_dir = puzzles_dir
|
38
|
+
self.results_dir = results_dir
|
39
|
+
self.timeout = timeout
|
40
|
+
self.solvers = {
|
41
|
+
"CVC5": CVC5Solver,
|
42
|
+
"DPLL": DPLLSolver,
|
43
|
+
"DPLL(T)": DPLLTSolver,
|
44
|
+
"Z3": Z3Solver,
|
45
|
+
}
|
46
|
+
os.makedirs(results_dir, exist_ok=True)
|
47
|
+
|
48
|
+
def load_puzzle(self, puzzle_id: str) -> Optional[List[List[int]]]:
|
49
|
+
puzzle_path = os.path.join(self.puzzles_dir, f"{puzzle_id}.json")
|
50
|
+
try:
|
51
|
+
with open(puzzle_path, "r") as f:
|
52
|
+
data = json.load(f)
|
53
|
+
for key in ["grid", "puzzle", "gridc"]:
|
54
|
+
if key in data:
|
55
|
+
return data[key]
|
56
|
+
print(
|
57
|
+
f"No valid grid found in {puzzle_id}. Available keys: {list(data.keys())}"
|
58
|
+
)
|
59
|
+
return None
|
60
|
+
except Exception as e:
|
61
|
+
print(f"Error loading puzzle {puzzle_id}: {e}")
|
62
|
+
return None
|
63
|
+
|
64
|
+
def _solve_with_timeout(self, solver_class, puzzle, queue):
|
65
|
+
solver = solver_class(puzzle)
|
66
|
+
result = solver.solve()
|
67
|
+
# Pack both the result and propagation count
|
68
|
+
queue.put((result, getattr(solver, "propagated_clauses", 0)))
|
69
|
+
|
70
|
+
def run_solver(self, solver_name: str, puzzle: List[List[int]]) -> Dict:
|
71
|
+
"""Run a single solver on a puzzle and collect results with timeout.
|
72
|
+
|
73
|
+
Args:
|
74
|
+
solver_name: Name of the solver to use
|
75
|
+
puzzle: 2D list representing the Sudoku puzzle
|
76
|
+
|
77
|
+
Returns:
|
78
|
+
Dict containing:
|
79
|
+
status: 'sat', 'unsat', 'timeout', or 'error'
|
80
|
+
solve_time: Time taken in seconds
|
81
|
+
propagations: Number of clause propagations (if available)
|
82
|
+
"""
|
83
|
+
solver_class = self.solvers[solver_name]
|
84
|
+
|
85
|
+
# Create queue for getting results
|
86
|
+
ctx = multiprocessing.get_context("spawn")
|
87
|
+
queue = ctx.Queue()
|
88
|
+
|
89
|
+
# Create process for solving
|
90
|
+
process = ctx.Process(
|
91
|
+
target=self._solve_with_timeout, args=(solver_class, puzzle, queue)
|
92
|
+
)
|
93
|
+
|
94
|
+
start_time = time.time()
|
95
|
+
process.start()
|
96
|
+
process.join(timeout=self.timeout)
|
97
|
+
|
98
|
+
solve_time = time.time() - start_time
|
99
|
+
|
100
|
+
if process.is_alive():
|
101
|
+
process.terminate()
|
102
|
+
process.join()
|
103
|
+
return {"status": "timeout", "solve_time": self.timeout, "propagations": 0}
|
104
|
+
|
105
|
+
# Get result and propagation count from queue
|
106
|
+
try:
|
107
|
+
result, propagations = queue.get_nowait()
|
108
|
+
return {
|
109
|
+
"status": "sat" if result else "unsat",
|
110
|
+
"solve_time": solve_time,
|
111
|
+
"propagations": propagations,
|
112
|
+
}
|
113
|
+
except:
|
114
|
+
return {"status": "error", "solve_time": solve_time, "propagations": 0}
|
115
|
+
|
116
|
+
def run_benchmarks(self) -> None:
|
117
|
+
"""Run all solvers on all puzzles and save results.
|
118
|
+
|
119
|
+
Executes benchmarks for each solver on each puzzle, collecting performance
|
120
|
+
metrics and saving results to a timestamped CSV file.
|
121
|
+
|
122
|
+
The CSV output includes:
|
123
|
+
- Solver name
|
124
|
+
- Puzzle unique ID
|
125
|
+
- Solution status
|
126
|
+
- Solve time
|
127
|
+
- Propagation count
|
128
|
+
|
129
|
+
Also calculates and stores aggregate statistics per solver:
|
130
|
+
- Total puzzles attempted
|
131
|
+
- Number of puzzles solved
|
132
|
+
- Total and average solving times
|
133
|
+
- Total and average propagation counts
|
134
|
+
"""
|
135
|
+
results = {
|
136
|
+
solver_name: {
|
137
|
+
"puzzles": {},
|
138
|
+
"stats": {
|
139
|
+
"total_puzzles": 0,
|
140
|
+
"solved_count": 0,
|
141
|
+
"total_time": 0,
|
142
|
+
"total_propagations": 0,
|
143
|
+
"avg_time": 0,
|
144
|
+
"avg_propagations": 0,
|
145
|
+
},
|
146
|
+
}
|
147
|
+
for solver_name in self.solvers
|
148
|
+
}
|
149
|
+
|
150
|
+
puzzle_files = [f for f in os.listdir(self.puzzles_dir) if f.endswith(".json")]
|
151
|
+
print(f"Found {len(puzzle_files)} puzzle files") # Debug
|
152
|
+
|
153
|
+
for puzzle_file in puzzle_files:
|
154
|
+
puzzle_id = puzzle_file[:-5]
|
155
|
+
puzzle = self.load_puzzle(puzzle_id)
|
156
|
+
|
157
|
+
if not puzzle:
|
158
|
+
print(f"Failed to load puzzle: {puzzle_id}") # Debug
|
159
|
+
continue
|
160
|
+
|
161
|
+
for solver_name in self.solvers:
|
162
|
+
print(f"Running {solver_name} on puzzle {puzzle_id}")
|
163
|
+
result = self.run_solver(solver_name, puzzle)
|
164
|
+
print(f"Result: {result}") # Debug
|
165
|
+
|
166
|
+
results[solver_name]["puzzles"][puzzle_id] = result
|
167
|
+
|
168
|
+
stats = results[solver_name]["stats"]
|
169
|
+
stats["total_puzzles"] += 1
|
170
|
+
if result["status"] == "sat":
|
171
|
+
stats["solved_count"] += 1
|
172
|
+
stats["total_time"] += result["solve_time"]
|
173
|
+
stats["total_propagations"] += result["propagations"]
|
174
|
+
|
175
|
+
# Calculate averages
|
176
|
+
for solver_name, solver_stats in results.items():
|
177
|
+
stats = solver_stats["stats"]
|
178
|
+
total_puzzles = stats["total_puzzles"]
|
179
|
+
if total_puzzles > 0:
|
180
|
+
stats["avg_time"] = stats["total_time"] / total_puzzles
|
181
|
+
stats["avg_propagations"] = stats["total_propagations"] / total_puzzles
|
182
|
+
print(f"Stats for {solver_name}: {stats}") # Debug
|
183
|
+
|
184
|
+
# Save results
|
185
|
+
timestamp = time.strftime("%Y%m%d_%H%M%S")
|
186
|
+
|
187
|
+
# Debug CSV data
|
188
|
+
csv_data = []
|
189
|
+
for solver_name, solver_results in results.items():
|
190
|
+
for puzzle_id, puzzle_result in solver_results["puzzles"].items():
|
191
|
+
row = {
|
192
|
+
"solver": solver_name,
|
193
|
+
"puzzle_id": puzzle_id,
|
194
|
+
"status": puzzle_result["status"],
|
195
|
+
"solve_time": puzzle_result["solve_time"],
|
196
|
+
"propagations": puzzle_result["propagations"],
|
197
|
+
}
|
198
|
+
csv_data.append(row)
|
199
|
+
print(f"Adding CSV row: {row}") # Debug
|
200
|
+
|
201
|
+
csv_path = os.path.join(self.results_dir, f"benchmark_{timestamp}.csv")
|
202
|
+
print(f"Writing {len(csv_data)} rows to CSV") # Debug
|
203
|
+
|
204
|
+
with open(csv_path, "w") as f:
|
205
|
+
if csv_data:
|
206
|
+
headers = csv_data[0].keys()
|
207
|
+
f.write(",".join(headers) + "\n")
|
208
|
+
for row in csv_data:
|
209
|
+
f.write(",".join(str(row[h]) for h in headers) + "\n")
|
210
|
+
|
211
|
+
print(f"Benchmark results saved to {csv_path}")
|
@@ -0,0 +1,207 @@
|
|
1
|
+
from typing import List, Optional
|
2
|
+
import atexit
|
3
|
+
from cvc5 import Kind, Solver
|
4
|
+
from .sudoku_error import SudokuError
|
5
|
+
|
6
|
+
|
7
|
+
class CVC5Solver:
|
8
|
+
"""CVC5-based Sudoku solver using SMT encoding.
|
9
|
+
|
10
|
+
Solves 25x25 Sudoku puzzles by encoding the problem as an SMT formula and using
|
11
|
+
CVC5 to find a satisfying assignment.
|
12
|
+
|
13
|
+
Attributes:
|
14
|
+
sudoku (List[List[int]]): Input puzzle as 25x25 grid
|
15
|
+
size (int): Grid size (always 25)
|
16
|
+
solver (Solver): CVC5 solver instance
|
17
|
+
variables (List[List[Term]]): SMT variables for each cell
|
18
|
+
propagated_clauses (int): Counter for clause assertions
|
19
|
+
|
20
|
+
Example:
|
21
|
+
>>> puzzle = [[0 for _ in range(25)] for _ in range(25)] # Empty puzzle
|
22
|
+
>>> solver = CVC5Solver(puzzle)
|
23
|
+
>>> solution = solver.solve()
|
24
|
+
"""
|
25
|
+
|
26
|
+
def __init__(self, sudoku):
|
27
|
+
"""Initialize CVC5 Sudoku solver.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
sudoku: 25x25 grid with values 0-25 (0 for empty cells)
|
31
|
+
|
32
|
+
Raises:
|
33
|
+
SudokuError: If puzzle format is invalid
|
34
|
+
"""
|
35
|
+
if not sudoku or not isinstance(sudoku, list) or len(sudoku) != 25:
|
36
|
+
raise SudokuError("Invalid Sudoku puzzle: must be a 25x25 grid")
|
37
|
+
|
38
|
+
self._validate_input(sudoku)
|
39
|
+
self.sudoku = sudoku
|
40
|
+
self.size = len(sudoku)
|
41
|
+
self.solver = None
|
42
|
+
self.variables = None
|
43
|
+
self.propagated_clauses = 0
|
44
|
+
|
45
|
+
def _validate_input(self, sudoku):
|
46
|
+
for i, row in enumerate(sudoku):
|
47
|
+
if not isinstance(row, list) or len(row) != 25:
|
48
|
+
raise SudokuError(f"Invalid Sudoku puzzle: row {i} must have 25 cells")
|
49
|
+
for j, val in enumerate(row):
|
50
|
+
if not isinstance(val, int) or not (0 <= val <= 25):
|
51
|
+
raise SudokuError(
|
52
|
+
f"Invalid value at position ({i},{j}): must be between 0 and 25"
|
53
|
+
)
|
54
|
+
|
55
|
+
def _count_assertion(self):
|
56
|
+
self.propagated_clauses += 1
|
57
|
+
|
58
|
+
def create_variables(self):
|
59
|
+
self.solver = Solver()
|
60
|
+
|
61
|
+
# Configure CVC5 solver options
|
62
|
+
self.solver.setOption("produce-models", "true")
|
63
|
+
self.solver.setOption("incremental", "true")
|
64
|
+
self.solver.setLogic("QF_LIA") # Quantifier-Free Linear Integer Arithmetic
|
65
|
+
|
66
|
+
integer_sort = self.solver.getIntegerSort()
|
67
|
+
self.variables = [
|
68
|
+
[self.solver.mkConst(integer_sort, f"x_{i}_{j}") for j in range(25)]
|
69
|
+
for i in range(25)
|
70
|
+
]
|
71
|
+
atexit.register(self.cleanup)
|
72
|
+
|
73
|
+
def encode_rules(self):
|
74
|
+
# Domain constraints
|
75
|
+
for i in range(25):
|
76
|
+
for j in range(25):
|
77
|
+
self.solver.assertFormula(
|
78
|
+
self.solver.mkTerm(
|
79
|
+
Kind.AND,
|
80
|
+
self.solver.mkTerm(
|
81
|
+
Kind.LEQ, self.solver.mkInteger(1), self.variables[i][j]
|
82
|
+
),
|
83
|
+
self.solver.mkTerm(
|
84
|
+
Kind.LEQ, self.variables[i][j], self.solver.mkInteger(25)
|
85
|
+
),
|
86
|
+
)
|
87
|
+
)
|
88
|
+
self._count_assertion()
|
89
|
+
|
90
|
+
# Row constraints
|
91
|
+
for i in range(25):
|
92
|
+
self.solver.assertFormula(
|
93
|
+
self.solver.mkTerm(
|
94
|
+
Kind.DISTINCT, *[self.variables[i][j] for j in range(25)]
|
95
|
+
)
|
96
|
+
)
|
97
|
+
self._count_assertion()
|
98
|
+
|
99
|
+
# Column constraints
|
100
|
+
for j in range(25):
|
101
|
+
self.solver.assertFormula(
|
102
|
+
self.solver.mkTerm(
|
103
|
+
Kind.DISTINCT, *[self.variables[i][j] for i in range(25)]
|
104
|
+
)
|
105
|
+
)
|
106
|
+
self._count_assertion()
|
107
|
+
|
108
|
+
# 5x5 subgrid constraints
|
109
|
+
for block_row in range(0, 25, 5):
|
110
|
+
for block_col in range(0, 25, 5):
|
111
|
+
block_vars = [
|
112
|
+
self.variables[i][j]
|
113
|
+
for i in range(block_row, block_row + 5)
|
114
|
+
for j in range(block_col, block_col + 5)
|
115
|
+
]
|
116
|
+
self.solver.assertFormula(
|
117
|
+
self.solver.mkTerm(Kind.DISTINCT, *block_vars)
|
118
|
+
)
|
119
|
+
self._count_assertion()
|
120
|
+
|
121
|
+
def encode_puzzle(self):
|
122
|
+
for i in range(25):
|
123
|
+
for j in range(25):
|
124
|
+
if self.sudoku[i][j] != 0: # Pre-filled cell
|
125
|
+
self.solver.assertFormula(
|
126
|
+
self.solver.mkTerm(
|
127
|
+
Kind.EQUAL,
|
128
|
+
self.variables[i][j],
|
129
|
+
self.solver.mkInteger(self.sudoku[i][j]),
|
130
|
+
)
|
131
|
+
)
|
132
|
+
self._count_assertion()
|
133
|
+
|
134
|
+
def extract_solution(self):
|
135
|
+
solution = [[0 for _ in range(25)] for _ in range(25)]
|
136
|
+
for i in range(25):
|
137
|
+
for j in range(25):
|
138
|
+
solution[i][j] = self.solver.getValue(
|
139
|
+
self.variables[i][j]
|
140
|
+
).getIntegerValue()
|
141
|
+
return solution
|
142
|
+
|
143
|
+
def cleanup(self):
|
144
|
+
if self.solver:
|
145
|
+
self.solver = None
|
146
|
+
|
147
|
+
def validate_solution(self, solution):
|
148
|
+
if not solution:
|
149
|
+
return False
|
150
|
+
|
151
|
+
# Check dimensions
|
152
|
+
if len(solution) != self.size or any(len(row) != self.size for row in solution):
|
153
|
+
return False
|
154
|
+
|
155
|
+
valid_nums = set(range(1, self.size + 1))
|
156
|
+
|
157
|
+
# Check rows
|
158
|
+
if any(set(row) != valid_nums for row in solution):
|
159
|
+
return False
|
160
|
+
|
161
|
+
# Check columns
|
162
|
+
for col in range(self.size):
|
163
|
+
if set(solution[row][col] for row in range(self.size)) != valid_nums:
|
164
|
+
return False
|
165
|
+
|
166
|
+
# Check 5x5 subgrids
|
167
|
+
subgrid_size = 5
|
168
|
+
for box_row in range(0, self.size, subgrid_size):
|
169
|
+
for box_col in range(0, self.size, subgrid_size):
|
170
|
+
numbers = set()
|
171
|
+
for i in range(subgrid_size):
|
172
|
+
for j in range(subgrid_size):
|
173
|
+
numbers.add(solution[box_row + i][box_col + j])
|
174
|
+
if numbers != valid_nums:
|
175
|
+
return False
|
176
|
+
|
177
|
+
return True
|
178
|
+
|
179
|
+
def solve(self):
|
180
|
+
"""Solve the Sudoku puzzle using CVC5.
|
181
|
+
|
182
|
+
Returns:
|
183
|
+
Solved 25x25 grid if satisfiable, None if unsatisfiable
|
184
|
+
|
185
|
+
Raises:
|
186
|
+
Exception: If solver encounters an error
|
187
|
+
|
188
|
+
Note:
|
189
|
+
Always cleans up solver resources, even on failure
|
190
|
+
"""
|
191
|
+
try:
|
192
|
+
self.create_variables()
|
193
|
+
self.encode_rules()
|
194
|
+
self.encode_puzzle()
|
195
|
+
|
196
|
+
result = self.solver.checkSat()
|
197
|
+
|
198
|
+
if result.isSat():
|
199
|
+
solution = self.extract_solution()
|
200
|
+
if self.validate_solution(solution):
|
201
|
+
return solution
|
202
|
+
return None
|
203
|
+
|
204
|
+
except Exception as e:
|
205
|
+
raise
|
206
|
+
finally:
|
207
|
+
self.cleanup()
|
@@ -0,0 +1,175 @@
|
|
1
|
+
from typing import List, Optional
|
2
|
+
from pysat.solvers import Solver
|
3
|
+
from pysat.formula import CNF
|
4
|
+
from .sudoku_error import SudokuError
|
5
|
+
|
6
|
+
|
7
|
+
class DPLLSolver:
|
8
|
+
"""DPLL-based Sudoku solver using SAT encoding.
|
9
|
+
|
10
|
+
Solves 25x25 Sudoku puzzles by converting them to CNF (Conjunctive Normal Form)
|
11
|
+
and using DPLL to find a satisfying assignment.
|
12
|
+
|
13
|
+
Attributes:
|
14
|
+
sudoku (List[List[int]]): Input puzzle as 25x25 grid
|
15
|
+
size (int): Grid size (25)
|
16
|
+
cnf (CNF): PySAT CNF formula object
|
17
|
+
solver (Solver): PySAT Glucose3 solver instance
|
18
|
+
propagated_clauses (int): Counter for clause additions
|
19
|
+
|
20
|
+
Example:
|
21
|
+
>>> puzzle = [[0 for _ in range(25)] for _ in range(25)]
|
22
|
+
>>> solver = DPLLSolver(puzzle)
|
23
|
+
>>> solution = solver.solve()
|
24
|
+
"""
|
25
|
+
|
26
|
+
def __init__(self, sudoku: List[List[int]]) -> None:
|
27
|
+
"""Initialize DPLL Sudoku solver.
|
28
|
+
|
29
|
+
Args:
|
30
|
+
sudoku: 25x25 grid with values 0-25 (0 for empty cells)
|
31
|
+
|
32
|
+
Raises:
|
33
|
+
SudokuError: If puzzle format is invalid
|
34
|
+
"""
|
35
|
+
if not sudoku or not isinstance(sudoku, list) or len(sudoku) != 25:
|
36
|
+
raise SudokuError("Invalid Sudoku puzzle: must be a 25x25 grid")
|
37
|
+
|
38
|
+
self.sudoku = sudoku
|
39
|
+
self.size = 25
|
40
|
+
self.cnf = CNF() # CNF object to store Boolean clauses
|
41
|
+
self.solver = Solver(name="glucose3") # Low-level SAT solver
|
42
|
+
self.propagated_clauses = 0 # Add clause counter
|
43
|
+
|
44
|
+
def _count_clause(self) -> None:
|
45
|
+
self.propagated_clauses += 1
|
46
|
+
|
47
|
+
def add_sudoku_clauses(self) -> None:
|
48
|
+
size = self.size
|
49
|
+
block_size = int(size**0.5)
|
50
|
+
|
51
|
+
def get_var(row, col, num):
|
52
|
+
return row * size * size + col * size + num
|
53
|
+
|
54
|
+
# At least one number in each cell
|
55
|
+
for row in range(size):
|
56
|
+
for col in range(size):
|
57
|
+
self.cnf.append([get_var(row, col, num) for num in range(1, size + 1)])
|
58
|
+
self._count_clause()
|
59
|
+
|
60
|
+
# At most one number in each cell
|
61
|
+
for num1 in range(1, size + 1):
|
62
|
+
for num2 in range(num1 + 1, size + 1):
|
63
|
+
self.cnf.append(
|
64
|
+
[-get_var(row, col, num1), -get_var(row, col, num2)]
|
65
|
+
)
|
66
|
+
self._count_clause()
|
67
|
+
|
68
|
+
# Add row constraints
|
69
|
+
for row in range(size):
|
70
|
+
for num in range(1, size + 1):
|
71
|
+
self.cnf.append([get_var(row, col, num) for col in range(size)])
|
72
|
+
self._count_clause()
|
73
|
+
|
74
|
+
# Add column constraints
|
75
|
+
for col in range(size):
|
76
|
+
for num in range(1, size + 1):
|
77
|
+
self.cnf.append([get_var(row, col, num) for row in range(size)])
|
78
|
+
self._count_clause()
|
79
|
+
|
80
|
+
# Add block constraints
|
81
|
+
for block_row in range(block_size):
|
82
|
+
for block_col in range(block_size):
|
83
|
+
for num in range(1, size + 1):
|
84
|
+
self.cnf.append(
|
85
|
+
[
|
86
|
+
get_var(
|
87
|
+
block_row * block_size + i,
|
88
|
+
block_col * block_size + j,
|
89
|
+
num,
|
90
|
+
)
|
91
|
+
for i in range(block_size)
|
92
|
+
for j in range(block_size)
|
93
|
+
]
|
94
|
+
)
|
95
|
+
self._count_clause()
|
96
|
+
|
97
|
+
# Add initial assignments from the puzzle
|
98
|
+
for row in range(size):
|
99
|
+
for col in range(size):
|
100
|
+
if self.sudoku[row][col] != 0:
|
101
|
+
num = self.sudoku[row][col]
|
102
|
+
self.cnf.append([get_var(row, col, num)])
|
103
|
+
self._count_clause()
|
104
|
+
|
105
|
+
def extract_solution(self, model: List[int]) -> List[List[int]]:
|
106
|
+
solution = [[0 for _ in range(self.size)] for _ in range(self.size)]
|
107
|
+
for var in model:
|
108
|
+
if var > 0: # Only consider positive assignments
|
109
|
+
var -= 1
|
110
|
+
num = var % self.size + 1
|
111
|
+
col = (var // self.size) % self.size
|
112
|
+
row = var // (self.size * self.size)
|
113
|
+
solution[row][col] = num
|
114
|
+
return solution
|
115
|
+
|
116
|
+
def validate_solution(self, solution: List[List[int]]) -> bool:
|
117
|
+
size = self.size
|
118
|
+
block_size = int(size**0.5)
|
119
|
+
|
120
|
+
# Validate rows
|
121
|
+
for row in solution:
|
122
|
+
if len(set(row)) != size or not all(1 <= num <= size for num in row):
|
123
|
+
return False
|
124
|
+
|
125
|
+
# Validate columns
|
126
|
+
for col in range(size):
|
127
|
+
column = [solution[row][col] for row in range(size)]
|
128
|
+
if len(set(column)) != size:
|
129
|
+
return False
|
130
|
+
|
131
|
+
# Validate blocks
|
132
|
+
for block_row in range(block_size):
|
133
|
+
for block_col in range(block_size):
|
134
|
+
block = [
|
135
|
+
solution[block_row * block_size + i][block_col * block_size + j]
|
136
|
+
for i in range(block_size)
|
137
|
+
for j in range(block_size)
|
138
|
+
]
|
139
|
+
if len(set(block)) != size:
|
140
|
+
return False
|
141
|
+
|
142
|
+
return True
|
143
|
+
|
144
|
+
def solve(self) -> Optional[List[List[int]]]:
|
145
|
+
"""Solve Sudoku puzzle using DPLL SAT solver.
|
146
|
+
|
147
|
+
Returns:
|
148
|
+
Solved 25x25 grid if satisfiable, None if unsatisfiable
|
149
|
+
|
150
|
+
Raises:
|
151
|
+
SudokuError: If solver produces invalid solution
|
152
|
+
Exception: For other solver errors
|
153
|
+
|
154
|
+
Note:
|
155
|
+
Uses Glucose3 SAT solver from PySAT
|
156
|
+
"""
|
157
|
+
self.add_sudoku_clauses()
|
158
|
+
self.solver.append_formula(self.cnf.clauses)
|
159
|
+
|
160
|
+
try:
|
161
|
+
if self.solver.solve():
|
162
|
+
# Extract and validate the solution
|
163
|
+
model = self.solver.get_model()
|
164
|
+
solution = self.extract_solution(model)
|
165
|
+
|
166
|
+
if self.validate_solution(solution):
|
167
|
+
return solution
|
168
|
+
else:
|
169
|
+
raise SudokuError("Invalid solution generated.")
|
170
|
+
else:
|
171
|
+
# If unsat, return None
|
172
|
+
return None
|
173
|
+
|
174
|
+
except Exception as e:
|
175
|
+
raise
|
@@ -0,0 +1,211 @@
|
|
1
|
+
from typing import List, Optional
|
2
|
+
from pysat.solvers import Solver
|
3
|
+
from pysat.formula import CNF
|
4
|
+
from .sudoku_error import SudokuError
|
5
|
+
|
6
|
+
|
7
|
+
class DPLLTSolver:
|
8
|
+
"""DPLL(T) solver combining SAT solving with theory propagation.
|
9
|
+
|
10
|
+
Extends basic DPLL SAT solving with theory propagation for Sudoku rules,
|
11
|
+
enabling more efficient pruning of the search space.
|
12
|
+
|
13
|
+
Attributes:
|
14
|
+
sudoku (List[List[int]]): Input puzzle as 25x25 grid
|
15
|
+
size (int): Grid size (25)
|
16
|
+
cnf (CNF): PySAT CNF formula object
|
17
|
+
solver (Solver): PySAT Glucose3 solver
|
18
|
+
theory_state (dict): Dynamic tracking of theory constraints
|
19
|
+
decision_level (int): Current depth in decision tree
|
20
|
+
propagated_clauses (int): Counter for clause additions
|
21
|
+
|
22
|
+
Example:
|
23
|
+
>>> puzzle = [[0 for _ in range(25)] for _ in range(25)]
|
24
|
+
>>> solver = DPLLTSolver(puzzle)
|
25
|
+
>>> solution = solver.solve()
|
26
|
+
"""
|
27
|
+
|
28
|
+
def __init__(self, sudoku: List[List[int]]) -> None:
|
29
|
+
"""Initialize DPLL(T) solver with theory support.
|
30
|
+
|
31
|
+
Args:
|
32
|
+
sudoku: 25x25 grid with values 0-25 (0 for empty cells)
|
33
|
+
|
34
|
+
Raises:
|
35
|
+
SudokuError: If puzzle format is invalid
|
36
|
+
"""
|
37
|
+
if not sudoku or not isinstance(sudoku, list) or len(sudoku) != 25:
|
38
|
+
raise SudokuError("Invalid Sudoku puzzle: must be a 25x25 grid")
|
39
|
+
|
40
|
+
self.sudoku = sudoku
|
41
|
+
self.size = 25
|
42
|
+
self.cnf = CNF() # CNF object to store Boolean clauses
|
43
|
+
self.solver = Solver(name="glucose3") # Low-level SAT solver
|
44
|
+
self.theory_state = {} # Store theory constraints dynamically
|
45
|
+
self.decision_level = 0
|
46
|
+
self.propagated_clauses = 0
|
47
|
+
|
48
|
+
def _count_clause(self) -> None:
|
49
|
+
self.propagated_clauses += 1
|
50
|
+
|
51
|
+
def add_sudoku_clauses(self) -> None:
|
52
|
+
size = self.size
|
53
|
+
block_size = int(size**0.5)
|
54
|
+
|
55
|
+
def get_var(row, col, num):
|
56
|
+
return row * size * size + col * size + num
|
57
|
+
|
58
|
+
# At least one number in each cell
|
59
|
+
for row in range(size):
|
60
|
+
for col in range(size):
|
61
|
+
self.cnf.append([get_var(row, col, num) for num in range(1, size + 1)])
|
62
|
+
self._count_clause()
|
63
|
+
|
64
|
+
# At most one number in each cell
|
65
|
+
for num1 in range(1, size + 1):
|
66
|
+
for num2 in range(num1 + 1, size + 1):
|
67
|
+
self.cnf.append(
|
68
|
+
[-get_var(row, col, num1), -get_var(row, col, num2)]
|
69
|
+
)
|
70
|
+
self._count_clause()
|
71
|
+
|
72
|
+
# Add row constraints
|
73
|
+
for row in range(size):
|
74
|
+
for num in range(1, size + 1):
|
75
|
+
self.cnf.append([get_var(row, col, num) for col in range(size)])
|
76
|
+
self._count_clause()
|
77
|
+
|
78
|
+
# Add column constraints
|
79
|
+
for col in range(size):
|
80
|
+
for num in range(1, size + 1):
|
81
|
+
self.cnf.append([get_var(row, col, num) for row in range(size)])
|
82
|
+
self._count_clause()
|
83
|
+
|
84
|
+
# Add block constraints
|
85
|
+
for block_row in range(block_size):
|
86
|
+
for block_col in range(block_size):
|
87
|
+
for num in range(1, size + 1):
|
88
|
+
self.cnf.append(
|
89
|
+
[
|
90
|
+
get_var(
|
91
|
+
block_row * block_size + i,
|
92
|
+
block_col * block_size + j,
|
93
|
+
num,
|
94
|
+
)
|
95
|
+
for i in range(block_size)
|
96
|
+
for j in range(block_size)
|
97
|
+
]
|
98
|
+
)
|
99
|
+
self._count_clause()
|
100
|
+
|
101
|
+
# Add initial assignments from the puzzle
|
102
|
+
for row in range(size):
|
103
|
+
for col in range(size):
|
104
|
+
if self.sudoku[row][col] != 0:
|
105
|
+
num = self.sudoku[row][col]
|
106
|
+
self.cnf.append([get_var(row, col, num)])
|
107
|
+
self._count_clause()
|
108
|
+
|
109
|
+
def theory_propagation(self) -> Optional[List[int]]:
|
110
|
+
block_size = int(self.size**0.5)
|
111
|
+
|
112
|
+
def block_index(row, col):
|
113
|
+
return (row // block_size) * block_size + (col // block_size)
|
114
|
+
|
115
|
+
# Track constraints dynamically
|
116
|
+
for row in range(self.size):
|
117
|
+
for col in range(self.size):
|
118
|
+
if self.sudoku[row][col] != 0:
|
119
|
+
num = self.sudoku[row][col]
|
120
|
+
# Check row, column, and block constraints
|
121
|
+
if num in self.theory_state.get((row, "row"), set()):
|
122
|
+
return [-self.get_var(row, col, num)]
|
123
|
+
if num in self.theory_state.get((col, "col"), set()):
|
124
|
+
return [-self.get_var(row, col, num)]
|
125
|
+
if num in self.theory_state.get(
|
126
|
+
(block_index(row, col), "block"), set()
|
127
|
+
):
|
128
|
+
return [-self.get_var(row, col, num)]
|
129
|
+
|
130
|
+
# Add constraints to theory state
|
131
|
+
self.theory_state.setdefault((row, "row"), set()).add(num)
|
132
|
+
self.theory_state.setdefault((col, "col"), set()).add(num)
|
133
|
+
self.theory_state.setdefault(
|
134
|
+
(block_index(row, col), "block"), set()
|
135
|
+
).add(num)
|
136
|
+
return None
|
137
|
+
|
138
|
+
def extract_solution(self, model: List[int]) -> List[List[int]]:
|
139
|
+
"""Convert SAT model to Sudoku grid."""
|
140
|
+
solution = [[0 for _ in range(self.size)] for _ in range(self.size)]
|
141
|
+
for var in model:
|
142
|
+
if var > 0: # Only consider positive assignments
|
143
|
+
var -= 1
|
144
|
+
num = var % self.size + 1
|
145
|
+
col = (var // self.size) % self.size
|
146
|
+
row = var // (self.size * self.size)
|
147
|
+
solution[row][col] = num
|
148
|
+
return solution
|
149
|
+
|
150
|
+
def validate_solution(self, solution: List[List[int]]) -> bool:
|
151
|
+
size = self.size
|
152
|
+
block_size = int(size**0.5)
|
153
|
+
|
154
|
+
# Validate rows
|
155
|
+
for row in solution:
|
156
|
+
if len(set(row)) != size or not all(1 <= num <= size for num in row):
|
157
|
+
return False
|
158
|
+
|
159
|
+
# Validate columns
|
160
|
+
for col in range(size):
|
161
|
+
column = [solution[row][col] for row in range(size)]
|
162
|
+
if len(set(column)) != size:
|
163
|
+
return False
|
164
|
+
|
165
|
+
# Validate blocks
|
166
|
+
for block_row in range(block_size):
|
167
|
+
for block_col in range(block_size):
|
168
|
+
block = [
|
169
|
+
solution[block_row * block_size + i][block_col * block_size + j]
|
170
|
+
for i in range(block_size)
|
171
|
+
for j in range(block_size)
|
172
|
+
]
|
173
|
+
if len(set(block)) != size:
|
174
|
+
return False
|
175
|
+
|
176
|
+
return True
|
177
|
+
|
178
|
+
def solve(self) -> Optional[List[List[int]]]:
|
179
|
+
"""Solve Sudoku using DPLL(T) algorithm.
|
180
|
+
|
181
|
+
Returns:
|
182
|
+
Solved 25x25 grid if satisfiable, None if unsatisfiable
|
183
|
+
|
184
|
+
Raises:
|
185
|
+
SudokuError: If solver produces invalid solution
|
186
|
+
|
187
|
+
Note:
|
188
|
+
Combines SAT solving with theory propagation in DPLL(T) style
|
189
|
+
"""
|
190
|
+
"""Solve the Sudoku puzzle using DPLL(T)."""
|
191
|
+
self.add_sudoku_clauses()
|
192
|
+
self.solver.append_formula(self.cnf.clauses)
|
193
|
+
|
194
|
+
while self.solver.solve():
|
195
|
+
# Perform theory propagation
|
196
|
+
conflict_clause = self.theory_propagation()
|
197
|
+
if conflict_clause:
|
198
|
+
# Add conflict clause and continue solving
|
199
|
+
self.solver.add_clause(conflict_clause)
|
200
|
+
self._count_clause()
|
201
|
+
else:
|
202
|
+
# Extract and validate the solution
|
203
|
+
model = self.solver.get_model()
|
204
|
+
solution = self.extract_solution(model)
|
205
|
+
if self.validate_solution(solution):
|
206
|
+
return solution
|
207
|
+
else:
|
208
|
+
raise SudokuError("Invalid solution generated.")
|
209
|
+
|
210
|
+
# If UNSAT, return None
|
211
|
+
return None
|
@@ -0,0 +1,160 @@
|
|
1
|
+
from z3 import Solver, Int, Distinct, sat
|
2
|
+
from sudoku_smt_solvers.solvers.sudoku_error import SudokuError
|
3
|
+
|
4
|
+
|
5
|
+
class Z3Solver:
|
6
|
+
"""Z3-based SMT solver for Sudoku puzzles.
|
7
|
+
|
8
|
+
Uses integer variables and distinct constraints to encode Sudoku rules.
|
9
|
+
Tracks constraint propagation for performance analysis.
|
10
|
+
|
11
|
+
Attributes:
|
12
|
+
sudoku (List[List[int]]): Input puzzle as 25x25 grid
|
13
|
+
size (int): Grid size (25)
|
14
|
+
solver (z3.Solver): Z3 solver instance
|
15
|
+
variables (List[List[z3.Int]]): SMT variables for grid
|
16
|
+
propagated_clauses (int): Counter for constraint additions
|
17
|
+
|
18
|
+
Example:
|
19
|
+
>>> puzzle = [[0 for _ in range(25)] for _ in range(25)]
|
20
|
+
>>> solver = Z3Solver(puzzle)
|
21
|
+
>>> solution = solver.solve()
|
22
|
+
"""
|
23
|
+
|
24
|
+
def __init__(self, sudoku):
|
25
|
+
"""Initialize Z3 Sudoku solver.
|
26
|
+
|
27
|
+
Args:
|
28
|
+
sudoku: 25x25 grid with values 0-25 (0 for empty cells)
|
29
|
+
|
30
|
+
Raises:
|
31
|
+
SudokuError: If puzzle format is invalid
|
32
|
+
"""
|
33
|
+
if not sudoku or not isinstance(sudoku, list) or len(sudoku) != 25:
|
34
|
+
raise SudokuError("Invalid Sudoku puzzle: must be a 25x25 grid")
|
35
|
+
|
36
|
+
self.sudoku = sudoku
|
37
|
+
self.size = len(sudoku)
|
38
|
+
self.solver = None
|
39
|
+
self.variables = None
|
40
|
+
self.propagated_clauses = 0
|
41
|
+
|
42
|
+
def create_variables(self):
|
43
|
+
self.variables = [
|
44
|
+
[Int(f"x_{i}_{j}") for j in range(self.size)] for i in range(self.size)
|
45
|
+
]
|
46
|
+
|
47
|
+
def _count_clause(self):
|
48
|
+
self.propagated_clauses += 1
|
49
|
+
|
50
|
+
def encode_rules(self):
|
51
|
+
# Cell range constraints
|
52
|
+
cell_constraints = []
|
53
|
+
for i in range(self.size):
|
54
|
+
for j in range(self.size):
|
55
|
+
cell_constraints.append(1 <= self.variables[i][j])
|
56
|
+
cell_constraints.append(self.variables[i][j] <= 25)
|
57
|
+
self._count_clause()
|
58
|
+
self._count_clause()
|
59
|
+
self.solver.add(cell_constraints)
|
60
|
+
|
61
|
+
# Row constraints
|
62
|
+
row_constraints = [Distinct(self.variables[i]) for i in range(self.size)]
|
63
|
+
self.solver.add(row_constraints)
|
64
|
+
for _ in range(self.size):
|
65
|
+
self._count_clause()
|
66
|
+
|
67
|
+
# Column constraints
|
68
|
+
col_constraints = [
|
69
|
+
Distinct([self.variables[i][j] for i in range(self.size)])
|
70
|
+
for j in range(self.size)
|
71
|
+
]
|
72
|
+
self.solver.add(col_constraints)
|
73
|
+
for _ in range(self.size):
|
74
|
+
self._count_clause()
|
75
|
+
|
76
|
+
# Box constraints
|
77
|
+
box_constraints = [
|
78
|
+
Distinct(
|
79
|
+
[
|
80
|
+
self.variables[5 * box_i + i][5 * box_j + j]
|
81
|
+
for i in range(5)
|
82
|
+
for j in range(5)
|
83
|
+
]
|
84
|
+
)
|
85
|
+
for box_i in range(5)
|
86
|
+
for box_j in range(5)
|
87
|
+
]
|
88
|
+
self.solver.add(box_constraints)
|
89
|
+
for _ in range(25):
|
90
|
+
self._count_clause()
|
91
|
+
|
92
|
+
def encode_puzzle(self):
|
93
|
+
initial_values = []
|
94
|
+
for i in range(self.size):
|
95
|
+
for j in range(self.size):
|
96
|
+
if self.sudoku[i][j] != 0:
|
97
|
+
initial_values.append(self.variables[i][j] == self.sudoku[i][j])
|
98
|
+
self._count_clause()
|
99
|
+
self.solver.add(initial_values)
|
100
|
+
|
101
|
+
def extract_solution(self, model):
|
102
|
+
return [
|
103
|
+
[model.evaluate(self.variables[i][j]).as_long() for j in range(self.size)]
|
104
|
+
for i in range(self.size)
|
105
|
+
]
|
106
|
+
|
107
|
+
def validate_solution(self, solution):
|
108
|
+
# Check range
|
109
|
+
for row in solution:
|
110
|
+
if not all(1 <= num <= 25 for num in row):
|
111
|
+
return False
|
112
|
+
|
113
|
+
# Check rows
|
114
|
+
for row in solution:
|
115
|
+
if len(set(row)) != self.size:
|
116
|
+
return False
|
117
|
+
|
118
|
+
# Check columns
|
119
|
+
for j in range(self.size):
|
120
|
+
col = [solution[i][j] for i in range(self.size)]
|
121
|
+
if len(set(col)) != self.size:
|
122
|
+
return False
|
123
|
+
|
124
|
+
# Check boxes
|
125
|
+
for box_i in range(5):
|
126
|
+
for box_j in range(5):
|
127
|
+
box = [
|
128
|
+
solution[5 * box_i + i][5 * box_j + j]
|
129
|
+
for i in range(5)
|
130
|
+
for j in range(5)
|
131
|
+
]
|
132
|
+
if len(set(box)) != self.size:
|
133
|
+
return False
|
134
|
+
|
135
|
+
return True
|
136
|
+
|
137
|
+
def solve(self):
|
138
|
+
"""Solve Sudoku using Z3 SMT solver.
|
139
|
+
|
140
|
+
Returns:
|
141
|
+
Solved 25x25 grid if satisfiable, None if unsatisfiable
|
142
|
+
|
143
|
+
Note:
|
144
|
+
Validates solution before returning to ensure correctness
|
145
|
+
"""
|
146
|
+
self.solver = Solver()
|
147
|
+
self.create_variables()
|
148
|
+
self.encode_rules()
|
149
|
+
self.encode_puzzle()
|
150
|
+
|
151
|
+
result = self.solver.check()
|
152
|
+
|
153
|
+
if result == sat:
|
154
|
+
model = self.solver.model()
|
155
|
+
solution = self.extract_solution(model)
|
156
|
+
|
157
|
+
if self.validate_solution(solution):
|
158
|
+
return solution
|
159
|
+
|
160
|
+
return None
|
@@ -0,0 +1,21 @@
|
|
1
|
+
MIT License
|
2
|
+
|
3
|
+
Copyright (c) 2024 liamjdavis
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in all
|
13
|
+
copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21
|
+
SOFTWARE.
|
@@ -0,0 +1,161 @@
|
|
1
|
+
Metadata-Version: 2.1
|
2
|
+
Name: sudoku_smt_solvers
|
3
|
+
Version: 0.1.0
|
4
|
+
Summary: A collection of SAT and SMT solvers for solving Sudoku puzzles
|
5
|
+
Home-page: https://liamjdavis.github.io/sudoku-smt-solvers
|
6
|
+
Author: Liam Davis
|
7
|
+
Author-email: ljdavis27@amherst.edu
|
8
|
+
License: MIT
|
9
|
+
Classifier: Programming Language :: Python :: 3
|
10
|
+
Classifier: License :: OSI Approved :: MIT License
|
11
|
+
Classifier: Operating System :: OS Independent
|
12
|
+
Requires-Python: >=3.9
|
13
|
+
Description-Content-Type: text/markdown
|
14
|
+
License-File: LICENSE
|
15
|
+
Requires-Dist: cvc5
|
16
|
+
Requires-Dist: pysat
|
17
|
+
Requires-Dist: z3-solver
|
18
|
+
|
19
|
+
# Sudoku-SMT-Solvers
|
20
|
+
|
21
|
+
[![Pytest + CI/CD](https://github.com/liamjdavis/Sudoku-SMT-Solvers/actions/workflows/test.yml/badge.svg)](ttps://github.com/liamjdavis/Sudoku-SMT-Solvers/actions/workflows/test.yml)
|
22
|
+
[![Coverage Status](https://coveralls.io/repos/github/liamjdavis/Sudoku-SMT-Solvers/badge.svg)](https://coveralls.io/github/liamjdavis/Sudoku-SMT-Solvers)
|
23
|
+
[![Docs Build Deployment](https://github.com/liamjdavis/Sudoku-SMT-Solvers/actions/workflows/docs.yml/badge.svg)](https://github.com/liamjdavis/Sudoku-SMT-Solvers/actions/workflows/docs.yml)
|
24
|
+
[![Documentation](https://img.shields.io/badge/docs-latest-blue.svg)](https://liamjdavis.github.io/sudoku-smt-solvers)
|
25
|
+
|
26
|
+
|
27
|
+
## About
|
28
|
+
This repository contains the code for the study "Evaluating SMT-Based Solvers on Sudoku". Created by Liam Davis (@liamjdavis) and Ryan Ji (@TairanJ) as their for COSC-241 Artificial Intelligence at Amherst College, it evaluates the efficacy of SMT-Based Solvers by benchmarking three modern SMT solvers (DPLL(T), Z3, and CVC5) against the DPLL algorithm on a collection of 100 25x25 Sudoku puzzles of varying difficulty.
|
29
|
+
|
30
|
+
Along with the study, we also published `sudoku-smt-solvers`, a Python package that provides the various SMT-based Sudoku solvers and benchmarking tools we built for this study. The package features DPLL(T), Z3, and CVC5 solvers optimized for 25x25 Sudoku puzzles, a puzzle generator for creating test cases, and a comprehensive benchmarking suite. Available through pip, it offers a simple API for solving Sudoku puzzles using state-of-the-art SMT solvers while facilitating performance comparisons between different solving approaches.
|
31
|
+
|
32
|
+
The study aims to answer three research questions:
|
33
|
+
1. How have logical solvers evolved over time in terms of performance and capability?
|
34
|
+
2. How do different encodings of Sudoku affect the efficiency and scalability of these solvers?
|
35
|
+
3. Are there specific features or optimizations in SMT solvers that provide a significant advantage over traditional SAT solvers for this class of problem?
|
36
|
+
|
37
|
+
## Getting started
|
38
|
+
### Installation
|
39
|
+
To run the code locally, you can install with `pip`
|
40
|
+
|
41
|
+
```bash
|
42
|
+
pip install sudoku-smt-solvers
|
43
|
+
```
|
44
|
+
|
45
|
+
### Solvers
|
46
|
+
This package includes the DPLL solver and three modern SMT solvers:
|
47
|
+
* DPLL(T)
|
48
|
+
* CVC5
|
49
|
+
* Z3
|
50
|
+
|
51
|
+
To run any of the solvers on a 25x25 Sudoku puzzle, you can create an instance of the solver class and call the solve method in a file at the root (Sudoku-smt-solvers). Here is an example using Z3:
|
52
|
+
|
53
|
+
```python
|
54
|
+
from sudoku_smt_solvers.solvers.z3_solver import Z3Solver
|
55
|
+
|
56
|
+
# Example grid (25x25)
|
57
|
+
grid = [[0] * 25 for _ in range(25)]
|
58
|
+
solver = Z3Solver(grid)
|
59
|
+
solution = solver.solve()
|
60
|
+
|
61
|
+
if solution:
|
62
|
+
print(f"Solution:\n\n{solution}")
|
63
|
+
else:
|
64
|
+
print("No solution exists.")
|
65
|
+
```
|
66
|
+
|
67
|
+
### Sudoku Generator
|
68
|
+
This package also includes a generator for creating Sudoku puzzles to be used as benchmarks. To generate a puzzle, create an instance of the `SudokuGenerator` class and call the `generate` method. Here is an example:
|
69
|
+
|
70
|
+
```python
|
71
|
+
from sudoku_smt_solvers.benchmarks.sudoku_generator.sudoku_generator import SudokuGenerator
|
72
|
+
|
73
|
+
generator = SudokuGenerator(size = 25, givens = 80, timeout = 5, difficulty = "Medium", puzzles_dir = "benchmarks/puzzles", solutions_dir = "benchmarks/solutions")
|
74
|
+
|
75
|
+
generator.generate()
|
76
|
+
```
|
77
|
+
|
78
|
+
Due to the computational complexity of generating large sudoku puzzles, it is recommended that you run multiple generator instances in parallel to create benchmarks.
|
79
|
+
|
80
|
+
### Benchmark Runner
|
81
|
+
To run the benchmarks you created on all four solvers, create an instance of the `BenchmarkRunner` class and call the `run_benchmarks` method. Here is an example:
|
82
|
+
|
83
|
+
```python
|
84
|
+
from sudoku_smt_solvers.benchmarks.benchmark_runner import BenchmarkRunner
|
85
|
+
|
86
|
+
runner = BenchmarkRunner(
|
87
|
+
puzzles_dir='resources/benchmarks/puzzles/',
|
88
|
+
solutions_dir='resources/benchmarks/solutions/',
|
89
|
+
results_dir='results/'
|
90
|
+
)
|
91
|
+
runner.run_benchmarks()
|
92
|
+
```
|
93
|
+
|
94
|
+
## Contributing
|
95
|
+
|
96
|
+
We welcome contributions in the form of new solvers, additions to our benchmark suite, or anything that improves the tool! Here's how to get started:
|
97
|
+
|
98
|
+
### Development Setup
|
99
|
+
|
100
|
+
1. **Fork and Clone**:
|
101
|
+
Begin by forking the repository and cloning your fork locally:
|
102
|
+
```bash
|
103
|
+
git clone https://github.com/yourusername/Sudoku-SMT-Solvers.git
|
104
|
+
cd Sudoku-SMT-Solvers
|
105
|
+
```
|
106
|
+
|
107
|
+
2. **Create and Activate a Virtual Environment**:
|
108
|
+
Set up a Python virtual environment to isolate your dependencies:
|
109
|
+
```bash
|
110
|
+
python3 -m venv venv
|
111
|
+
source venv/bin/activate # On Windows, use `venv\Scripts\activate`
|
112
|
+
```
|
113
|
+
|
114
|
+
3. **Install Dependencies**:
|
115
|
+
Install the required dependencies from the `requirements.txt` file:
|
116
|
+
```bash
|
117
|
+
pip install -r requirements.txt
|
118
|
+
```
|
119
|
+
|
120
|
+
4. **Set Up Pre-Commit Hooks**:
|
121
|
+
Install and configure pre-commit hooks to maintain code quality:
|
122
|
+
```bash
|
123
|
+
pip install pre-commit
|
124
|
+
pre-commit install
|
125
|
+
```
|
126
|
+
|
127
|
+
To manually run the hooks and verify code compliance, use:
|
128
|
+
```bash
|
129
|
+
pre-commit run
|
130
|
+
```
|
131
|
+
|
132
|
+
5. **Testing and Coverage Requirements**:
|
133
|
+
- Write tests for any new code or modifications.
|
134
|
+
- Use `pytest` for running tests:
|
135
|
+
```bash
|
136
|
+
pytest
|
137
|
+
```
|
138
|
+
- Ensure the test coverage is at least 90%:
|
139
|
+
|
140
|
+
6. **Add and Commit Your Changes**:
|
141
|
+
- Follow the existing code style and structure.
|
142
|
+
- Verify that all pre-commit hooks pass and the test coverage meets the minimum requirement.
|
143
|
+
```bash
|
144
|
+
git add .
|
145
|
+
git commit -m "Description of your changes"
|
146
|
+
```
|
147
|
+
|
148
|
+
7. **Push Your Branch**:
|
149
|
+
Push your changes to your forked repository:
|
150
|
+
```bash
|
151
|
+
git push origin your-branch-name
|
152
|
+
```
|
153
|
+
|
154
|
+
8. **Open a PR for us to review**
|
155
|
+
---
|
156
|
+
|
157
|
+
Thank you for your interest in contributing to Sudoku-SMT-Solvers! Your efforts help make this project better for everyone.
|
158
|
+
|
159
|
+
|
160
|
+
## Contact Us
|
161
|
+
For any questions or support, please reach out to Liam at ljdavis27 at amherst.edu and Ryan at tji26 at amherst.edu
|
@@ -0,0 +1,14 @@
|
|
1
|
+
sudoku_smt_solvers/__init__.py,sha256=vTwJLa8Yp7q-OdzA44zhFIK-LhK2o8aDt-4qOJJ1M7M,134
|
2
|
+
sudoku_smt_solvers/benchmarks/__init__.py,sha256=lMrK_yj_otywN4dMvvVFtTzyTdamS_4nUgjm-k07obU,271
|
3
|
+
sudoku_smt_solvers/benchmarks/benchmark_runner.py,sha256=Mc87ul-6VkWMomtlmOMc9GXmC4AwfQUwIWKDjeFvSVA,7712
|
4
|
+
sudoku_smt_solvers/solvers/__init__.py,sha256=5qFfWzKN2WPDoFLN5ye6Ly5BqEaUdk2ks_jPP3c53l8,142
|
5
|
+
sudoku_smt_solvers/solvers/cvc5_solver.py,sha256=DfLlgzhhgSaI3tV_4mzy3vdpxY5tISSFhs0xhRWcMYk,6849
|
6
|
+
sudoku_smt_solvers/solvers/dpll_solver.py,sha256=ThLT1v87oNnzDMpYmoPcmTeeXijVIgk6A6qULWVID28,6138
|
7
|
+
sudoku_smt_solvers/solvers/dpllt_solver.py,sha256=4UXcod7EnJGlD7OlakmPHOuIyWga5yN9rMtKMvuEAc8,7986
|
8
|
+
sudoku_smt_solvers/solvers/sudoku_error.py,sha256=iUcv1QCgQ7anov0b-AtIB1fbfZ3yWfci4eTp_8RuUJg,208
|
9
|
+
sudoku_smt_solvers/solvers/z3_solver.py,sha256=awQ3tzEMIy2woFmATMiwQsC2YtktxfJlx55MudB1SN0,4922
|
10
|
+
sudoku_smt_solvers-0.1.0.dist-info/LICENSE,sha256=PbuZlvluV1l4HMMfPAVe5yjVvFGBK9DFp20JNhoJ8bI,1067
|
11
|
+
sudoku_smt_solvers-0.1.0.dist-info/METADATA,sha256=lbOf7Pgg4nsMlchZ54WHWcJoGa98BvgCMHCMieULSrw,6414
|
12
|
+
sudoku_smt_solvers-0.1.0.dist-info/WHEEL,sha256=A3WOREP4zgxI0fKrHUG8DC8013e3dK3n7a6HDbcEIwE,91
|
13
|
+
sudoku_smt_solvers-0.1.0.dist-info/top_level.txt,sha256=Ww9vs8KC4aujzfGfddMl_X8Qzh-Cywn9aBTLQgemi5A,19
|
14
|
+
sudoku_smt_solvers-0.1.0.dist-info/RECORD,,
|
@@ -0,0 +1 @@
|
|
1
|
+
sudoku_smt_solvers
|