subsurface-terra 2025.1.0rc8__py3-none-any.whl → 2025.1.0rc11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
subsurface/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '2025.1.0rc8'
20
+ __version__ = version = '2025.1.0rc11'
21
21
  __version_tuple__ = version_tuple = (2025, 1, 0)
@@ -111,9 +111,11 @@ def _map_attrs_to_measured_depths(attrs: pd.DataFrame, survey: Survey) -> pd.Dat
111
111
 
112
112
  # Start with a copy of the existing attributes DataFrame
113
113
  new_attrs = survey.survey_trajectory.data.points_attributes.copy()
114
- if 'component lith' in attrs.columns:
114
+ if 'component lith' in attrs.columns and 'lith_ids' not in attrs.columns:
115
115
  # Factorize lith components directly in-place
116
116
  attrs['lith_ids'], _ = pd.factorize(attrs['component lith'], use_na_sentinel=True)
117
+ else:
118
+ pass
117
119
 
118
120
  # Add missing columns from attrs, preserving their dtypes
119
121
  for col in attrs.columns.difference(new_attrs.columns):
@@ -152,7 +154,7 @@ def _map_attrs_to_measured_depths(attrs: pd.DataFrame, survey: Survey) -> pd.Dat
152
154
  continue
153
155
  attr_to_interpolate = attrs_well[col]
154
156
  # make sure the attr_to_interpolate is not a string
155
- if attr_to_interpolate.dtype == 'O':
157
+ if attr_to_interpolate.dtype == 'O' or isinstance(attr_to_interpolate.dtype, pd.CategoricalDtype):
156
158
  continue
157
159
  if col in ['lith_ids', 'component lith']:
158
160
  interp_kind = 'nearest'
@@ -37,9 +37,9 @@ def load_with_trimesh(path_to_file_or_buffer, file_type: Optional[str] = None,
37
37
  # Old Z axis → New -Y axis
38
38
  # Old X axis → Remains as X axis
39
39
  transform = np.array([
40
- [1, 0, 0, 0], # X → X
41
- [0, 0, 1, 0], # Y → Z
42
- [0, 1, 0, 0], # Z → -Y
40
+ [1, 0, 0, 0],
41
+ [0, 0, -1, 0],
42
+ [0, 1, 0, 0],
43
43
  [0, 0, 0, 1]
44
44
  ])
45
45
 
@@ -157,7 +157,7 @@ def _process_mesh(mesh_lines) -> Optional[GOCADMesh]:
157
157
  continue
158
158
 
159
159
  if in_tface:
160
- if line.startswith('VRTX'):
160
+ if line.startswith('VRTX') or line.startswith('PVRTX'):
161
161
  # Parse vertex line
162
162
  parts = line.split()
163
163
  if len(parts) >= 5:
@@ -167,6 +167,7 @@ def _process_mesh(mesh_lines) -> Optional[GOCADMesh]:
167
167
  vertex_indices.append(vid)
168
168
  vertex_list.append([x, y, z])
169
169
  vid_to_index[vid] = len(vertex_list) - 1
170
+ # If PVRTX then there could be more columns with property values. For now, we are just parsing the vertex coordinates.
170
171
  continue
171
172
  elif line.startswith('ATOM'):
172
173
  # Parse ATOM line
@@ -7,6 +7,7 @@ from subsurface.core.structs import StructuredData
7
7
  from .... import optional_requirements
8
8
  from ....core.structs import UnstructuredData
9
9
  from subsurface.core.reader_helpers.readers_data import GenericReaderFilesHelper
10
+ import numpy as np
10
11
  import pandas as pd
11
12
 
12
13
 
@@ -32,7 +33,7 @@ def read_VTK_structured_grid(file_or_buffer: Union[str, BytesIO], active_scalars
32
33
  # If it's a file path, read directly
33
34
  pyvista_obj = pv.read(file_or_buffer)
34
35
  try:
35
- pyvista_struct: pv.ExplicitStructuredGrid = pyvista_obj.cast_to_explicit_structured_grid()
36
+ pyvista_struct: pv.ExplicitStructuredGrid = pv_cast_to_explicit_structured_grid(pyvista_obj)
36
37
  except Exception as e:
37
38
  raise f"The file is not a structured grid: {e}"
38
39
 
@@ -99,3 +100,131 @@ def read_volumetric_mesh_attr_file(reader_helper: GenericReaderFilesHelper) -> p
99
100
  df = pd.read_table(reader_helper.file_or_buffer, **reader_helper.pandas_reader_kwargs)
100
101
  df.columns = df.columns.astype(str).str.strip()
101
102
  return df
103
+
104
+
105
+ def pv_cast_to_explicit_structured_grid(pyvista_object: 'pv.DataSet') -> 'pv.ExplicitStructuredGrid':
106
+ pv = optional_requirements.require_pyvista()
107
+
108
+ match pyvista_object:
109
+ case pv.RectilinearGrid() as rectl_grid:
110
+ return __pv_convert_rectilinear_to_explicit(rectl_grid)
111
+ case pv.UnstructuredGrid() as unstr_grid:
112
+ return __pv_convert_unstructured_to_explicit(unstr_grid)
113
+ case _:
114
+ return pyvista_object.cast_to_explicit_structured_grid()
115
+
116
+
117
+ def __pv_convert_unstructured_to_explicit(unstr_grid):
118
+ """
119
+ Convert a PyVista UnstructuredGrid to an ExplicitStructuredGrid if possible.
120
+ """
121
+ pv = optional_requirements.require_pyvista()
122
+
123
+ # First check if the grid has the necessary attributes to be treated as structured
124
+ if not hasattr(unstr_grid, 'n_cells') or unstr_grid.n_cells == 0:
125
+ raise ValueError("The unstructured grid has no cells.")
126
+
127
+ # Try to detect if the grid has a structured topology
128
+ # Check if the grid has cell type 11 (VTK_VOXEL) or 12 (VTK_HEXAHEDRON)
129
+ cell_types = unstr_grid.celltypes
130
+
131
+ # Voxels (11) and hexahedra (12) are the cell types used in structured grids
132
+ if not all(ct in [11, 12] for ct in cell_types):
133
+ raise ValueError("The unstructured grid contains non-hexahedral cells and cannot be converted to explicit structured.")
134
+
135
+ # Try to infer dimensions from the grid
136
+ try:
137
+ # Method 1: Try PyVista's built-in conversion if available
138
+ return unstr_grid.cast_to_explicit_structured_grid()
139
+ except (AttributeError, TypeError):
140
+ pass
141
+
142
+ try:
143
+ # Method 2: If the grid has dimensions stored as field data
144
+ if "dimensions" in unstr_grid.field_data:
145
+ dims = unstr_grid.field_data["dimensions"]
146
+ if len(dims) == 3:
147
+ nx, ny, nz = dims
148
+ # Verify that dimensions match the number of cells
149
+ if (nx-1)*(ny-1)*(nz-1) != unstr_grid.n_cells:
150
+ raise ValueError("Stored dimensions do not match the number of cells.")
151
+
152
+ # Extract points and reorder if needed
153
+ points = unstr_grid.points.reshape((nx, ny, nz, 3))
154
+
155
+ # Create explicit structured grid
156
+ explicit_grid = pv.ExplicitStructuredGrid((nx, ny, nz), points.reshape((-1, 3)))
157
+ explicit_grid.compute_connectivity()
158
+
159
+ # Transfer data arrays
160
+ for name, array in unstr_grid.cell_data.items():
161
+ explicit_grid.cell_data[name] = array.copy()
162
+ for name, array in unstr_grid.point_data.items():
163
+ explicit_grid.point_data[name] = array.copy()
164
+ for name, array in unstr_grid.field_data.items():
165
+ if name != "dimensions": # Skip dimensions field
166
+ explicit_grid.field_data[name] = array.copy()
167
+
168
+ return explicit_grid
169
+ except (ValueError, KeyError):
170
+ pass
171
+
172
+ # If none of the above methods work, use PyVista's extract_cells function
173
+ # to reconstruct the structured grid if possible
174
+ try:
175
+ # This is a best-effort approach that tries multiple strategies
176
+ return pv.core.filters.convert_unstructured_to_structured_grid(unstr_grid)
177
+ except Exception as e:
178
+ raise ValueError(f"Failed to convert unstructured grid to explicit structured grid: {e}")
179
+
180
+ def __pv_convert_rectilinear_to_explicit(rectl_grid):
181
+
182
+ pv = optional_requirements.require_pyvista()
183
+
184
+ # Extract the coordinate arrays from the input RectilinearGrid.
185
+ x = np.asarray(rectl_grid.x)
186
+ y = np.asarray(rectl_grid.y)
187
+ z = np.asarray(rectl_grid.z)
188
+
189
+ # Helper function: "double" the coordinates to produce an expanded set
190
+ # that, when processed internally via np.unique, returns the original nodal values.
191
+ def doubled_coords(arr):
192
+ return np.repeat(arr, 2)[1:-1]
193
+
194
+ # Double the coordinate arrays.
195
+ xcorn = doubled_coords(x)
196
+ ycorn = doubled_coords(y)
197
+ zcorn = doubled_coords(z)
198
+
199
+ # Build a complete grid of corner points via meshgrid. Fortran ('F') order ensures
200
+ # the connectivity ordering aligns with VTK's expectations.
201
+ xx, yy, zz = np.meshgrid(xcorn, ycorn, zcorn, indexing='ij')
202
+ corners = np.column_stack((xx.ravel(order='F'),
203
+ yy.ravel(order='F'),
204
+ zz.ravel(order='F')))
205
+
206
+ # The dimensions to pass to the ExplicitStructuredGrid constructor should be
207
+ # the counts of unique coordinates in each direction.
208
+ dims = (len(np.unique(xcorn)),
209
+ len(np.unique(ycorn)),
210
+ len(np.unique(zcorn)))
211
+
212
+ # Create the ExplicitStructuredGrid.
213
+ explicit_grid = pv.ExplicitStructuredGrid(dims, corners)
214
+ explicit_grid.compute_connectivity()
215
+
216
+ # --- Copy associated data arrays ---
217
+
218
+ # Transfer all cell data arrays.
219
+ for name, array in rectl_grid.cell_data.items():
220
+ explicit_grid.cell_data[name] = array.copy()
221
+
222
+ # Transfer all point data arrays.
223
+ for name, array in rectl_grid.point_data.items():
224
+ explicit_grid.point_data[name] = array.copy()
225
+
226
+ # (Optional) Transfer field data as well.
227
+ for name, array in rectl_grid.field_data.items():
228
+ explicit_grid.field_data[name] = array.copy()
229
+
230
+ return explicit_grid
@@ -100,6 +100,16 @@ def _validate_lith_data(d: pd.DataFrame, reader_helper: GenericReaderFilesHelper
100
100
  raise AttributeError('If wells attributes represent lithology, `component lith` column must be present in the file. '
101
101
  'Use columns_map to assign column names to these fields. Maybe you are marking as lithology'
102
102
  'the wrong file?')
103
+ else:
104
+ # TODO: Add categories to reader helper
105
+ categories = sorted(d['component lith'].dropna().unique())
106
+ d['component lith'] = pd.Categorical(
107
+ d['component lith'],
108
+ categories=categories,
109
+ ordered=True
110
+ )
111
+
112
+ d['lith_ids'] = d['component lith'].cat.codes + 1
103
113
 
104
114
  given_top = np.isin(['top', 'base'], d.columns).all()
105
115
  given_altitude_and_base = np.isin(['altitude', 'base'], d.columns).all()
File without changes
@@ -0,0 +1,104 @@
1
+ import numpy as np
2
+ import pyvista as pv
3
+
4
+
5
+ def transform_gaussian_blur(grid, sigma=20.0):
6
+ """
7
+ Applies a Gaussian blur to the 'model_name' field of the structured grid.
8
+
9
+ Parameters:
10
+ grid - PyVista grid with 'model_name' field
11
+ sigma - Standard deviation for the Gaussian kernel
12
+ """
13
+ from scipy.ndimage import gaussian_filter
14
+
15
+ # Get the original dimensions of the grid
16
+ dims = grid.dimensions
17
+
18
+ # Reshape the data to 3D array matching grid dimensions
19
+ values = np.array(grid['model_name'])
20
+ values_3d = values.reshape(dims[2] - 1, dims[1] - 1, dims[0] - 1).transpose(2, 1, 0)
21
+
22
+ # Apply Gaussian filter
23
+ blurred_values = gaussian_filter(values_3d, sigma=sigma, axes=(2,))
24
+
25
+ # Reshape back to 1D array
26
+ grid['model_name'] = blurred_values.transpose(2, 1, 0).flatten()
27
+ return grid
28
+
29
+
30
+ def transform_sinusoidal(values, amplitude=1.0, frequency=0.01, phase=0):
31
+ """
32
+ Apply a sinusoidal transformation to the values.
33
+ """
34
+ return values + amplitude * np.sin(frequency * values + phase)
35
+
36
+
37
+ def obfuscate_model_name(grid, transform_functions, attr):
38
+ """
39
+ Applies transformation functions to the 'model_name' field.
40
+ Functions can operate on either the grid or the values array.
41
+ """
42
+ for func in transform_functions:
43
+ if 'grid' in func.__code__.co_varnames:
44
+ # Function expects the full grid
45
+ grid = func(grid)
46
+ else:
47
+ # Function expects just the values array
48
+ values = np.array(grid[attr])
49
+ grid[attr] = func(values)
50
+
51
+ return grid
52
+
53
+
54
+ # pyvista_struct = transform_xy_to_z_propagation(pyvista_struct, z_factor=0.3, noise_level=0.1)
55
+ def transform_subtract_mean(values):
56
+ """
57
+ Subtract the mean of the array from each element.
58
+ """
59
+ return values - np.mean(values)
60
+
61
+
62
+ def transform_scale(values, scale_factor=0.003):
63
+ """
64
+ Multiply each value by scale_factor.
65
+ """
66
+ return values * scale_factor
67
+
68
+
69
+
70
+
71
+ def update_extent(pyvista_grid, new_extent):
72
+ # new_extent: array-like with 6 elements [xmin, xmax, ymin, ymax, zmin, zmax]
73
+ old_bounds = np.array(pyvista_grid.bounds) # [xmin, xmax, ymin, ymax, zmin, zmax]
74
+
75
+ # Check for valid extents
76
+ if any(new_extent[i] >= new_extent[i + 1] for i in range(0, 6, 2)):
77
+ raise ValueError("Each min value must be less than the corresponding max value in the new extent.")
78
+
79
+ # Compute old ranges and new ranges for each axis
80
+ old_ranges = old_bounds[1::2] - old_bounds[0::2] # [x_range, y_range, z_range]
81
+ new_ranges = np.array([new_extent[1] - new_extent[0],
82
+ new_extent[3] - new_extent[2],
83
+ new_extent[5] - new_extent[4]])
84
+
85
+ # Avoid division by zero if any old range is zero
86
+ if np.any(old_ranges == 0):
87
+ raise ValueError("One of the dimensions in the current grid has zero length.")
88
+
89
+ # Get the old points and reshape for easier manipulation
90
+ old_points = pyvista_grid.points # shape (N, 3)
91
+
92
+ # Compute normalized coordinates within the old extent
93
+ norm_points = (old_points - old_bounds[0::2]) / old_ranges
94
+
95
+ # Compute new points based on new extent
96
+ new_mins = np.array([new_extent[0], new_extent[2], new_extent[4]])
97
+ new_points = new_mins + norm_points * new_ranges
98
+
99
+ # Update the grid's points
100
+ pyvista_grid.points = new_points
101
+
102
+ # Updating bounds is implicit once the points are modified.
103
+ pyvista_grid.Modified()
104
+ return pyvista_grid
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: subsurface_terra
3
- Version: 2025.1.0rc8
3
+ Version: 2025.1.0rc11
4
4
  Summary: Subsurface data types and utilities. This version is the one used by Terranigma Solutions. Please feel free to take anything in this repository for the original one.
5
5
  Home-page: https://softwareunderground.github.io/subsurface
6
6
  Author: Software Underground
@@ -1,5 +1,5 @@
1
1
  subsurface/__init__.py,sha256=0D2rCUem3fiHsXFXXSmwheLiPS4cXxEdfWdFBj0b-cY,930
2
- subsurface/_version.py,sha256=0-BBA5HgwLud0-RzWFjmovo55cqFKf4y2LQ_O3YdbRs,541
2
+ subsurface/_version.py,sha256=k9Z1PFW4N27hJOHdtsBGeU2nnn-S8fhplPVjgvRiS9Q,542
3
3
  subsurface/optional_requirements.py,sha256=Wg36RqxzPiLtN-3qSg5K9QVEeXCB0-EjSzHERAoO8EE,2883
4
4
  subsurface/api/__init__.py,sha256=UiOBKQcZJGMeh_5ZNhXqT2iEdiIk721djLX30aFxEa4,341
5
5
  subsurface/api/interfaces/__init__.py,sha256=rqUtJyMLicobcyhmr74TepjmUQAEmlazKT3vjV_n3aA,6
@@ -13,7 +13,7 @@ subsurface/core/geological_formats/boreholes/__init__.py,sha256=47DEQpj8HBSa-_TI
13
13
  subsurface/core/geological_formats/boreholes/_combine_trajectories.py,sha256=U5VribebcMAag0DOKnna983g1BXAGLKCddGra2g3Nos,5246
14
14
  subsurface/core/geological_formats/boreholes/boreholes.py,sha256=Q7KBYIk9M4-SZjDOVx5dMp8DnHBo4VTFrJ4jAKCmrJ8,5256
15
15
  subsurface/core/geological_formats/boreholes/collars.py,sha256=o1I8bS0XqWa2fS0n6XZVKXsuBHknXO2Z_5sdlFc_GAE,750
16
- subsurface/core/geological_formats/boreholes/survey.py,sha256=6UJRFCp-WAEgTB1YboTGrSyrtKhJNCm1R31jjssqrkA,16095
16
+ subsurface/core/geological_formats/boreholes/survey.py,sha256=aaENR0ksT_lK0BYR7HL73KNZ44eo3Ag353xQdVcLOz0,16219
17
17
  subsurface/core/reader_helpers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  subsurface/core/reader_helpers/reader_unstruct.py,sha256=Lme1ano-dQrKhLCwrokcpKqa28DFxDaGAs3ub8MAHtY,397
19
19
  subsurface/core/reader_helpers/readers_data.py,sha256=Vewi8pqv-zooRIhffTM52eWZeP6l9MnHkD9LZj6c1LU,4995
@@ -45,11 +45,11 @@ subsurface/modules/reader/faults/faults.py,sha256=s144Gq0tFvjSUkB66dB86kYjW2l2e1
45
45
  subsurface/modules/reader/geo_object/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
46
  subsurface/modules/reader/mesh/_GOCAD_mesh.py,sha256=_MwNy4iVMGnemvT01hhB-nbCc8a1r8ETEAkD-AWcBz4,3304
47
47
  subsurface/modules/reader/mesh/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
- subsurface/modules/reader/mesh/_trimesh_reader.py,sha256=-cmm-BYIUC9x6tqABNgKzNMSrDfuoTdZ7YpfB1nNPh0,17260
48
+ subsurface/modules/reader/mesh/_trimesh_reader.py,sha256=GPKFwWbWuvL-RvY_cGjEaRghBUda2mIxY4mbEp0AVEk,17231
49
49
  subsurface/modules/reader/mesh/csv_mesh_reader.py,sha256=0iXYg-JOLUg7yH6Rw6qCoxXvKh0hOUTwjYxbhSlGfGM,1969
50
50
  subsurface/modules/reader/mesh/dxf_reader.py,sha256=JDhzFRE46sdwMGBB8enHNluH07ohqt6LhgLHiSQRL-I,6525
51
51
  subsurface/modules/reader/mesh/glb_reader.py,sha256=dierR9AYM5Q2szLuemfLlM_JcPRNtDrD5fpF8zNjBS8,1118
52
- subsurface/modules/reader/mesh/mx_reader.py,sha256=o1OPnGSSOjJCpLCzazRsmjhFxhbYrCi6zTTRnKtCJ30,8419
52
+ subsurface/modules/reader/mesh/mx_reader.py,sha256=YQqvOJ4FuPrlz_3bHIdqT-9YKkirF_Vbjnv6cVQnwAw,8587
53
53
  subsurface/modules/reader/mesh/obj_reader.py,sha256=LXf-N-So5xWhnZ6uHJPjcCfQM71a_mqJa3hQEikOGzU,2207
54
54
  subsurface/modules/reader/mesh/omf_mesh_reader.py,sha256=0gewosxlLVTQQoUyvYB91AOZ_SByQqxw53coSwCKeMI,1436
55
55
  subsurface/modules/reader/mesh/surface_reader.py,sha256=EcRjr3sAJbwZpqm7WHHe1bnMZyGO5MSgF6qm5bSBLtQ,2420
@@ -60,19 +60,21 @@ subsurface/modules/reader/profiles/profiles_core.py,sha256=kqlt79hjdWWQNBjWqLGlu
60
60
  subsurface/modules/reader/topography/__init__.py,sha256=zkaTX5JxsNfjF-dFeEbHfUB58vhPMjm6Iiqx9HgJOrY,14
61
61
  subsurface/modules/reader/topography/topo_core.py,sha256=6rkDp9XrUSif8ZuraDrUK2I8-yqEp8CRm4r4l2lQuw0,3542
62
62
  subsurface/modules/reader/volume/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
- subsurface/modules/reader/volume/read_volume.py,sha256=Dlv7G5GYikdZCp9H5SMfL9vSsUAKpc4b3vBB-P7IVBM,4025
63
+ subsurface/modules/reader/volume/read_volume.py,sha256=GvlYIROefskHkqpwvSu60jQIzev54jBfbrL74CYT7TU,9580
64
64
  subsurface/modules/reader/volume/segy_reader.py,sha256=oBS1FwwzFTMBmAR3odJMvW-as_0YMudPcFmndpcApW4,3958
65
65
  subsurface/modules/reader/volume/seismic.py,sha256=dRA7YKw9fkrkAYS7Bnfm7GfCPdfxVsDyfM7frQK56V4,4950
66
66
  subsurface/modules/reader/volume/volume_utils.py,sha256=7ToIdVwq04lMyYGJE9PzYVQt9xl9mjbXXrzvMfM6wGw,1367
67
67
  subsurface/modules/reader/wells/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  subsurface/modules/reader/wells/_read_to_df.py,sha256=PFs5ottnm7LtzmJgPh8UN3cdR4j2y734RTDPoks16ls,2294
69
- subsurface/modules/reader/wells/read_borehole_interface.py,sha256=iyoaee00vfSzqF4sWy9WA4a92VtEb16ERbrkdWgWszE,5548
69
+ subsurface/modules/reader/wells/read_borehole_interface.py,sha256=1Kq_IjHhhPgxQKjk5B655CT9wCYCYz5T4UjggF8Pdfg,5899
70
70
  subsurface/modules/reader/wells/wells_utils.py,sha256=CoVF9Qtba8Qu42JcVmtsyaSS_PA80lcJ6mzh6-TQt2Q,2206
71
71
  subsurface/modules/reader/wells/DEP/__init__.py,sha256=8PES2m_HqZtZ-jFhPynJWpk8dovKAh1UyVnfAxg_NXY,1887
72
72
  subsurface/modules/reader/wells/DEP/_well_files_reader.py,sha256=QYZ9p7iyGt1JDlkrFpYPFaMnXwLj7wdFZmTYiO2niSY,6216
73
73
  subsurface/modules/reader/wells/DEP/_wells_api.py,sha256=SZU0cwfbn-bqKaAIG94be9Azxyx0pnvZrE2yXxIIJD4,2334
74
74
  subsurface/modules/reader/wells/DEP/_welly_reader.py,sha256=ktBEswaQSj0mzubFME8oTP7sTPDI1r65zVfT91LORMI,6468
75
75
  subsurface/modules/reader/wells/DEP/pandas_to_welly.py,sha256=Z67LE6K4Dy5LkR6ZrAmQx9u0UbLJj8oWxAALVx_eyDc,6925
76
+ subsurface/modules/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
+ subsurface/modules/tools/mocking_aux.py,sha256=DcavlyWV5pFl31MHUgOxAXW2I_y8bKqbyesBfCDWnLs,3581
76
78
  subsurface/modules/visualization/__init__.py,sha256=Y9SUj2cflk0ulCj1F1cJAeoCQJOD0eN4E98wxZ5Zhj0,65
77
79
  subsurface/modules/visualization/to_pyvista.py,sha256=_xM4Xx3PD0wyxtUrMHS5k6xbiDQ5k_Kis8dE-wnM77M,10514
78
80
  subsurface/modules/writer/__init__.py,sha256=1oDGj2X1G-R2ZRi_8sMBfq1QHkUarbycmMVvSdSTk-g,50
@@ -86,8 +88,8 @@ subsurface/modules/writer/to_rex/material_encoder.py,sha256=zGlqF9X_Civ9VvtGwo-I
86
88
  subsurface/modules/writer/to_rex/mesh_encoder.py,sha256=6TBtJhYJEAMEBHxQkbweXrJO1jIUx1ClM8l5ajVCrLc,6443
87
89
  subsurface/modules/writer/to_rex/to_rex.py,sha256=njsm2d3e69pRVfF_TOC_hexvXPmgNTZdJvhbnXcvyIo,3800
88
90
  subsurface/modules/writer/to_rex/utils.py,sha256=HEpJ95LjHOK24ePpmLpPP5uFyv6i_kN3AWh031q-1Uc,379
89
- subsurface_terra-2025.1.0rc8.dist-info/licenses/LICENSE,sha256=GSXh9K5TZauM89BeGbYg07oST_HMhOTiZoEGaUeKBtA,11606
90
- subsurface_terra-2025.1.0rc8.dist-info/METADATA,sha256=8FPwCzETpUqDGDVQ4uiRn9Q2hk2WRarAUOhJs6zeNoc,7093
91
- subsurface_terra-2025.1.0rc8.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
92
- subsurface_terra-2025.1.0rc8.dist-info/top_level.txt,sha256=f32R_tUSf83CfkpB4vjv5m2XcD8TmDX9h7F4rnEXt5A,11
93
- subsurface_terra-2025.1.0rc8.dist-info/RECORD,,
91
+ subsurface_terra-2025.1.0rc11.dist-info/licenses/LICENSE,sha256=GSXh9K5TZauM89BeGbYg07oST_HMhOTiZoEGaUeKBtA,11606
92
+ subsurface_terra-2025.1.0rc11.dist-info/METADATA,sha256=KNe6EBDmcZNm9lLEXXeqYtYpalUhr-3e8ivaV2aXeA0,7094
93
+ subsurface_terra-2025.1.0rc11.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
94
+ subsurface_terra-2025.1.0rc11.dist-info/top_level.txt,sha256=f32R_tUSf83CfkpB4vjv5m2XcD8TmDX9h7F4rnEXt5A,11
95
+ subsurface_terra-2025.1.0rc11.dist-info/RECORD,,