subsurface-terra 2025.1.0rc10__py3-none-any.whl → 2025.1.0rc11__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
subsurface/_version.py CHANGED
@@ -17,5 +17,5 @@ __version__: str
17
17
  __version_tuple__: VERSION_TUPLE
18
18
  version_tuple: VERSION_TUPLE
19
19
 
20
- __version__ = version = '2025.1.0rc10'
20
+ __version__ = version = '2025.1.0rc11'
21
21
  __version_tuple__ = version_tuple = (2025, 1, 0)
@@ -111,9 +111,11 @@ def _map_attrs_to_measured_depths(attrs: pd.DataFrame, survey: Survey) -> pd.Dat
111
111
 
112
112
  # Start with a copy of the existing attributes DataFrame
113
113
  new_attrs = survey.survey_trajectory.data.points_attributes.copy()
114
- if 'component lith' in attrs.columns:
114
+ if 'component lith' in attrs.columns and 'lith_ids' not in attrs.columns:
115
115
  # Factorize lith components directly in-place
116
116
  attrs['lith_ids'], _ = pd.factorize(attrs['component lith'], use_na_sentinel=True)
117
+ else:
118
+ pass
117
119
 
118
120
  # Add missing columns from attrs, preserving their dtypes
119
121
  for col in attrs.columns.difference(new_attrs.columns):
@@ -152,7 +154,7 @@ def _map_attrs_to_measured_depths(attrs: pd.DataFrame, survey: Survey) -> pd.Dat
152
154
  continue
153
155
  attr_to_interpolate = attrs_well[col]
154
156
  # make sure the attr_to_interpolate is not a string
155
- if attr_to_interpolate.dtype == 'O':
157
+ if attr_to_interpolate.dtype == 'O' or isinstance(attr_to_interpolate.dtype, pd.CategoricalDtype):
156
158
  continue
157
159
  if col in ['lith_ids', 'component lith']:
158
160
  interp_kind = 'nearest'
@@ -37,9 +37,9 @@ def load_with_trimesh(path_to_file_or_buffer, file_type: Optional[str] = None,
37
37
  # Old Z axis → New -Y axis
38
38
  # Old X axis → Remains as X axis
39
39
  transform = np.array([
40
- [1, 0, 0, 0], # X → X
41
- [0, 0, 1, 0], # Y → Z
42
- [0, 1, 0, 0], # Z → -Y
40
+ [1, 0, 0, 0],
41
+ [0, 0, -1, 0],
42
+ [0, 1, 0, 0],
43
43
  [0, 0, 0, 1]
44
44
  ])
45
45
 
@@ -102,21 +102,81 @@ def read_volumetric_mesh_attr_file(reader_helper: GenericReaderFilesHelper) -> p
102
102
  return df
103
103
 
104
104
 
105
- def pv_cast_to_explicit_structured_grid(pyvista_object):
106
-
105
+ def pv_cast_to_explicit_structured_grid(pyvista_object: 'pv.DataSet') -> 'pv.ExplicitStructuredGrid':
107
106
  pv = optional_requirements.require_pyvista()
108
107
 
109
108
  match pyvista_object:
110
-
111
109
  case pv.RectilinearGrid() as rectl_grid:
112
-
113
110
  return __pv_convert_rectilinear_to_explicit(rectl_grid)
114
-
111
+ case pv.UnstructuredGrid() as unstr_grid:
112
+ return __pv_convert_unstructured_to_explicit(unstr_grid)
115
113
  case _:
116
-
117
114
  return pyvista_object.cast_to_explicit_structured_grid()
118
115
 
119
116
 
117
+ def __pv_convert_unstructured_to_explicit(unstr_grid):
118
+ """
119
+ Convert a PyVista UnstructuredGrid to an ExplicitStructuredGrid if possible.
120
+ """
121
+ pv = optional_requirements.require_pyvista()
122
+
123
+ # First check if the grid has the necessary attributes to be treated as structured
124
+ if not hasattr(unstr_grid, 'n_cells') or unstr_grid.n_cells == 0:
125
+ raise ValueError("The unstructured grid has no cells.")
126
+
127
+ # Try to detect if the grid has a structured topology
128
+ # Check if the grid has cell type 11 (VTK_VOXEL) or 12 (VTK_HEXAHEDRON)
129
+ cell_types = unstr_grid.celltypes
130
+
131
+ # Voxels (11) and hexahedra (12) are the cell types used in structured grids
132
+ if not all(ct in [11, 12] for ct in cell_types):
133
+ raise ValueError("The unstructured grid contains non-hexahedral cells and cannot be converted to explicit structured.")
134
+
135
+ # Try to infer dimensions from the grid
136
+ try:
137
+ # Method 1: Try PyVista's built-in conversion if available
138
+ return unstr_grid.cast_to_explicit_structured_grid()
139
+ except (AttributeError, TypeError):
140
+ pass
141
+
142
+ try:
143
+ # Method 2: If the grid has dimensions stored as field data
144
+ if "dimensions" in unstr_grid.field_data:
145
+ dims = unstr_grid.field_data["dimensions"]
146
+ if len(dims) == 3:
147
+ nx, ny, nz = dims
148
+ # Verify that dimensions match the number of cells
149
+ if (nx-1)*(ny-1)*(nz-1) != unstr_grid.n_cells:
150
+ raise ValueError("Stored dimensions do not match the number of cells.")
151
+
152
+ # Extract points and reorder if needed
153
+ points = unstr_grid.points.reshape((nx, ny, nz, 3))
154
+
155
+ # Create explicit structured grid
156
+ explicit_grid = pv.ExplicitStructuredGrid((nx, ny, nz), points.reshape((-1, 3)))
157
+ explicit_grid.compute_connectivity()
158
+
159
+ # Transfer data arrays
160
+ for name, array in unstr_grid.cell_data.items():
161
+ explicit_grid.cell_data[name] = array.copy()
162
+ for name, array in unstr_grid.point_data.items():
163
+ explicit_grid.point_data[name] = array.copy()
164
+ for name, array in unstr_grid.field_data.items():
165
+ if name != "dimensions": # Skip dimensions field
166
+ explicit_grid.field_data[name] = array.copy()
167
+
168
+ return explicit_grid
169
+ except (ValueError, KeyError):
170
+ pass
171
+
172
+ # If none of the above methods work, use PyVista's extract_cells function
173
+ # to reconstruct the structured grid if possible
174
+ try:
175
+ # This is a best-effort approach that tries multiple strategies
176
+ return pv.core.filters.convert_unstructured_to_structured_grid(unstr_grid)
177
+ except Exception as e:
178
+ raise ValueError(f"Failed to convert unstructured grid to explicit structured grid: {e}")
179
+
120
180
  def __pv_convert_rectilinear_to_explicit(rectl_grid):
121
181
 
122
182
  pv = optional_requirements.require_pyvista()
@@ -100,6 +100,16 @@ def _validate_lith_data(d: pd.DataFrame, reader_helper: GenericReaderFilesHelper
100
100
  raise AttributeError('If wells attributes represent lithology, `component lith` column must be present in the file. '
101
101
  'Use columns_map to assign column names to these fields. Maybe you are marking as lithology'
102
102
  'the wrong file?')
103
+ else:
104
+ # TODO: Add categories to reader helper
105
+ categories = sorted(d['component lith'].dropna().unique())
106
+ d['component lith'] = pd.Categorical(
107
+ d['component lith'],
108
+ categories=categories,
109
+ ordered=True
110
+ )
111
+
112
+ d['lith_ids'] = d['component lith'].cat.codes + 1
103
113
 
104
114
  given_top = np.isin(['top', 'base'], d.columns).all()
105
115
  given_altitude_and_base = np.isin(['altitude', 'base'], d.columns).all()
File without changes
@@ -0,0 +1,104 @@
1
+ import numpy as np
2
+ import pyvista as pv
3
+
4
+
5
+ def transform_gaussian_blur(grid, sigma=20.0):
6
+ """
7
+ Applies a Gaussian blur to the 'model_name' field of the structured grid.
8
+
9
+ Parameters:
10
+ grid - PyVista grid with 'model_name' field
11
+ sigma - Standard deviation for the Gaussian kernel
12
+ """
13
+ from scipy.ndimage import gaussian_filter
14
+
15
+ # Get the original dimensions of the grid
16
+ dims = grid.dimensions
17
+
18
+ # Reshape the data to 3D array matching grid dimensions
19
+ values = np.array(grid['model_name'])
20
+ values_3d = values.reshape(dims[2] - 1, dims[1] - 1, dims[0] - 1).transpose(2, 1, 0)
21
+
22
+ # Apply Gaussian filter
23
+ blurred_values = gaussian_filter(values_3d, sigma=sigma, axes=(2,))
24
+
25
+ # Reshape back to 1D array
26
+ grid['model_name'] = blurred_values.transpose(2, 1, 0).flatten()
27
+ return grid
28
+
29
+
30
+ def transform_sinusoidal(values, amplitude=1.0, frequency=0.01, phase=0):
31
+ """
32
+ Apply a sinusoidal transformation to the values.
33
+ """
34
+ return values + amplitude * np.sin(frequency * values + phase)
35
+
36
+
37
+ def obfuscate_model_name(grid, transform_functions, attr):
38
+ """
39
+ Applies transformation functions to the 'model_name' field.
40
+ Functions can operate on either the grid or the values array.
41
+ """
42
+ for func in transform_functions:
43
+ if 'grid' in func.__code__.co_varnames:
44
+ # Function expects the full grid
45
+ grid = func(grid)
46
+ else:
47
+ # Function expects just the values array
48
+ values = np.array(grid[attr])
49
+ grid[attr] = func(values)
50
+
51
+ return grid
52
+
53
+
54
+ # pyvista_struct = transform_xy_to_z_propagation(pyvista_struct, z_factor=0.3, noise_level=0.1)
55
+ def transform_subtract_mean(values):
56
+ """
57
+ Subtract the mean of the array from each element.
58
+ """
59
+ return values - np.mean(values)
60
+
61
+
62
+ def transform_scale(values, scale_factor=0.003):
63
+ """
64
+ Multiply each value by scale_factor.
65
+ """
66
+ return values * scale_factor
67
+
68
+
69
+
70
+
71
+ def update_extent(pyvista_grid, new_extent):
72
+ # new_extent: array-like with 6 elements [xmin, xmax, ymin, ymax, zmin, zmax]
73
+ old_bounds = np.array(pyvista_grid.bounds) # [xmin, xmax, ymin, ymax, zmin, zmax]
74
+
75
+ # Check for valid extents
76
+ if any(new_extent[i] >= new_extent[i + 1] for i in range(0, 6, 2)):
77
+ raise ValueError("Each min value must be less than the corresponding max value in the new extent.")
78
+
79
+ # Compute old ranges and new ranges for each axis
80
+ old_ranges = old_bounds[1::2] - old_bounds[0::2] # [x_range, y_range, z_range]
81
+ new_ranges = np.array([new_extent[1] - new_extent[0],
82
+ new_extent[3] - new_extent[2],
83
+ new_extent[5] - new_extent[4]])
84
+
85
+ # Avoid division by zero if any old range is zero
86
+ if np.any(old_ranges == 0):
87
+ raise ValueError("One of the dimensions in the current grid has zero length.")
88
+
89
+ # Get the old points and reshape for easier manipulation
90
+ old_points = pyvista_grid.points # shape (N, 3)
91
+
92
+ # Compute normalized coordinates within the old extent
93
+ norm_points = (old_points - old_bounds[0::2]) / old_ranges
94
+
95
+ # Compute new points based on new extent
96
+ new_mins = np.array([new_extent[0], new_extent[2], new_extent[4]])
97
+ new_points = new_mins + norm_points * new_ranges
98
+
99
+ # Update the grid's points
100
+ pyvista_grid.points = new_points
101
+
102
+ # Updating bounds is implicit once the points are modified.
103
+ pyvista_grid.Modified()
104
+ return pyvista_grid
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: subsurface_terra
3
- Version: 2025.1.0rc10
3
+ Version: 2025.1.0rc11
4
4
  Summary: Subsurface data types and utilities. This version is the one used by Terranigma Solutions. Please feel free to take anything in this repository for the original one.
5
5
  Home-page: https://softwareunderground.github.io/subsurface
6
6
  Author: Software Underground
@@ -1,5 +1,5 @@
1
1
  subsurface/__init__.py,sha256=0D2rCUem3fiHsXFXXSmwheLiPS4cXxEdfWdFBj0b-cY,930
2
- subsurface/_version.py,sha256=FcQPFS21SJ4lyiZc0tXWa590ajfkakU3g4UuBjnhZoI,542
2
+ subsurface/_version.py,sha256=k9Z1PFW4N27hJOHdtsBGeU2nnn-S8fhplPVjgvRiS9Q,542
3
3
  subsurface/optional_requirements.py,sha256=Wg36RqxzPiLtN-3qSg5K9QVEeXCB0-EjSzHERAoO8EE,2883
4
4
  subsurface/api/__init__.py,sha256=UiOBKQcZJGMeh_5ZNhXqT2iEdiIk721djLX30aFxEa4,341
5
5
  subsurface/api/interfaces/__init__.py,sha256=rqUtJyMLicobcyhmr74TepjmUQAEmlazKT3vjV_n3aA,6
@@ -13,7 +13,7 @@ subsurface/core/geological_formats/boreholes/__init__.py,sha256=47DEQpj8HBSa-_TI
13
13
  subsurface/core/geological_formats/boreholes/_combine_trajectories.py,sha256=U5VribebcMAag0DOKnna983g1BXAGLKCddGra2g3Nos,5246
14
14
  subsurface/core/geological_formats/boreholes/boreholes.py,sha256=Q7KBYIk9M4-SZjDOVx5dMp8DnHBo4VTFrJ4jAKCmrJ8,5256
15
15
  subsurface/core/geological_formats/boreholes/collars.py,sha256=o1I8bS0XqWa2fS0n6XZVKXsuBHknXO2Z_5sdlFc_GAE,750
16
- subsurface/core/geological_formats/boreholes/survey.py,sha256=6UJRFCp-WAEgTB1YboTGrSyrtKhJNCm1R31jjssqrkA,16095
16
+ subsurface/core/geological_formats/boreholes/survey.py,sha256=aaENR0ksT_lK0BYR7HL73KNZ44eo3Ag353xQdVcLOz0,16219
17
17
  subsurface/core/reader_helpers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
18
18
  subsurface/core/reader_helpers/reader_unstruct.py,sha256=Lme1ano-dQrKhLCwrokcpKqa28DFxDaGAs3ub8MAHtY,397
19
19
  subsurface/core/reader_helpers/readers_data.py,sha256=Vewi8pqv-zooRIhffTM52eWZeP6l9MnHkD9LZj6c1LU,4995
@@ -45,7 +45,7 @@ subsurface/modules/reader/faults/faults.py,sha256=s144Gq0tFvjSUkB66dB86kYjW2l2e1
45
45
  subsurface/modules/reader/geo_object/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
46
46
  subsurface/modules/reader/mesh/_GOCAD_mesh.py,sha256=_MwNy4iVMGnemvT01hhB-nbCc8a1r8ETEAkD-AWcBz4,3304
47
47
  subsurface/modules/reader/mesh/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
48
- subsurface/modules/reader/mesh/_trimesh_reader.py,sha256=-cmm-BYIUC9x6tqABNgKzNMSrDfuoTdZ7YpfB1nNPh0,17260
48
+ subsurface/modules/reader/mesh/_trimesh_reader.py,sha256=GPKFwWbWuvL-RvY_cGjEaRghBUda2mIxY4mbEp0AVEk,17231
49
49
  subsurface/modules/reader/mesh/csv_mesh_reader.py,sha256=0iXYg-JOLUg7yH6Rw6qCoxXvKh0hOUTwjYxbhSlGfGM,1969
50
50
  subsurface/modules/reader/mesh/dxf_reader.py,sha256=JDhzFRE46sdwMGBB8enHNluH07ohqt6LhgLHiSQRL-I,6525
51
51
  subsurface/modules/reader/mesh/glb_reader.py,sha256=dierR9AYM5Q2szLuemfLlM_JcPRNtDrD5fpF8zNjBS8,1118
@@ -60,19 +60,21 @@ subsurface/modules/reader/profiles/profiles_core.py,sha256=kqlt79hjdWWQNBjWqLGlu
60
60
  subsurface/modules/reader/topography/__init__.py,sha256=zkaTX5JxsNfjF-dFeEbHfUB58vhPMjm6Iiqx9HgJOrY,14
61
61
  subsurface/modules/reader/topography/topo_core.py,sha256=6rkDp9XrUSif8ZuraDrUK2I8-yqEp8CRm4r4l2lQuw0,3542
62
62
  subsurface/modules/reader/volume/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
- subsurface/modules/reader/volume/read_volume.py,sha256=nn0C047jsty_kusZZ-nfZ2bWbyfkaakLsDy_ADxb5sw,6368
63
+ subsurface/modules/reader/volume/read_volume.py,sha256=GvlYIROefskHkqpwvSu60jQIzev54jBfbrL74CYT7TU,9580
64
64
  subsurface/modules/reader/volume/segy_reader.py,sha256=oBS1FwwzFTMBmAR3odJMvW-as_0YMudPcFmndpcApW4,3958
65
65
  subsurface/modules/reader/volume/seismic.py,sha256=dRA7YKw9fkrkAYS7Bnfm7GfCPdfxVsDyfM7frQK56V4,4950
66
66
  subsurface/modules/reader/volume/volume_utils.py,sha256=7ToIdVwq04lMyYGJE9PzYVQt9xl9mjbXXrzvMfM6wGw,1367
67
67
  subsurface/modules/reader/wells/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
68
68
  subsurface/modules/reader/wells/_read_to_df.py,sha256=PFs5ottnm7LtzmJgPh8UN3cdR4j2y734RTDPoks16ls,2294
69
- subsurface/modules/reader/wells/read_borehole_interface.py,sha256=iyoaee00vfSzqF4sWy9WA4a92VtEb16ERbrkdWgWszE,5548
69
+ subsurface/modules/reader/wells/read_borehole_interface.py,sha256=1Kq_IjHhhPgxQKjk5B655CT9wCYCYz5T4UjggF8Pdfg,5899
70
70
  subsurface/modules/reader/wells/wells_utils.py,sha256=CoVF9Qtba8Qu42JcVmtsyaSS_PA80lcJ6mzh6-TQt2Q,2206
71
71
  subsurface/modules/reader/wells/DEP/__init__.py,sha256=8PES2m_HqZtZ-jFhPynJWpk8dovKAh1UyVnfAxg_NXY,1887
72
72
  subsurface/modules/reader/wells/DEP/_well_files_reader.py,sha256=QYZ9p7iyGt1JDlkrFpYPFaMnXwLj7wdFZmTYiO2niSY,6216
73
73
  subsurface/modules/reader/wells/DEP/_wells_api.py,sha256=SZU0cwfbn-bqKaAIG94be9Azxyx0pnvZrE2yXxIIJD4,2334
74
74
  subsurface/modules/reader/wells/DEP/_welly_reader.py,sha256=ktBEswaQSj0mzubFME8oTP7sTPDI1r65zVfT91LORMI,6468
75
75
  subsurface/modules/reader/wells/DEP/pandas_to_welly.py,sha256=Z67LE6K4Dy5LkR6ZrAmQx9u0UbLJj8oWxAALVx_eyDc,6925
76
+ subsurface/modules/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
77
+ subsurface/modules/tools/mocking_aux.py,sha256=DcavlyWV5pFl31MHUgOxAXW2I_y8bKqbyesBfCDWnLs,3581
76
78
  subsurface/modules/visualization/__init__.py,sha256=Y9SUj2cflk0ulCj1F1cJAeoCQJOD0eN4E98wxZ5Zhj0,65
77
79
  subsurface/modules/visualization/to_pyvista.py,sha256=_xM4Xx3PD0wyxtUrMHS5k6xbiDQ5k_Kis8dE-wnM77M,10514
78
80
  subsurface/modules/writer/__init__.py,sha256=1oDGj2X1G-R2ZRi_8sMBfq1QHkUarbycmMVvSdSTk-g,50
@@ -86,8 +88,8 @@ subsurface/modules/writer/to_rex/material_encoder.py,sha256=zGlqF9X_Civ9VvtGwo-I
86
88
  subsurface/modules/writer/to_rex/mesh_encoder.py,sha256=6TBtJhYJEAMEBHxQkbweXrJO1jIUx1ClM8l5ajVCrLc,6443
87
89
  subsurface/modules/writer/to_rex/to_rex.py,sha256=njsm2d3e69pRVfF_TOC_hexvXPmgNTZdJvhbnXcvyIo,3800
88
90
  subsurface/modules/writer/to_rex/utils.py,sha256=HEpJ95LjHOK24ePpmLpPP5uFyv6i_kN3AWh031q-1Uc,379
89
- subsurface_terra-2025.1.0rc10.dist-info/licenses/LICENSE,sha256=GSXh9K5TZauM89BeGbYg07oST_HMhOTiZoEGaUeKBtA,11606
90
- subsurface_terra-2025.1.0rc10.dist-info/METADATA,sha256=jBJ-O1dvs0h0JLz8AC8pa_DvztAmPpJk5f_CivFG0n4,7094
91
- subsurface_terra-2025.1.0rc10.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
92
- subsurface_terra-2025.1.0rc10.dist-info/top_level.txt,sha256=f32R_tUSf83CfkpB4vjv5m2XcD8TmDX9h7F4rnEXt5A,11
93
- subsurface_terra-2025.1.0rc10.dist-info/RECORD,,
91
+ subsurface_terra-2025.1.0rc11.dist-info/licenses/LICENSE,sha256=GSXh9K5TZauM89BeGbYg07oST_HMhOTiZoEGaUeKBtA,11606
92
+ subsurface_terra-2025.1.0rc11.dist-info/METADATA,sha256=KNe6EBDmcZNm9lLEXXeqYtYpalUhr-3e8ivaV2aXeA0,7094
93
+ subsurface_terra-2025.1.0rc11.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
94
+ subsurface_terra-2025.1.0rc11.dist-info/top_level.txt,sha256=f32R_tUSf83CfkpB4vjv5m2XcD8TmDX9h7F4rnEXt5A,11
95
+ subsurface_terra-2025.1.0rc11.dist-info/RECORD,,