structurize 2.16.2__py3-none-any.whl → 2.16.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- avrotize/__init__.py +63 -63
- avrotize/__main__.py +5 -5
- avrotize/_version.py +34 -34
- avrotize/asn1toavro.py +160 -160
- avrotize/avrotize.py +152 -152
- avrotize/avrotocpp.py +483 -483
- avrotize/avrotocsharp.py +992 -992
- avrotize/avrotocsv.py +121 -121
- avrotize/avrotodatapackage.py +173 -173
- avrotize/avrotodb.py +1383 -1383
- avrotize/avrotogo.py +476 -476
- avrotize/avrotographql.py +197 -197
- avrotize/avrotoiceberg.py +210 -210
- avrotize/avrotojava.py +1023 -1023
- avrotize/avrotojs.py +250 -250
- avrotize/avrotojsons.py +481 -481
- avrotize/avrotojstruct.py +345 -345
- avrotize/avrotokusto.py +363 -363
- avrotize/avrotomd.py +137 -137
- avrotize/avrotools.py +168 -168
- avrotize/avrotoparquet.py +208 -208
- avrotize/avrotoproto.py +358 -358
- avrotize/avrotopython.py +622 -622
- avrotize/avrotorust.py +435 -435
- avrotize/avrotots.py +598 -598
- avrotize/avrotoxsd.py +344 -344
- avrotize/commands.json +2493 -2433
- avrotize/common.py +828 -828
- avrotize/constants.py +4 -4
- avrotize/csvtoavro.py +131 -131
- avrotize/datapackagetoavro.py +76 -76
- avrotize/dependency_resolver.py +348 -348
- avrotize/jsonstoavro.py +1698 -1698
- avrotize/jsonstostructure.py +2642 -2642
- avrotize/jstructtoavro.py +878 -878
- avrotize/kstructtoavro.py +93 -93
- avrotize/kustotoavro.py +455 -455
- avrotize/parquettoavro.py +157 -157
- avrotize/proto2parser.py +497 -497
- avrotize/proto3parser.py +402 -402
- avrotize/prototoavro.py +382 -382
- avrotize/structuretocsharp.py +2005 -2005
- avrotize/structuretojsons.py +498 -498
- avrotize/structuretopython.py +772 -772
- avrotize/structuretots.py +653 -0
- avrotize/xsdtoavro.py +413 -413
- {structurize-2.16.2.dist-info → structurize-2.16.5.dist-info}/METADATA +848 -805
- structurize-2.16.5.dist-info/RECORD +52 -0
- {structurize-2.16.2.dist-info → structurize-2.16.5.dist-info}/licenses/LICENSE +200 -200
- structurize-2.16.2.dist-info/RECORD +0 -51
- {structurize-2.16.2.dist-info → structurize-2.16.5.dist-info}/WHEEL +0 -0
- {structurize-2.16.2.dist-info → structurize-2.16.5.dist-info}/entry_points.txt +0 -0
- {structurize-2.16.2.dist-info → structurize-2.16.5.dist-info}/top_level.txt +0 -0
avrotize/constants.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
|
-
"""Constants for the avrotize package."""
|
|
2
|
-
|
|
3
|
-
AVRO_VERSION = '1.12.0'
|
|
4
|
-
JACKSON_VERSION = '2.18.2'
|
|
1
|
+
"""Constants for the avrotize package."""
|
|
2
|
+
|
|
3
|
+
AVRO_VERSION = '1.12.0'
|
|
4
|
+
JACKSON_VERSION = '2.18.2'
|
|
5
5
|
JDK_VERSION = '21'
|
avrotize/csvtoavro.py
CHANGED
|
@@ -1,132 +1,132 @@
|
|
|
1
|
-
# coding: utf-8
|
|
2
|
-
"""
|
|
3
|
-
Module to convert CSV schema to Avro schema.
|
|
4
|
-
"""
|
|
5
|
-
|
|
6
|
-
import json
|
|
7
|
-
import os
|
|
8
|
-
import pandas as pd
|
|
9
|
-
|
|
10
|
-
from avrotize.common import pascal
|
|
11
|
-
|
|
12
|
-
class CSVToAvroConverter:
|
|
13
|
-
"""
|
|
14
|
-
Class to convert CSV schema to Avro schema.
|
|
15
|
-
"""
|
|
16
|
-
|
|
17
|
-
def __init__(self, csv_file_path, avro_schema_path, namespace=""):
|
|
18
|
-
"""
|
|
19
|
-
Initialize the converter with file paths and namespace.
|
|
20
|
-
|
|
21
|
-
:param csv_file_path: Path to the CSV file.
|
|
22
|
-
:param avro_schema_path: Path to save the Avro schema file.
|
|
23
|
-
:param csv_schema_path: Optional path to CSV schema file.
|
|
24
|
-
:param namespace: Namespace for Avro records.
|
|
25
|
-
"""
|
|
26
|
-
self.csv_file_path = csv_file_path
|
|
27
|
-
self.avro_schema_path = avro_schema_path
|
|
28
|
-
self.namespace = namespace
|
|
29
|
-
|
|
30
|
-
def convert(self):
|
|
31
|
-
"""
|
|
32
|
-
Convert CSV schema to Avro schema and save to file.
|
|
33
|
-
"""
|
|
34
|
-
schema = self.infer_schema()
|
|
35
|
-
|
|
36
|
-
# Infer the name of the schema from the CSV file name
|
|
37
|
-
schema_name = os.path.splitext(os.path.basename(self.csv_file_path))[0].replace(" ", "_")
|
|
38
|
-
|
|
39
|
-
avro_schema = {}
|
|
40
|
-
avro_schema["type"] = "record"
|
|
41
|
-
avro_schema["name"] = schema_name
|
|
42
|
-
if self.namespace:
|
|
43
|
-
avro_schema["namespace"] = self.namespace
|
|
44
|
-
avro_schema["fields"] = schema
|
|
45
|
-
|
|
46
|
-
with open(self.avro_schema_path, "w", encoding="utf-8") as file:
|
|
47
|
-
json.dump(avro_schema, file, indent=2)
|
|
48
|
-
|
|
49
|
-
def infer_schema(self):
|
|
50
|
-
"""
|
|
51
|
-
Infer the schema from CSV headers or data.
|
|
52
|
-
:return: List of fields in Avro schema format.
|
|
53
|
-
"""
|
|
54
|
-
df = pd.read_csv(self.csv_file_path)
|
|
55
|
-
schema = []
|
|
56
|
-
for column in df.columns:
|
|
57
|
-
avro_field = {
|
|
58
|
-
"name": pascal(column),
|
|
59
|
-
"type": self.infer_avro_type(df[column])
|
|
60
|
-
}
|
|
61
|
-
if avro_field["name"] != column:
|
|
62
|
-
avro_field["altnames"] = { "csv": column}
|
|
63
|
-
schema.append(avro_field)
|
|
64
|
-
return schema
|
|
65
|
-
|
|
66
|
-
def infer_avro_type(self, series):
|
|
67
|
-
"""
|
|
68
|
-
Infer Avro type from pandas series.
|
|
69
|
-
:param series: Pandas series to infer type from.
|
|
70
|
-
:return: Avro type as string.
|
|
71
|
-
"""
|
|
72
|
-
if pd.api.types.is_integer_dtype(series):
|
|
73
|
-
return "int"
|
|
74
|
-
if pd.api.types.is_float_dtype(series):
|
|
75
|
-
return "double"
|
|
76
|
-
if pd.api.types.is_bool_dtype(series):
|
|
77
|
-
return "boolean"
|
|
78
|
-
if pd.api.types.is_datetime64_any_dtype(series):
|
|
79
|
-
return {"type": "long", "logicalType": "timestamp-millis"}
|
|
80
|
-
if pd.api.types.is_object_dtype(series):
|
|
81
|
-
return "string"
|
|
82
|
-
return "string"
|
|
83
|
-
|
|
84
|
-
def map_csv_type_to_avro(self, csv_type):
|
|
85
|
-
"""
|
|
86
|
-
Map CSV type to Avro type.
|
|
87
|
-
:param csv_type: CSV type as string.
|
|
88
|
-
:return: Avro type as string.
|
|
89
|
-
"""
|
|
90
|
-
type_mapping = {
|
|
91
|
-
"string": "string",
|
|
92
|
-
"number": "double",
|
|
93
|
-
"integer": "int",
|
|
94
|
-
"boolean": "boolean",
|
|
95
|
-
"date": {"type": "int", "logicalType": "date"},
|
|
96
|
-
"timestamp": {"type": "long", "logicalType": "timestamp-millis"}
|
|
97
|
-
}
|
|
98
|
-
return type_mapping.get(csv_type.lower(), "string")
|
|
99
|
-
|
|
100
|
-
def handle_string_format(self, format_type):
|
|
101
|
-
"""
|
|
102
|
-
Handle string format types.
|
|
103
|
-
:param format_type: Format type as string.
|
|
104
|
-
:return: Avro type as string or dict.
|
|
105
|
-
"""
|
|
106
|
-
format_mapping = {
|
|
107
|
-
"email": "string",
|
|
108
|
-
"uri": "string",
|
|
109
|
-
"uuid": "string",
|
|
110
|
-
"ipv4": "string",
|
|
111
|
-
"ipv6": "string",
|
|
112
|
-
"hostname": "string",
|
|
113
|
-
"datetime": {"type": "long", "logicalType": "timestamp-millis"}
|
|
114
|
-
}
|
|
115
|
-
return format_mapping.get(format_type.lower(), "string")
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
def convert_csv_to_avro(csv_file_path, avro_file_path, namespace=""):
|
|
119
|
-
"""
|
|
120
|
-
Convert a CSV file to an Avro schema file.
|
|
121
|
-
|
|
122
|
-
:param csv_file_path: Path to the CSV file.
|
|
123
|
-
:param avro_file_path: Path to save the Avro schema file.
|
|
124
|
-
:param namespace: Namespace for Avro records.
|
|
125
|
-
"""
|
|
126
|
-
|
|
127
|
-
if not os.path.exists(csv_file_path):
|
|
128
|
-
raise FileNotFoundError(f"CSV file not found at: {csv_file_path}")
|
|
129
|
-
|
|
130
|
-
converter = CSVToAvroConverter(
|
|
131
|
-
csv_file_path, avro_file_path, namespace)
|
|
1
|
+
# coding: utf-8
|
|
2
|
+
"""
|
|
3
|
+
Module to convert CSV schema to Avro schema.
|
|
4
|
+
"""
|
|
5
|
+
|
|
6
|
+
import json
|
|
7
|
+
import os
|
|
8
|
+
import pandas as pd
|
|
9
|
+
|
|
10
|
+
from avrotize.common import pascal
|
|
11
|
+
|
|
12
|
+
class CSVToAvroConverter:
|
|
13
|
+
"""
|
|
14
|
+
Class to convert CSV schema to Avro schema.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
def __init__(self, csv_file_path, avro_schema_path, namespace=""):
|
|
18
|
+
"""
|
|
19
|
+
Initialize the converter with file paths and namespace.
|
|
20
|
+
|
|
21
|
+
:param csv_file_path: Path to the CSV file.
|
|
22
|
+
:param avro_schema_path: Path to save the Avro schema file.
|
|
23
|
+
:param csv_schema_path: Optional path to CSV schema file.
|
|
24
|
+
:param namespace: Namespace for Avro records.
|
|
25
|
+
"""
|
|
26
|
+
self.csv_file_path = csv_file_path
|
|
27
|
+
self.avro_schema_path = avro_schema_path
|
|
28
|
+
self.namespace = namespace
|
|
29
|
+
|
|
30
|
+
def convert(self):
|
|
31
|
+
"""
|
|
32
|
+
Convert CSV schema to Avro schema and save to file.
|
|
33
|
+
"""
|
|
34
|
+
schema = self.infer_schema()
|
|
35
|
+
|
|
36
|
+
# Infer the name of the schema from the CSV file name
|
|
37
|
+
schema_name = os.path.splitext(os.path.basename(self.csv_file_path))[0].replace(" ", "_")
|
|
38
|
+
|
|
39
|
+
avro_schema = {}
|
|
40
|
+
avro_schema["type"] = "record"
|
|
41
|
+
avro_schema["name"] = schema_name
|
|
42
|
+
if self.namespace:
|
|
43
|
+
avro_schema["namespace"] = self.namespace
|
|
44
|
+
avro_schema["fields"] = schema
|
|
45
|
+
|
|
46
|
+
with open(self.avro_schema_path, "w", encoding="utf-8") as file:
|
|
47
|
+
json.dump(avro_schema, file, indent=2)
|
|
48
|
+
|
|
49
|
+
def infer_schema(self):
|
|
50
|
+
"""
|
|
51
|
+
Infer the schema from CSV headers or data.
|
|
52
|
+
:return: List of fields in Avro schema format.
|
|
53
|
+
"""
|
|
54
|
+
df = pd.read_csv(self.csv_file_path)
|
|
55
|
+
schema = []
|
|
56
|
+
for column in df.columns:
|
|
57
|
+
avro_field = {
|
|
58
|
+
"name": pascal(column),
|
|
59
|
+
"type": self.infer_avro_type(df[column])
|
|
60
|
+
}
|
|
61
|
+
if avro_field["name"] != column:
|
|
62
|
+
avro_field["altnames"] = { "csv": column}
|
|
63
|
+
schema.append(avro_field)
|
|
64
|
+
return schema
|
|
65
|
+
|
|
66
|
+
def infer_avro_type(self, series):
|
|
67
|
+
"""
|
|
68
|
+
Infer Avro type from pandas series.
|
|
69
|
+
:param series: Pandas series to infer type from.
|
|
70
|
+
:return: Avro type as string.
|
|
71
|
+
"""
|
|
72
|
+
if pd.api.types.is_integer_dtype(series):
|
|
73
|
+
return "int"
|
|
74
|
+
if pd.api.types.is_float_dtype(series):
|
|
75
|
+
return "double"
|
|
76
|
+
if pd.api.types.is_bool_dtype(series):
|
|
77
|
+
return "boolean"
|
|
78
|
+
if pd.api.types.is_datetime64_any_dtype(series):
|
|
79
|
+
return {"type": "long", "logicalType": "timestamp-millis"}
|
|
80
|
+
if pd.api.types.is_object_dtype(series):
|
|
81
|
+
return "string"
|
|
82
|
+
return "string"
|
|
83
|
+
|
|
84
|
+
def map_csv_type_to_avro(self, csv_type):
|
|
85
|
+
"""
|
|
86
|
+
Map CSV type to Avro type.
|
|
87
|
+
:param csv_type: CSV type as string.
|
|
88
|
+
:return: Avro type as string.
|
|
89
|
+
"""
|
|
90
|
+
type_mapping = {
|
|
91
|
+
"string": "string",
|
|
92
|
+
"number": "double",
|
|
93
|
+
"integer": "int",
|
|
94
|
+
"boolean": "boolean",
|
|
95
|
+
"date": {"type": "int", "logicalType": "date"},
|
|
96
|
+
"timestamp": {"type": "long", "logicalType": "timestamp-millis"}
|
|
97
|
+
}
|
|
98
|
+
return type_mapping.get(csv_type.lower(), "string")
|
|
99
|
+
|
|
100
|
+
def handle_string_format(self, format_type):
|
|
101
|
+
"""
|
|
102
|
+
Handle string format types.
|
|
103
|
+
:param format_type: Format type as string.
|
|
104
|
+
:return: Avro type as string or dict.
|
|
105
|
+
"""
|
|
106
|
+
format_mapping = {
|
|
107
|
+
"email": "string",
|
|
108
|
+
"uri": "string",
|
|
109
|
+
"uuid": "string",
|
|
110
|
+
"ipv4": "string",
|
|
111
|
+
"ipv6": "string",
|
|
112
|
+
"hostname": "string",
|
|
113
|
+
"datetime": {"type": "long", "logicalType": "timestamp-millis"}
|
|
114
|
+
}
|
|
115
|
+
return format_mapping.get(format_type.lower(), "string")
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def convert_csv_to_avro(csv_file_path, avro_file_path, namespace=""):
|
|
119
|
+
"""
|
|
120
|
+
Convert a CSV file to an Avro schema file.
|
|
121
|
+
|
|
122
|
+
:param csv_file_path: Path to the CSV file.
|
|
123
|
+
:param avro_file_path: Path to save the Avro schema file.
|
|
124
|
+
:param namespace: Namespace for Avro records.
|
|
125
|
+
"""
|
|
126
|
+
|
|
127
|
+
if not os.path.exists(csv_file_path):
|
|
128
|
+
raise FileNotFoundError(f"CSV file not found at: {csv_file_path}")
|
|
129
|
+
|
|
130
|
+
converter = CSVToAvroConverter(
|
|
131
|
+
csv_file_path, avro_file_path, namespace)
|
|
132
132
|
converter.convert()
|
avrotize/datapackagetoavro.py
CHANGED
|
@@ -1,76 +1,76 @@
|
|
|
1
|
-
"""Convert a Data Package to an Avro schema."""
|
|
2
|
-
|
|
3
|
-
import json
|
|
4
|
-
import sys
|
|
5
|
-
from typing import Dict, List
|
|
6
|
-
from datapackage import Package
|
|
7
|
-
|
|
8
|
-
JsonNode = Dict[str, 'JsonNode'] | List['JsonNode'] | str | bool | int | None
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
class DataPackageToAvroConverter:
|
|
12
|
-
"""Class to convert Data Package to Avro schema."""
|
|
13
|
-
|
|
14
|
-
def convert_datapackage_to_avro(self, datapackage_path, avro_schema_path):
|
|
15
|
-
"""Convert a Data Package to an Avro schema."""
|
|
16
|
-
package = Package(datapackage_path)
|
|
17
|
-
resources = package.resources
|
|
18
|
-
|
|
19
|
-
avro_schemas = []
|
|
20
|
-
|
|
21
|
-
for resource in resources:
|
|
22
|
-
table_name = resource.descriptor['name']
|
|
23
|
-
fields = resource.descriptor['schema']['fields']
|
|
24
|
-
|
|
25
|
-
avro_fields = []
|
|
26
|
-
for field in fields:
|
|
27
|
-
avro_field = {
|
|
28
|
-
"name": field["name"],
|
|
29
|
-
"type": self.convert_datapackage_type_to_avro_type(field["type"])
|
|
30
|
-
}
|
|
31
|
-
avro_fields.append(avro_field)
|
|
32
|
-
|
|
33
|
-
avro_schema = {
|
|
34
|
-
"type": "record",
|
|
35
|
-
"name": table_name,
|
|
36
|
-
"fields": avro_fields
|
|
37
|
-
}
|
|
38
|
-
avro_schemas.append(avro_schema)
|
|
39
|
-
|
|
40
|
-
# If there's only one schema, write it directly
|
|
41
|
-
if len(avro_schemas) == 1:
|
|
42
|
-
avro_schema = avro_schemas[0]
|
|
43
|
-
else:
|
|
44
|
-
# If there are multiple schemas, create a union
|
|
45
|
-
avro_schema = avro_schemas
|
|
46
|
-
|
|
47
|
-
with open(avro_schema_path, "w", encoding="utf-8") as f:
|
|
48
|
-
json.dump(avro_schema, f, indent=2)
|
|
49
|
-
|
|
50
|
-
def convert_datapackage_type_to_avro_type(self, datapackage_type):
|
|
51
|
-
"""Convert a Data Package type to an Avro type."""
|
|
52
|
-
if datapackage_type == "string":
|
|
53
|
-
return "string"
|
|
54
|
-
elif datapackage_type == "number":
|
|
55
|
-
return "double"
|
|
56
|
-
elif datapackage_type == "integer":
|
|
57
|
-
return "int"
|
|
58
|
-
elif datapackage_type == "boolean":
|
|
59
|
-
return "boolean"
|
|
60
|
-
elif datapackage_type == "array":
|
|
61
|
-
return {"type": "array", "items": "string"}
|
|
62
|
-
elif datapackage_type == "object":
|
|
63
|
-
return {"type": "map", "values": "string"}
|
|
64
|
-
else:
|
|
65
|
-
print(f"WARNING: Unsupported data package type: {datapackage_type}")
|
|
66
|
-
return "string"
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
def convert_datapackage_to_avro(datapackage_path, avro_schema_path):
|
|
70
|
-
"""Convert a Data Package to an Avro schema."""
|
|
71
|
-
converter = DataPackageToAvroConverter()
|
|
72
|
-
converter.convert_datapackage_to_avro(datapackage_path, avro_schema_path)
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
# Example usage:
|
|
76
|
-
# convert_datapackage_to_avro("datapackage.json", "schema.avsc")
|
|
1
|
+
"""Convert a Data Package to an Avro schema."""
|
|
2
|
+
|
|
3
|
+
import json
|
|
4
|
+
import sys
|
|
5
|
+
from typing import Dict, List
|
|
6
|
+
from datapackage import Package
|
|
7
|
+
|
|
8
|
+
JsonNode = Dict[str, 'JsonNode'] | List['JsonNode'] | str | bool | int | None
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class DataPackageToAvroConverter:
|
|
12
|
+
"""Class to convert Data Package to Avro schema."""
|
|
13
|
+
|
|
14
|
+
def convert_datapackage_to_avro(self, datapackage_path, avro_schema_path):
|
|
15
|
+
"""Convert a Data Package to an Avro schema."""
|
|
16
|
+
package = Package(datapackage_path)
|
|
17
|
+
resources = package.resources
|
|
18
|
+
|
|
19
|
+
avro_schemas = []
|
|
20
|
+
|
|
21
|
+
for resource in resources:
|
|
22
|
+
table_name = resource.descriptor['name']
|
|
23
|
+
fields = resource.descriptor['schema']['fields']
|
|
24
|
+
|
|
25
|
+
avro_fields = []
|
|
26
|
+
for field in fields:
|
|
27
|
+
avro_field = {
|
|
28
|
+
"name": field["name"],
|
|
29
|
+
"type": self.convert_datapackage_type_to_avro_type(field["type"])
|
|
30
|
+
}
|
|
31
|
+
avro_fields.append(avro_field)
|
|
32
|
+
|
|
33
|
+
avro_schema = {
|
|
34
|
+
"type": "record",
|
|
35
|
+
"name": table_name,
|
|
36
|
+
"fields": avro_fields
|
|
37
|
+
}
|
|
38
|
+
avro_schemas.append(avro_schema)
|
|
39
|
+
|
|
40
|
+
# If there's only one schema, write it directly
|
|
41
|
+
if len(avro_schemas) == 1:
|
|
42
|
+
avro_schema = avro_schemas[0]
|
|
43
|
+
else:
|
|
44
|
+
# If there are multiple schemas, create a union
|
|
45
|
+
avro_schema = avro_schemas
|
|
46
|
+
|
|
47
|
+
with open(avro_schema_path, "w", encoding="utf-8") as f:
|
|
48
|
+
json.dump(avro_schema, f, indent=2)
|
|
49
|
+
|
|
50
|
+
def convert_datapackage_type_to_avro_type(self, datapackage_type):
|
|
51
|
+
"""Convert a Data Package type to an Avro type."""
|
|
52
|
+
if datapackage_type == "string":
|
|
53
|
+
return "string"
|
|
54
|
+
elif datapackage_type == "number":
|
|
55
|
+
return "double"
|
|
56
|
+
elif datapackage_type == "integer":
|
|
57
|
+
return "int"
|
|
58
|
+
elif datapackage_type == "boolean":
|
|
59
|
+
return "boolean"
|
|
60
|
+
elif datapackage_type == "array":
|
|
61
|
+
return {"type": "array", "items": "string"}
|
|
62
|
+
elif datapackage_type == "object":
|
|
63
|
+
return {"type": "map", "values": "string"}
|
|
64
|
+
else:
|
|
65
|
+
print(f"WARNING: Unsupported data package type: {datapackage_type}")
|
|
66
|
+
return "string"
|
|
67
|
+
|
|
68
|
+
|
|
69
|
+
def convert_datapackage_to_avro(datapackage_path, avro_schema_path):
|
|
70
|
+
"""Convert a Data Package to an Avro schema."""
|
|
71
|
+
converter = DataPackageToAvroConverter()
|
|
72
|
+
converter.convert_datapackage_to_avro(datapackage_path, avro_schema_path)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
# Example usage:
|
|
76
|
+
# convert_datapackage_to_avro("datapackage.json", "schema.avsc")
|