stouputils 1.14.0__py3-none-any.whl → 1.14.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (108) hide show
  1. stouputils/__init__.pyi +15 -0
  2. stouputils/_deprecated.pyi +12 -0
  3. stouputils/all_doctests.pyi +46 -0
  4. stouputils/applications/__init__.pyi +2 -0
  5. stouputils/applications/automatic_docs.py +3 -0
  6. stouputils/applications/automatic_docs.pyi +106 -0
  7. stouputils/applications/upscaler/__init__.pyi +3 -0
  8. stouputils/applications/upscaler/config.pyi +18 -0
  9. stouputils/applications/upscaler/image.pyi +109 -0
  10. stouputils/applications/upscaler/video.pyi +60 -0
  11. stouputils/archive.pyi +67 -0
  12. stouputils/backup.pyi +109 -0
  13. stouputils/collections.pyi +86 -0
  14. stouputils/continuous_delivery/__init__.pyi +5 -0
  15. stouputils/continuous_delivery/cd_utils.pyi +129 -0
  16. stouputils/continuous_delivery/github.pyi +162 -0
  17. stouputils/continuous_delivery/pypi.pyi +52 -0
  18. stouputils/continuous_delivery/pyproject.pyi +67 -0
  19. stouputils/continuous_delivery/stubs.pyi +39 -0
  20. stouputils/ctx.pyi +211 -0
  21. stouputils/data_science/config/get.py +51 -51
  22. stouputils/data_science/data_processing/image/__init__.py +66 -66
  23. stouputils/data_science/data_processing/image/auto_contrast.py +79 -79
  24. stouputils/data_science/data_processing/image/axis_flip.py +58 -58
  25. stouputils/data_science/data_processing/image/bias_field_correction.py +74 -74
  26. stouputils/data_science/data_processing/image/binary_threshold.py +73 -73
  27. stouputils/data_science/data_processing/image/blur.py +59 -59
  28. stouputils/data_science/data_processing/image/brightness.py +54 -54
  29. stouputils/data_science/data_processing/image/canny.py +110 -110
  30. stouputils/data_science/data_processing/image/clahe.py +92 -92
  31. stouputils/data_science/data_processing/image/common.py +30 -30
  32. stouputils/data_science/data_processing/image/contrast.py +53 -53
  33. stouputils/data_science/data_processing/image/curvature_flow_filter.py +74 -74
  34. stouputils/data_science/data_processing/image/denoise.py +378 -378
  35. stouputils/data_science/data_processing/image/histogram_equalization.py +123 -123
  36. stouputils/data_science/data_processing/image/invert.py +64 -64
  37. stouputils/data_science/data_processing/image/laplacian.py +60 -60
  38. stouputils/data_science/data_processing/image/median_blur.py +52 -52
  39. stouputils/data_science/data_processing/image/noise.py +59 -59
  40. stouputils/data_science/data_processing/image/normalize.py +65 -65
  41. stouputils/data_science/data_processing/image/random_erase.py +66 -66
  42. stouputils/data_science/data_processing/image/resize.py +69 -69
  43. stouputils/data_science/data_processing/image/rotation.py +80 -80
  44. stouputils/data_science/data_processing/image/salt_pepper.py +68 -68
  45. stouputils/data_science/data_processing/image/sharpening.py +55 -55
  46. stouputils/data_science/data_processing/image/shearing.py +64 -64
  47. stouputils/data_science/data_processing/image/threshold.py +64 -64
  48. stouputils/data_science/data_processing/image/translation.py +71 -71
  49. stouputils/data_science/data_processing/image/zoom.py +83 -83
  50. stouputils/data_science/data_processing/image_augmentation.py +118 -118
  51. stouputils/data_science/data_processing/image_preprocess.py +183 -183
  52. stouputils/data_science/data_processing/prosthesis_detection.py +359 -359
  53. stouputils/data_science/data_processing/technique.py +481 -481
  54. stouputils/data_science/dataset/__init__.py +45 -45
  55. stouputils/data_science/dataset/dataset.py +292 -292
  56. stouputils/data_science/dataset/dataset_loader.py +135 -135
  57. stouputils/data_science/dataset/grouping_strategy.py +296 -296
  58. stouputils/data_science/dataset/image_loader.py +100 -100
  59. stouputils/data_science/dataset/xy_tuple.py +696 -696
  60. stouputils/data_science/metric_dictionnary.py +106 -106
  61. stouputils/data_science/mlflow_utils.py +206 -206
  62. stouputils/data_science/models/abstract_model.py +149 -149
  63. stouputils/data_science/models/all.py +85 -85
  64. stouputils/data_science/models/keras/all.py +38 -38
  65. stouputils/data_science/models/keras/convnext.py +62 -62
  66. stouputils/data_science/models/keras/densenet.py +50 -50
  67. stouputils/data_science/models/keras/efficientnet.py +60 -60
  68. stouputils/data_science/models/keras/mobilenet.py +56 -56
  69. stouputils/data_science/models/keras/resnet.py +52 -52
  70. stouputils/data_science/models/keras/squeezenet.py +233 -233
  71. stouputils/data_science/models/keras/vgg.py +42 -42
  72. stouputils/data_science/models/keras/xception.py +38 -38
  73. stouputils/data_science/models/keras_utils/callbacks/__init__.py +20 -20
  74. stouputils/data_science/models/keras_utils/callbacks/colored_progress_bar.py +219 -219
  75. stouputils/data_science/models/keras_utils/callbacks/learning_rate_finder.py +148 -148
  76. stouputils/data_science/models/keras_utils/callbacks/model_checkpoint_v2.py +31 -31
  77. stouputils/data_science/models/keras_utils/callbacks/progressive_unfreezing.py +249 -249
  78. stouputils/data_science/models/keras_utils/callbacks/warmup_scheduler.py +66 -66
  79. stouputils/data_science/models/keras_utils/losses/__init__.py +12 -12
  80. stouputils/data_science/models/keras_utils/losses/next_generation_loss.py +56 -56
  81. stouputils/data_science/models/keras_utils/visualizations.py +416 -416
  82. stouputils/data_science/models/sandbox.py +116 -116
  83. stouputils/data_science/range_tuple.py +234 -234
  84. stouputils/data_science/utils.py +285 -285
  85. stouputils/decorators.pyi +242 -0
  86. stouputils/image.pyi +172 -0
  87. stouputils/installer/__init__.py +18 -18
  88. stouputils/installer/__init__.pyi +5 -0
  89. stouputils/installer/common.pyi +39 -0
  90. stouputils/installer/downloader.pyi +24 -0
  91. stouputils/installer/linux.py +144 -144
  92. stouputils/installer/linux.pyi +39 -0
  93. stouputils/installer/main.py +223 -223
  94. stouputils/installer/main.pyi +57 -0
  95. stouputils/installer/windows.py +136 -136
  96. stouputils/installer/windows.pyi +31 -0
  97. stouputils/io.pyi +213 -0
  98. stouputils/parallel.py +13 -10
  99. stouputils/parallel.pyi +211 -0
  100. stouputils/print.pyi +136 -0
  101. stouputils/py.typed +1 -1
  102. stouputils/stouputils/parallel.pyi +4 -4
  103. stouputils/version_pkg.pyi +15 -0
  104. {stouputils-1.14.0.dist-info → stouputils-1.14.1.dist-info}/METADATA +1 -1
  105. stouputils-1.14.1.dist-info/RECORD +171 -0
  106. stouputils-1.14.0.dist-info/RECORD +0 -140
  107. {stouputils-1.14.0.dist-info → stouputils-1.14.1.dist-info}/WHEEL +0 -0
  108. {stouputils-1.14.0.dist-info → stouputils-1.14.1.dist-info}/entry_points.txt +0 -0
@@ -1,116 +1,116 @@
1
- """ Sandbox model implementation. (Where I try strange things)
2
-
3
- Tested:
4
-
5
- - ConvNeXtBase with input_shape=(1024, 1024, 3)
6
- - Custom CNN architecture for implant classification (fixed / not fixed)
7
-
8
- """
9
-
10
- # pyright: reportUnknownArgumentType=false
11
- # pyright: reportUnknownVariableType=false
12
- # pyright: reportMissingTypeStubs=false
13
-
14
- # Imports
15
- from __future__ import annotations
16
-
17
- from keras.layers import (
18
- BatchNormalization,
19
- Conv2D,
20
- Input,
21
- MaxPooling2D,
22
- SpatialDropout2D,
23
- )
24
- from keras.models import Model
25
-
26
- from ...print import warning
27
- from ...decorators import simple_cache
28
- from .base_keras import BaseKeras
29
- from .model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
30
-
31
-
32
- class Sandbox(BaseKeras):
33
- def _get_base_model(self) -> Model:
34
- return self.custom_architecture()
35
-
36
- def custom_architecture(self) -> Model:
37
- """ Create a custom architecture for implant classification.
38
-
39
- This model uses a series of convolutional blocks with increasing depth,
40
- batch normalization, spatial and regular dropout for regularization.
41
- It's designed to detect features relevant to implant fixation status.
42
-
43
- Note: This is a custom architecture that does not use transfer learning.
44
- The transfer_learning attribute is ignored.
45
-
46
- Returns:
47
- Model: A Keras model without top layers for implant classification
48
- """
49
- if self.transfer_learning != "":
50
- warning(
51
- f"Transfer learning '{self.transfer_learning}' specified but not supported for custom architecture. "
52
- f"Using a model trained from scratch instead."
53
- )
54
-
55
- # Default input shape based on dataset loading defaults (224x224x3)
56
- input_shape: tuple[int, int, int] = (224, 224, 3)
57
-
58
- # Input layer
59
- inputs = Input(shape=input_shape)
60
-
61
- # Block 1: Initial feature extraction
62
- x = Conv2D(64, (3, 3), activation="relu", padding="same", name="block1_conv1")(inputs)
63
- x = BatchNormalization()(x)
64
- x = Conv2D(64, (3, 3), activation="relu", padding="same", name="block1_conv2")(x)
65
- x = BatchNormalization()(x)
66
- x = MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x)
67
- x = SpatialDropout2D(0.1)(x)
68
-
69
- # Block 2: Intermediate features
70
- x = Conv2D(128, (3, 3), activation="relu", padding="same", name="block2_conv1")(x)
71
- x = BatchNormalization()(x)
72
- x = Conv2D(128, (3, 3), activation="relu", padding="same", name="block2_conv2")(x)
73
- x = BatchNormalization()(x)
74
- x = MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x)
75
- x = SpatialDropout2D(0.1)(x)
76
-
77
- # Block 3: More complex features
78
- x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv1")(x)
79
- x = BatchNormalization()(x)
80
- x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv2")(x)
81
- x = BatchNormalization()(x)
82
- x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv3")(x)
83
- x = BatchNormalization()(x)
84
- x = MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x)
85
- x = SpatialDropout2D(0.1)(x)
86
-
87
- # Block 4: Deep features
88
- x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv1")(x)
89
- x = BatchNormalization()(x)
90
- x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv2")(x)
91
- x = BatchNormalization()(x)
92
- x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv3")(x)
93
- x = BatchNormalization()(x)
94
- x = MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x)
95
- x = SpatialDropout2D(0.1)(x)
96
-
97
- # Block 5: High-level abstract features
98
- x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv1")(x)
99
- x = BatchNormalization()(x)
100
- x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv2")(x)
101
- x = BatchNormalization()(x)
102
- x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv3")(x)
103
- x = BatchNormalization()(x)
104
-
105
- # Create the model
106
- model = Model(inputs, x, name="implant_classifier")
107
-
108
- return model
109
-
110
-
111
- # Docstrings
112
- for model in [Sandbox]:
113
- model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
114
- model.class_routine = simple_cache(model.class_routine)
115
- model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
116
-
1
+ """ Sandbox model implementation. (Where I try strange things)
2
+
3
+ Tested:
4
+
5
+ - ConvNeXtBase with input_shape=(1024, 1024, 3)
6
+ - Custom CNN architecture for implant classification (fixed / not fixed)
7
+
8
+ """
9
+
10
+ # pyright: reportUnknownArgumentType=false
11
+ # pyright: reportUnknownVariableType=false
12
+ # pyright: reportMissingTypeStubs=false
13
+
14
+ # Imports
15
+ from __future__ import annotations
16
+
17
+ from keras.layers import (
18
+ BatchNormalization,
19
+ Conv2D,
20
+ Input,
21
+ MaxPooling2D,
22
+ SpatialDropout2D,
23
+ )
24
+ from keras.models import Model
25
+
26
+ from ...print import warning
27
+ from ...decorators import simple_cache
28
+ from .base_keras import BaseKeras
29
+ from .model_interface import CLASS_ROUTINE_DOCSTRING, MODEL_DOCSTRING
30
+
31
+
32
+ class Sandbox(BaseKeras):
33
+ def _get_base_model(self) -> Model:
34
+ return self.custom_architecture()
35
+
36
+ def custom_architecture(self) -> Model:
37
+ """ Create a custom architecture for implant classification.
38
+
39
+ This model uses a series of convolutional blocks with increasing depth,
40
+ batch normalization, spatial and regular dropout for regularization.
41
+ It's designed to detect features relevant to implant fixation status.
42
+
43
+ Note: This is a custom architecture that does not use transfer learning.
44
+ The transfer_learning attribute is ignored.
45
+
46
+ Returns:
47
+ Model: A Keras model without top layers for implant classification
48
+ """
49
+ if self.transfer_learning != "":
50
+ warning(
51
+ f"Transfer learning '{self.transfer_learning}' specified but not supported for custom architecture. "
52
+ f"Using a model trained from scratch instead."
53
+ )
54
+
55
+ # Default input shape based on dataset loading defaults (224x224x3)
56
+ input_shape: tuple[int, int, int] = (224, 224, 3)
57
+
58
+ # Input layer
59
+ inputs = Input(shape=input_shape)
60
+
61
+ # Block 1: Initial feature extraction
62
+ x = Conv2D(64, (3, 3), activation="relu", padding="same", name="block1_conv1")(inputs)
63
+ x = BatchNormalization()(x)
64
+ x = Conv2D(64, (3, 3), activation="relu", padding="same", name="block1_conv2")(x)
65
+ x = BatchNormalization()(x)
66
+ x = MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x)
67
+ x = SpatialDropout2D(0.1)(x)
68
+
69
+ # Block 2: Intermediate features
70
+ x = Conv2D(128, (3, 3), activation="relu", padding="same", name="block2_conv1")(x)
71
+ x = BatchNormalization()(x)
72
+ x = Conv2D(128, (3, 3), activation="relu", padding="same", name="block2_conv2")(x)
73
+ x = BatchNormalization()(x)
74
+ x = MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x)
75
+ x = SpatialDropout2D(0.1)(x)
76
+
77
+ # Block 3: More complex features
78
+ x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv1")(x)
79
+ x = BatchNormalization()(x)
80
+ x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv2")(x)
81
+ x = BatchNormalization()(x)
82
+ x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv3")(x)
83
+ x = BatchNormalization()(x)
84
+ x = MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x)
85
+ x = SpatialDropout2D(0.1)(x)
86
+
87
+ # Block 4: Deep features
88
+ x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv1")(x)
89
+ x = BatchNormalization()(x)
90
+ x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv2")(x)
91
+ x = BatchNormalization()(x)
92
+ x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv3")(x)
93
+ x = BatchNormalization()(x)
94
+ x = MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x)
95
+ x = SpatialDropout2D(0.1)(x)
96
+
97
+ # Block 5: High-level abstract features
98
+ x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv1")(x)
99
+ x = BatchNormalization()(x)
100
+ x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv2")(x)
101
+ x = BatchNormalization()(x)
102
+ x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv3")(x)
103
+ x = BatchNormalization()(x)
104
+
105
+ # Create the model
106
+ model = Model(inputs, x, name="implant_classifier")
107
+
108
+ return model
109
+
110
+
111
+ # Docstrings
112
+ for model in [Sandbox]:
113
+ model.__doc__ = MODEL_DOCSTRING.format(model=model.__name__)
114
+ model.class_routine = simple_cache(model.class_routine)
115
+ model.class_routine.__doc__ = CLASS_ROUTINE_DOCSTRING.format(model=model.__name__)
116
+